OPERATOR'S, ORGANIZATIONAL,

DIRECT SUPPORT,

COUNTER, PULSE, ELECTRONIC

TD-1338(V)1/USM

(NSN 6625-01-120-7832) (EIC: KMJ)

Abstract

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq.. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25. DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CSS-ME-TEMOD, Redstone Arsenal, AL 35898-5000.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

HEADQUARTERS, DEPARTMENT OF THE ARMY

SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

IF POSSIBLE, TURN OFF THE ELECTRICAL POWER

IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH, OR LIFT THE PERSON TO SAFETY USING A WOODEN POLE OR A ROPE OR SOME OTHER INSULATING MATERIAL

SEND FOR HELP AS SOON AS POSSIBLE
(5)

AFTER THE INJURED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

CHANGE)
Headquarters

TECHNICAL MANUAL OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT
 AND

GENERAL SUPPORT MAINTENANCE MANUAL

COUNTER, PULSE, ELECTRONIC TD-1338(V)1/USM
 (NSN 6625-01-120-7832) (EIC: KMJ)

[^0]TM 11-6625-3031-14, dated 6 May 1983, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the outer margin of the page. Illustration changes are indicated by a pointing hand. New or changed part numbers are indicated by an asterisk (*).
Completely revised sections or chapters are indicated by a vertical bar adjacent to the title only.
```
Remove Pages
None
i, ii
B-1 through \(B-5 /(B-6\) blank)
DA Forms 2028-2
COVER
```

Insert Pages
A/(B blank)
i|fiii
B-1 through B-6
DA Forms 2028
COVER
2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

PETER J. SCHOOMAKER General, United States Army

Official:-

Sandra RACily
Administrative Assistant to the
Secretary of the Army
0516810

DISTRIBUTION:
To be distributed in accordance with initial distribution number (IDN) 368272, requirements for TM 11-6625-3031-14.

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL FOR

COUNTER, PULSE, ELECTRONIC

TD-1338(V)1/USM
(NSN 6625-01-120-7832) (EIC: KMJ)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, U. S. Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via email, fax or the World Wide Web. Our fax number is: DSN 788-6546 or Commercial 256-842-6546. Our email address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual immediately preceding the hardcopy 2028. For the World Wide Web use: https://amcom2028.redstone.army.mil.

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq.. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25.
DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CSS-ME-TEMOD, Redstone Arsenal, AL 35898-5000.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

TABLE OF CONTENTS

		Para	Page
Chapter	1. INTRODUCTION		
Section	I. General Information		1-1
	Scope	1-1	1-1
	Reports of maintenance forms, records and reports.	1-2	1-1
	Administrative storage.	1-3	1-1
	Destruction of Army electronics materiel.	1-4	1-1
	Reporting equipment improvement recommendations (EIR's)...	1-5	1-1
	Warranty information.	1-6	1-1
	II. Equipment Description.		1-2
	Equipment characteristics, capabilities and features	1-7	1-2
	Equipment data........	1-8	1-2
	III.Technical Principles of Operation.		1-4
	Counter functional operation.	1-9	1-4

TABLE OF CONTENTS - Continued

TABLE OF CONTENTS - Continued

LIST OF ILLUSTRATIONS

Figure	Title Page
1-1	Counter, Pulse, Electronic TD-1338(V) 1/USM $1-0$
1-2	Counter, Functional Block Diagram. 1-5
1-3	Basic Counter A1, Functional Block Diagram 1-7
1-4	Converter A2, Functional Block Diagram $1-9$
2-1	Counter Front Panel. $2-1$
2-2	Counter Rear Panel. $2-4$
2-3	Pulse Profile Measurement Test Setup $2-10$
2-4	Pulse Profile Measurement . $2-10$
2-5	Time Varying Signal Measurement Test Setup $2-11$
2-6	Internal Timing Delays . $2-12$
2-7	GPIB Capabilities and Structure $2-15$
2-8	GPIB IEEE STD 488/1975 ADDRESS SWITCH Positions $2-16$
4-1	Subassembly and Cable Locations 4-3
4-2	Counter Interconnect A100, Connector and Switch Locations 4-17
4-3	Counter, Partial Exploded View 4-18
4-4	Adjustment Locations. 4-21
4-5	Pulse Generator Output . 4-23
4-6	YIG Control A202, Adjustment and Test Point Locations 4-24
4-7	Detected Modulation and 20 kHz Reference Pulse Timing 4-24
4-8	Converter Sequencer A203, Adjustment and Test Point
	Locations. 4-26
4-9	Return Loss Measurement Setup 4-26
4-10	Return Loss Measurement Waveform 4-27
4-11	Typical Attenuator Control Ramp Offset 4-27
4-12	Comb Line . 4-27
FO-1	Counter Interconnection Schematic Diagram
F0-2	Interconnection Diagram, Detailed Technical Schematic
FO-3A	Component Locator Counter Interconnect (A100)
FO-3B	Schematic Diagram Counter Interconnect (A100)
FO-4A	Component Locator and Descriptive Information Count Chain Control (A102)
F0-4B	Schematic Diagram Count Chain Control (A102)
FO-5A	Component Locator and Descriptive Information Count Chain (A103)
FO-5B	Schematic Diagram Count Chain (A103)
FO-6A	Component Locator and Descriptive Information Control (A104)
F0-6B	Schematic Diagram Control (A104)
FO-7A	Component Locator and Descriptive Information Gate Generator (A105)
FO-7B	Schematic Diagram Gate Generator (A105)
FO-8A	Component Locator and Descriptive Information High Frequency (A106)
FO-8B	Schematic Diagram High Frequency (A106)
F0-9A	Component Locator and Descriptive Information Power Supply (A107)
F0-9B	Schematic Diagram Power Supply (A107)
FO-10A	Component Locator and Descriptive Information Reference Oscillator Buffer (A108)
FO-10B	Schematic Diagram Reference Oscillator Buffer (A108)

LIST OF ILLUSTRATIONS (Continued)

Figure
Title

LIST OF TABLES

Page

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
Component Locator and Descriptive Information Display (A110)
Schematic Diagram Display (A110)
Component Locator Converter Interconnect (A200)
Schematic Diagram Converter Interconnect (A200)
Component Locator and Descriptive Information Source/Amplifier (A201)
Schematic Diagram Source/Amplifier (A201)
Component Locator and Descriptive Information Yig Control (A202)
Schematic Diagram Yig Control (A202)
Component Locator and Descriptive Information Converter Sequencer (A203)
Schematic Diagram Converter Sequencer (A203)
Component Locator and Descriptive Information IF Processor (A204)
Schematic Diagram IF Processor (A204)

Specifications. $1-1$
Front-panel Controls, Connectors and Indicators 2-1
Rear-panel Controls and Connectors $\frac{2-5}{2-5}$
Operator Preventive Maintenance Checks and Services $\frac{2-6}{2-6}$
Counter GPIB Capability Identification Codes $2-14$
GPIB IEEE STD 488/1975 Connector Pin Assignments 2-16
On Line and Off Line ADDRESS SWITCH Settings $\frac{2-17}{2-18}$
ADDRESS SWITCH Settings vs ASCII Characters $2-18$
Programming Summary. $2-20$
Typical Program Using Hewlett-Packard 9815 Calculator as Controller. 2-26
Operator and Organizational Troubleshooting 3-1
Symptom Index . $4-2$
Direct Support and General Support Troubleshooting 4-4
Power Supply Voltages and Adjustments 4-22
Band B Response Tests . $4-29$
Preset Frequency Tests . 4-31
Control Sequence. , , . 4-45
Converter Sequence Functions 4-65

Figure 1-1. Counter, Pulse, Electronic TD-1338(V)1/USM

CHAPTER 1 INTRODUCTION

Section I. GENERAL INFORMATION

1-1. Scope.

a. This technical manual covers operation and maintenance of Counter, Pulse, Electronic TD-1338(V)1/USM. Throughout this manual it is referred to as the counter.
b. The counter (\ddagger iq. 1-1) is used to measure the frequency of cw , pulsemodulated, or frequency-modulated microwave signals between 300 MHz and 18 GHz . Pulse widths can be as narrow as 100 nanoseconds, with a maximum pulse repetition frequency of 2.5 MHz . Peak-to-peak deviation of $F M$ signals may be as great as 40 MHz at 10 MHz modulation rates.

1-2. Reports of Maintenance Forms, Records and Reports.

> a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by TM 38-750, The Army Maintenance Management System (Army). Air Force personnel will use AFM 66-1 for maintenance reporting and TO 00-35D54 for unsatisfactory equipment reporting.
> b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed in AR 735-11-2/DLAR 4140.55/ NAVMATINST 4355.73/AFR 400-54/MCO 4430.3E.
> C. Discrepancy in Shipment Record (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP)
> (SF 361) as prescribed in AR 55-38/ NAVSUPINST 4610.33B/AFR 75-18/MCO P4610.19C/DLAR 4500.15.

1-3. Administrative Storage.

Administrative storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage, the PMCS should be performed to assure operational readiness.

1-4. Destruction of Army Electronics Materiel.

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

1-5. Reporting Equipment Improvement Recommendations (EIR's).

If your counter needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design or performance. Put it on an SF 368 (Quality Deficiency Report). Mail it to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: DRSEL-ME-MP, Fort Monmouth, New Jersey 07703. We'll send you a reply.

1-6. Warranty Information.
The counter is warranted by EIP Microwave, Inc. for 12 months. It starts on the date, found in block 23, DA Form 2408-9, in the logbook. Report all defects in material or workmanship to your supervisor, who will take appropriate action through your organizational maintenance shop.

Section II. EQUIPMENT DESCRIPTION

1-7. Equipment Characteristics, Capabilities and Features.

The counter is a portable test instrument usable as either selfcontained frequency measurement or monitoring indicator, or as part of a programmable automatic test equipment (ATE) system. It provides a direct readout of frequency from 300 mHz through 18 MHz . Capabilities and features include:
a. Measures pulse-modulated microwave signals.
b. Measures frequency-modulated microwave signals.
C. Measures cw microwave signals.
d. Front panel self-test of digital display.

e. Front panel self-test of internal circuits.			
circuits.f.Automatic and selectable resolut			
of-readout display.			
g. Overload protection built in at			
input connector. h. Simple change to cover different			
power line voltages.			
i. Front-panel selection of frequency			
scanning limits.			
j. Comparable with IEEE STD 488			
General Purpose Interface Bus (GPIB).			
1-8. Equipment Data.			
Table 1-1 ists the electrical			
and physical characteristics of the counter.			

 e. Front panel self-test of internal
 circuits.
 f. Automatic and selectable resolution
 of-readout display.
 g. Overload protection built in at
 input connector.
h. Simple change to cover different
power line voltages.
i. Front-panel selection of frequency
scanning limits.
j. Comparable with IEEE STD 488
General Purpose Interface Bus (GPIB).
1-8. Equipment Data.
and physical characteristics of the
counter.

Table 1-1. Specifications

Frequency Range:	
Band A	300 MHz to 950 MHz
Band B	925 MHz to 18 GHz
Pulse Characteristics:	
Pulse width	100 nsec min, measured at 3-dB points
Pulse repetition frequency	Minimum 50 Hz or 0 Hz , rear panel selectable. Maximum 2.5 MHz . Minimum time between pulses 300 nsec .
Accuracy:	
CW or pulse > 100 ¢ sec	Time base accuracy ± 1 count
Pulse < $100 \mu \mathrm{sec}$	Time base accuracy \pm averaging error \pm gate error
Averaging Error (kHz rms) :	Band A \quad Band B
	200 100
$100 \mu \mathrm{sec}$ gate	$\sqrt{\text { PW-0.03 }} \quad \sqrt{\sqrt{\mathrm{PW}-0.03}}$
1 msec gate	60 30
	$\sqrt{\mathrm{PW}-0.03} \quad \sqrt{\mathrm{PW}-0.03}$
Gate error (max)	$\pm 100 \mathrm{kHz}$
	PW - 0.03 PW - 0.03
	NOTE
	$\mathrm{PW}=$ pulse width in $\mu \mathrm{sec}$

Table 1-1. Specifications - Continued

Time Base:	Temperature compensated crystal oscillator (TCXO)
Crystal frequency	10 MHz
Stability:	
Aging rate	$<\left\|3 \times 10^{-7}\right\|$ per month
Temperature	$<\left\|2 \times 10^{-6}\right\|, 0$ to $50^{\circ} \mathrm{C}$
Line voltage	$<\left\|1 \times 10^{-7}\right\|$ for $\pm 10 \%$ change
Sensitivity	Band A Band B
	$300-950 \mathrm{MHz}:$ $925 \mathrm{MHz}-10 \mathrm{GHz}:$ -10 dBm peak -10 dBm peak
	$\begin{aligned} & 10 \mathrm{GHz}-18 \mathrm{GHz}: \\ & -5 \mathrm{dBm} \text { peak } \end{aligned}$
Input Impedance	50 ohms nominal 50 ohms nominal
Connector Types	BNC N (precision)
Maximum Input Peak Level:	
Operating	+10 dBm +10 dBm
Burnout level	+27 dBm +30 dBm
Reading Time (sec) :	
$100 \mu \mathrm{sec}$ gate	$\frac{400}{(\mathrm{PW})(\mathrm{PRF})} \quad \frac{100}{(\mathrm{PW}) \quad(\mathrm{PRF})}$
1 msec gate	$\frac{4000}{(\mathrm{PW})(\mathrm{PRF})} \quad \frac{1000}{(\mathrm{PW}) \quad(\mathrm{PRF})}$
	NOTE
	```PW = pulse width in \musec PRF = pulse repetition frequency in Hertz```
Display	7-digit light emitting diode (LED)
	Fixed decimal point
	Leading zero suppression
Band B Minimum FM Tolerance:	
CW	$40 \mathrm{MHz} \mathrm{p}-\mathrm{p}$ deviation for modulation rates dc to 10 MHz
Pulse	Without input inhibit: 20 MHz maximum frequency shift across pulse
Frequency profile	With input inhibit: 20 MHz maximum frequency shift during input inhibit pulse

Table 1-1. Specifications - Continued
Band B Acquisition Time:

PRF > 100 Hz	$100 \mathrm{msec}+50 \mathrm{msec} / \mathrm{GHz}$
PRF < 100 Hz	$100 \mathrm{msec}+\frac{5}{\text { PRF }} \mathrm{sec} / \mathrm{GHz}$
Resolution	$10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$
General Purpose Interface Bus (GPIB)	IEEE Standard Digital Interface for Programmable Instrumentation, IEEE STD 488-1975
Power	115 or $230 \mathrm{Vac} \pm 10 \%, 50 / 60 \mathrm{~Hz}$;   115 Vac $\pm 10 \%, 400 \mathrm{~Hz}$; single phase;   100 watts nominal
Operating Temperature	$0-50^{\circ} \mathrm{C}$
Warm up Time	None Required
Weight	30 lb
Dimensions (inches)	3.5 Hx 16.75 W x 19.0 D

## Section III. TECHNICAL PRINCIPLES OF OPERATION

1-9. Counter Functional Operation. (Fig. 1-2.)
a. The counter automatically measures and displays the frequency of Cw or pulse-modulated signals from 300 MHz through 18 GHz . With accessory equipment, the counter can make dynamic frequency measurements; measurement windows as narrow as 20 nanoseconds are possible. Two primary input connectors on the front panel, BAND A $300-950 \mathrm{MHz}$ and BAND B $925 \mathrm{MHz}-18 \mathrm{GHz}$, are used to connect the counter to the external frequency source. An auxiliary INPUT INHIBIT connector on the rear panel can be used to control the time during which an actual reading is made. Control of the counter can be accomplished by front-panel switches or by a General Purpose Interface Bus (GPIB) from an external GPIB controller. The output of the counter is displayed on a 7digit, fixed decimal, light emitting diode (LED) display and can be transmitted through the GPIB for other
purposes. Accuracy of the counter is controlled by Reference Oscillator Buffer A108 with outputs to Basic Counter Al and Converter A2; a third output is connected to a rear-panel 10 MHz OUTPUT connector.
b. Band A signals are fed into a divide-by-four circuit in Prescaler A109, whose output is directed to Basic Counter A1 through Dual Delay Line A116. The divide-by-four frequency is counted in the basic counter for either a 400 microsecond or 4 millisecond period to obtain 10 kHz resolution readout on Display A110. The counter gate in A1 is enabled by the input signal and is open only when a signal is present.
C. Band $B$ signals are fed into Converter A2, converted to an IF signal by heterodyning the input signal against a 200 MHz harmonic, and directed to A1 through Delay Line A112. The counter gate in A1 is enabled by the Input signal and is open only when a signal is present. In A1, resolution is inversely proportional to the measurement


Figure 1－2．Counter，Functional Block Diagram
ォโ－โع0ع－乌て99－IT WL
time. For example: a 1 microsecond gate time will give 1 MHz resolution. To get 10 kHz resolution, the counter automatically averages as many input pulses as necessary to obtain a total gate time of 100 microseconds or 1 millisecond. The required number of pulses is a function of input pulse width. The intermediate frequency from A2 is processed and counted in A1 and displayed on A110.
d. Three rear-panel connectors provide $10-\mathrm{MHz}$, SIGNAL THRESHOLD, and GATE OUTPUTS . The 10 MHz OUTPUT is a service convenience for adjusting the temperature compensated crystal oscillator (TCXO) on Reference Oscillator Buffer A108. The other two signal outputs may be used for dynamic frequency measurements such as pulse profile measurements or time varying signal measurements.
e. Power Supply A107 provides +5 , $-5.2,+12,-12$, and +18 volts dc for the counter circuits. The +18 Vdc output is unregulated; the other four voltages are regulated.

1-10. Basic Counter A1. Fig. 1-3.)
a. Input signals from either the low range ( 300 - 950 MHz ) or high range ( 925 MHz - $18 \mathrm{GHz)}$ sources, or both, are applied to the signal processor circuits on High Frequency Circuit Card A106. The signal from Prescaler A109 is the BAND A input frequency, divided by four (f/4). The signal from I.F. Processor A204 is the BAND B input frequency minus the reference frequency identified as the converter IF signal. Selection of which signal to display is controlled by the front panel BAND selection switches or by GPIB selection. Only one of the signal inputs can be displayed even though both may be connected to the counter. The $f / 4$ and the IF signal inputs are 360 MHz or lower and are directed to the 400 MHz decade circuits on A106.
b. Two threshold (Band $A$ and/or Band B) control levels are applied to Gate Generator A105 to provide a gate output to the 400 MHz decade through the gate calibrator. The Band A
threshold comes from Prescaler A109 while the Band B threshold comes from I.F. Processor A204 in Converter A2.
c. When an input signal has been processed into the range below 360 MHz and applied to the 400 MHz decade, the frequency of the signal is determined by accumulating the number of signal cycles occurring within a precisely determined time interval (gate). The gate period is dependent on the 200 MHz reference frequency. Total time intervals of the gates are 100 microseconds and 1 millisecond for Band $B$, or 400 microseconds and 4 milliseconds for Band $A$. In order to measure narrow pulses to a resolution of 10 kHz , it is necessary to add the number of cycles counted in each of $a$ large number of pulses until the required total time interval is obtained.
d. Gate Generator A105 provides a precision interval gate. This function is considerably more difficult for pulsed signals than it is for cw signals, and it is on this function that the overall accuracy of the counter depends. A105 performs two functions; it supplies a gate to A106 only when an input signal is present, and it accumulates the total time of gate application for periods of either 100 microseconds or 1 millisecond for Band $B$, or either 400 microseconds or 4 milliseconds for Band A.
e. The first function or operation requires that the gate begin after the signal is present at A106 and to end before the end of signal. This is done by generating a gate approximately 30 nanoseconds shorter than the RF signal start as determined by the associated Band A or Band B threshold level. The arrival time at A106 of the converter IF or the prescaler $f / 4$ signal is controlled by delay lines in A116, in series with the signals, so that the gate will fall entirely within the signal pulse application.
f. The second function is done by counting clock pulses when the gate is open until a total period of 100 microseconds or 1 millisecond for Band $B$, or 400 microseconds or 4 milliseconds for


Figure 1-3. Basic Counter A1, Functional Block Diagram

Band $A$, is accumulated. This requires that each gate opening is for an exact integral number of clock pulses. A 200 MHz clock is used, causing the gate width to increase in 5 nanosecond steps until a total of 20,000 steps for 100 microseconds, 80,000 steps for 400 microseconds, 200,000 steps for 1 millisecond, or 800,000 steps for 4 milliseconds is accumulated.
g. The signal passes through the counter gate and is accumulated in the counting-chain first decade, the 400 MHz decade on A106. The signal output (f/10) of the 400 MHz decade is fed to the storage unit through the 6-decade count chain of A103. The storage unit on A103 holds all of the digital information from the previous reading. Output from the storage unit is fed to the display multiplexer which is controlled by count chain control circuits on the Count Chain Control A102.
h. Output of the display multiplexer on A102 is fed to Display A110. A110 is mounted on the front panel along with LEVEL, LOCK, and GATE status indicators. The front-panel REMOTE indicator is used with GPIB controller operations. Overall control of the counter is performed by Control Circuit Card A104. Frontpanel selection switching is routed to A104 through GPIB Remote/Local Circuit Card AM121. When the counter is in the REMOTE mode of operation, front-panel controls and switches are inoperative except for the SAMPLE RATE control, and then only under certain programming instructions from the GPIB controller.

## 1-11. Converter A2. Fig. 1-4.)

a. Converter A2 translates the Band B input microwave frequencies down to frequencies between 100 and 360 MHz . Translation is done by mixing the input frequencies with a reference frequency to produce, by heterodyne action, an amplified intermediate frequency. The IF is then fed to A106 through Delay Line A112 for counting and processing in Basic Counter A1.
b. Generation of the heterodyning reference frequency starts by generating a

200 MHz reference signal in Source/ Amplifier A201. The 200 MHz reference in A201 is generated by an L-C oscillator phase-locked to 10 MHz from Reference Oscillator Buffer A108. The 200 MHz outputs from A201 are directed to YIG (Yttrium-Iron-Garnet) Comb Generator A207 and to Gate Generator A105 in Basic Counter A1. A power amplifier section on $A 201$ amplifies the 200 MHz signal before it is applied to A207. The 200 MHz output to A105 is used to generate a Band B gate or may be used for a TEST 200 MHz self-test.
c. The local oscillator, or reference harmonic, frequency is generated in YIG Comb Generator A207 by taking the 200 MHz signal from A201 and converting it to a train of narrow pulses containing all harmonics of 200 MHz up to 18 GHz . This conversion is done by the YIG comb generator and a two-stage YIG filter, which selects the desired 200 MHz harmonic. The YIG filter is tuned by varying the current through a pair of coils, which change magnetic fields in the assembly.
d. Band B input signals are applied to Limiter/Attenuator A206. A passive diode limiter protects Mixer A205 from power levels in excess of one watt peak ( +30 dBm ). A multistage matched PIN diode attenuator section controls the RF signal level to the mixer and switches off the input signal during portions of converter operation.
e. Mixer A205 is an integrated microwave circuit assembly consisting of a hybrid coupler, termination, mixer diode, and dc return. The mixer produces two output signals on a common line: an IF signal equal to the difference frequency between the incoming $R F$ signal from A206 and the reference frequency harmonic from A207, and a video signal resulting from rectification (detection) of either the $R F$ or reference inputs. The mixer output is fed to I.F. Processor A204.
f. The IF and video signals from Mixer A205 are separated in A204. The IF signal is amplified by the IF amplifier and sent on as the converter IF signal to A106, through Delay Line A112, for

counting. The video signal is amplified in the video amplifier to produce three video outputs: (1) a threshold signal is directed to the rear-panel SIGNAL THRESHOLD connector through Prescaler A109; (2) a threshold signal, identified as attenuator control, is sent to an attenuator control circuit on Converter Sequencer A203; and (3) an analog output is applied to the power level control portion of A203.
g. On A203, inputs from the lock section of I.F. Processor A204 are sequenced and timed to produce a lock level signal for Control A104 and a Band B threshold signal for Gate Generator A105. The attenuator control threshold signal from the video section of A204 is combined with an input from the converter sequencer in the attenuator control to give two outputs:
(1) an attenuator control signal, activated at a level approximately 7 dB above signal threshold, sent to the PIN attenuator of $A 206$, to reduce signal level into Mixer A205; and (2) a reduce signal level sent to the front-panel

REDUCE SIGNAL indicator when the attenuator control is sending a signal to the PIN attenuator. The power level control circuit receives an analog input from the video section of A204 and a digital signal from the converter sequencer of A203, and provides a signal to the tuning circuits of $A 202$ to set the comb line amplitude. The converter sequencer function is to control the sensing, leveling, and control of Converter A2.
h. YIG Control A202 contains circuits to step the YIG filter to the proper comb line, and is controlled by input lines from Converter Sequencer A204. On-board circuits include a YIG driver to supply the required current, a digital-to-analog converter (DAC) to set the approximate center frequency, and a centering circuit to precisely center the YIG filter passband on a comb line. The centering process is done by modulating the YIG center frequency by an auxiliary modulation coil in YIG Comb Generator A207. The modulation control circuit is on A202.

## CHAPTER 2

OPERATING INSTRUCTIONS

## Section I. DESCRIPTION AND USE OF OPERATORS CONTROLS AND INDICATORS

2-1. Front-Panel Controls, Connectors and Indicators.

Operator's front-panel controls, connectors and indicators are shown in figure 2-1 and are keyed to Eable 2-1, which describes their functions.

2-2. Rear-panel Controls and Connectors.

Operator's rear-panel controls and connectors are shown in figure 2-2 and are keyed to table $2-2$, which describes their functions.


Figure 2-1. Counter Front Panel

Table 2-1. Front-panel Controls, Connectors and Indicators

Key	Control, connector   or indicator	Functional operation

Table 2-1. Front-panel Controls, Connectors and Indicators - Continued

Key	Control, connector or indicator	Functional operation
3	GATE indicator	Lights when counter is in measurement portion of cycle.
4	LEVEL indicator	Lights when input signal level is high enough to be counted. Light will blink if signal pulse repetition frequency is too low.
5	LOCK indicator	Lights when input signal has been acquired.
6	MANUAL SELECT/AUTO SWEEP switch	Selects either manual or automatic operation of counter for BAND B.
7	PRESET FREQUENCY/START FREQUENCY thumbwheel switch	When MANUAL SELECT/AUTO SWEEP switch (6) is set to MANUAL SELECT, thumbwheel switch sets PRESET FREQUENCY; input signal frequency must be 105 to 325 MHz higher. When MANUAL SELECT/AUTO SWEEP switch is set to AUTO SWEEP, thumbwheel switch sets sweep START FREQUENCY; input signal frequency must be at least 105 MHz higher than sweep start.
8	BAND B $925 \mathrm{MHz}-18 \mathrm{GHz}$ connector	Type N precision input connector for Band B operation.
9	REDUCE SIGNAL indicator	Lights when Band $B$ input power approaches maximum safe operating level.
10	BAND A 300-950 MHz connector	Type BNC input connector for Band A operation.
11	BAND B pushbutton switch	Selects Band B operation for frequencies between 925 MHz and 18 GHz .
12	BAND A pushbutton switch	Selects Band A operation for frequencies between 300 and 950 MHz .
13	RESET pushbutton switch	When pushed and released, overrides SAMPLE RATE control, resets display to zeros, and initiates a new reading.
14	1 ms GATE pushbutton switch	When pushed in, provides 10 kHz resolution with 1 millisecond gate time on Band B or 4 millisecond gate time on Band A for reduced pulse averaging error.

Table 2-1. Front-panel Controls, Connectors and Indicators - Continued

Key	Control, connector or indicator	Functional operation
15	Right RESOLUTION pushbutton switch	Provides blanking of least significant digit for resolution of 100 kHz with 100 microsecond gate time on Band B or 400 microsecond gate time on Band $A$.
16	Left RESOLUTION pushbutton switch	Provides blanking of two least significant digits for resolution of 1 MHz with 100 microsecond gate time on Band B or 400 microsecond gate time on Band A.
17	TEST DISPLAY pushbutton switch	When pushed and held in, provides test of all segments of display LEDS. Display should read 88 888.88.
18	TEST 200 MHz pushbutton switch	When pushed and held in, provides check of counting circuits. Display should indicate 200.00 MHz .
19	SAMPLE RATE control	Continuously variable control which varies display time from 0.1 to 10 seconds per reading. Rotating control to its switched HOLD position will cause display to hold last reading without an update until RESET switch (13) is pushed in.
20	POWER pushbutton switch	When pushed in and released, power counter is turned on or off. When power is on, a green indicator is visible in switch.



Figure 2-2. Counter Rear Panel

Table 2-2. Rear-panel Controls and Connectors

Key	Control or connector	Functional operation
1	10 MHz OUTPUT connector	

Table 2-2. Rear-panel Controls and Connectors - Continued

Key	Control or connector	Functional operation
7	AC power connector	Three-prong male connector for ac power cable. Third conductor grounding meets NEC and UL requirements.
8	MIN. PRF switch	Selects minimum prf. Normally set to 50 Hz position. In 0 position, counter will measure very low prf signals but reading will not automatically reset when signal is removed.
9	STORAGE switch	Controls display update. Normally ON; in OFF position front-panel display updates continuously during measurement cycle.
10	GATE OUTPUT connector	Provides gate pulse representing actual time at which measurement is being made. Used in frequency profile measurements.
11	INPUT INHIBIT connector	Connector for external pulse input for use in frequency profile measurements.
12	ACCESSORY POWER OUT connector	```Provides +5, -5.2, +12, and -12 Vdc for accessories used with counter, such as EIP Model 400 Delay Generator.```

## Section II. PREVENTIVE MAINTENANCE CHECKS AND SERVICES

2-3. General Instructions.
a. Before you operate. Always keep in mind the CAUTIONS and WARNINGS. Perform your before (B) PMCS.
b. While you operate. Always keep in mind the CAUTIONS and WARNINGS. Perform your during (D) PMCS.
c. After you operate. Be sure to perform your after (A) PMCS.
d. If your equipment fails to operate. Troubleshoot with proper equipment. Report any deficiencies using the proper forms. See TM 38-750.

2-4. PMCS Procedures.
Table $2-3$ outlines the functions to be performed at specific intervals. These checks and services are to maintain Army electronic equipment in a combat serviceable condition; that is, in good general (physical) condition and in good operating condition. To assist operators in maintaining combat serviceability, the chart indicates what to check. If any entry appears in the "Equipment is not ready/available if:" column, appropriate corrective
maintenance action must be taken to restore the counter to an operational condition.

## 2-5. Cleaning Instructions.

a. At the interval specified in table 2-3, remove dust and loose dirt with a clean soft cloth.

## CAUTION

Do not use any solvent except water or a mild detergent to clean the plastic front panel of the counter. Other solvents may damage the panel.
b. Clean external surfaces with a clean soft cloth moistened with clean water. A mild detergent may be used for more effective cleaning.

Table 2-3. Operator Preventive Maintenance Checks and Services

NOTE
Within designated interval, these checks are to be performed in the order listed.
B - Before
W - Weekly
D - During
M - Monthly
A - After

Item No.	Interval					Item to be inspected	```Procedures - check for and have repaired or adjusted as necessary```	Equipment is not ready/ available if:
	B	D	A	W	M			
1	x					Completeness	Power cable connected to counter.	Power cable is missing.
2		x				Power cable	```Cuts or cracks in outside jacket; damage to connector pins.```	Power cable is defective.
3				x		Controls and hardware	Missing or loose knobs or hardware	
4					x	Exterior surfaces	Clean exterior surfaces.	
5					x	Nameplate	Legibility.	
6	x					Operational capability	Perform self-test, para 2-7 b (2).	Self-test indications are incorrect.

## Section III. OPERATION UNDER USUAL CONDITIONS

2-6. Assembly and Preparation for Use.
a. Unpacking.
(1) Visually inspect the shipping carton for signs of damage before opening. If there is any apparent damage, request that the shipper's agent be present when the counter is unpacked. Visible and concealed damage claims against the carrier or shipper can only be filed if the agent is present or waives his rights.
(2) Open the carton, removing instrument supports and packing materials. Carefully lift out the counter. Inspect the counter for damage. Without applying power, check the mechanical operation of all controls and switches.
b. Assembly
(1) The only assembly requirements are selection of either 115 Vac or 230 Vac line voltage and connecting the power cable to the instrument.

## WARNING

Be sure only the specified power cable is used. The instrument is provided with a 3-wire cable which grounds the instrument cabinet. This cable should only be inserted in a socket outlet provided with a protective ground contact. This protective action should not be negated by the use of an extension cord without a protective ground conductor.
(2) The counter is normally shipped ready for operation from a 115 Vac power line, with a 1.5 ampere slow-blow fuse installed. Check the marking on the line voltage selector card (6, fig. 2-2), visible through the window in the fuse cover, to be certain that it reads 115 volts.

## CAUTION

The FUSE FULL lever attached to the body of the power module housing does not come off. Firm
but careful rotation of the fuse puller will lift up one end of the fuse so that finger force can remove the fuse. Failure to heed this caution by exerting too much force may damage the plastic pivot of the built-in fuse puller.
(3) Remove the installed fuse by lifting up on the FUSE PULL lever and check that it is a 1.5 ampere fuse.
(4) Reinstall or replace the fuse with one of the correct value and connect the power cable to the ac power connector.
(5) To change the line voltage operation, proceed as follows:
(a) On the rear of the counter, slide the fuse cover to the left and remove the fuse by lifting up on the FUSE PULL lever; see CAUTION above.
(b) Extract the line voltage selector card.
(c) Rotate the card so that the appropriate marking (115 or 230 volts) will be visible when the card is inserted into the card slot. Carefully but firmly insert the card into the slot, being careful not to cant or tilt the card while inserting. Check the seating by sliding the fuse cover from left to right. After checking the card seating, slide the fuse cover back to the left to gain access to the fuse clip.
(d) Insert a slow-blow fuse of the correct value ( 1.5 amperes for 115 Vat, 0.75 ampere for 230 Vac) in the fuse clip; check that built-in fuse puller does not obstruct the fuse cover by sliding the fuse cover to the right.
(e) Connect the power cable to the ac power connector.
c. Preparation for Use.
(1) Stand-alone Operation. No special procedures are necessary if the counter is used as a stand-alone test instrument. Applying power and connecting the signal to the selected connector and selecting the desired switches and controls is all that is required.
(2) GPIB Operation. Installation of the counter in a GPIB-controlled system will vary with console or rack hardware. Therefore only general procedures can be suggested.
(a) The dimensions of the counter are 3.5 inches high by 16.75 inches wide by 19 inches deep. Rack mounting kits are available from the manufacturer of the counter to mount the instrument in a standard 19 inch width rack-mount cabinet or console. Ventilation of the counter is through the rear panel so it is not necessary or desirable to remove the top and bottom covers for cooling. Top and bottom covers should remain in place secured by screws to retain RFI integrity.
(b) Access to the rear panel is required to control selector switches and the GPIB address switches. The rear panel ventilating louvers and blower should not be blocked off from free air flow.
(c) Leads from frequency sources to-the counter front-panel connectors should be as short as possible. A common ground bus should tie the counter to other instruments and the GPIB controller. The length of power cable is not critical but the supplied cable should be retained and plugged into a powerline strip.
(d) The length of the GPIB interface cable should be as short as feasible and should be shielded against RFI to reduce data transmission contamination. Any keyboarding or fixed program controller may be connected, provided that the controller meets IEEE Standard 488/1975.

2-7. Operation as Stand-alone Instrument.
a. Operating Modes. The counter has three principal modes of operation: automatic, manual, and externally enabled. Operation on Band A (300-950 MHz ) is automatic; operation on Band B ( 925 MHz - 18 GHz ) may be either automatic or manual. Externally enabled operation covers specific measurement techniques. Signals may be connected to
both the BAND A and BAND B inputs at the same time, but the counter will display only the input frequency selected by the appropriate BAND pushbutton switch on the front panel.
b. Preliminary Procedures.
(1) Rear-panel Switches. Set rearpanel switches as follows.
(a) GPIB IEEE STD 488/1975

ADDRESS SWITCH 7 to 0 (top of switch depressed).
(b) MIN. PRF switch to 50 Hz .
(c) STORAGE switch to ON.
(2) Self-test.
(a) Press the POWER switch to
turn on the counter. The display should light and the internal cooling fan should operate.
(b) Partially depress either of the two RESOLUTION switches and release it, so that neither switch remains in a depressed position. All digits in the display should indicate zero.
(c) Press the TEST DISPLAY
switch. The display should indicate 88888.88 while the switch is held in. Release the switch.
(d) Press the TEST 200 MHz
switch. The display should indicate 200.00, with the two leading zeros blanked (unlighted), while the switch is held in. Release the switch. (e) Press the right RESOLUTION
switch and again hold the TEST 200 MHz switch in. The display should indicate 200.0, with the two leading zeros blanked. Release the switch.
(f) Press each RESOLUTION
switch in turn and note that the display
digit immediately above the switch which has been depressed, and any digit to the right, is blanked.
(g) Unblank all display digits
by repeating step (b).
c. Band A (300 - 950 MHz$)$ Operation.

## CAUTION

Peak power applied to the BAND A input connector should be between -10 and +10 dBm for normal operation. Peak input must not
exceed +27 dBm or damage to the counter may result, even if the counter is turned off.
(1) Perform the preliminary procedures of step b., above.
(2) Connect the signal source to the BAND A input connector.
(3) Depress the BAND A switch.
(4) Depress the desired RESOLUTION switch.
(5) If the input signal level is high enough for counting, both the LEVEL and LOCK indicators will light, and the measured frequency will be displayed.

## NOTE

The REDUCE SIGNAL indicator is inoperative on Band A.
(6) Turn the SAMPLE RATE control to provide the desired display update rate. The GATE indicator will flash in accordance with the sample rate. If the control is set to its switched HOLD position, the display will retain the last reading. If a new reading is desired, press and release the RESET switch.
d. Band B (925 MHz - 18 GHz )

Operation.

## CAUTION

Peak power applied to the BAND B input connector should be within the following ranges for normal operation:
$925 \mathrm{MHz}-10 \mathrm{GHz}:-10$ to +10 dBm
$10-18 \mathrm{GHz}:-5$ to +10 dBm .

The peak input power must not exceed +30 dBm or damage to the counter may result, even if the counter is turned off.
(1) Initial Procedures.
(a) Perform the preliminary procedures of step $b$ above.
(b) Connect the signal source to the BAND $B$ input connector. (c) Depress the BAND B switch.
(d) Depress the desired

RESOLUTION switch.
(e) If the input signal level is high enough for counting, both the LEVEL and LOCK indicators will light. If the REDUCE SIGNAL indicator lights, the input signal power is approaching the maximum safe operating level and should be reduced.
(2) Automatic Mode. In the automatic mode, the counter searches for the input signal by sweeping from a start frequency which is 105 MHz above a preset frequency.
(a) Set the MANUAL SELECT/AUTO SWEEP switch to AUTO SWEEP. For full search, set the START SWEEP thumbwheel switches to 00.0 GHz .
(b) To improve acquisition speed, the sweep start frequency may be set by means of the START SWEEP thumbwheel switches. The lowest frequency which can then be acquired and displayed will be 105 MHz above the switch settings; erroneous readings may be displayed if the frequency of the applied signal is less than 105 MHz above the switch settings.
(c) Adjust the SAMPLE RATE control as described in paragraph 2-7 c (6).
(3) Manual Mode. In the manual mode, the search sweep is inhibited, reducing the acquisition time. However, the signal frequency to be measured must be between 105 and 325 MHz above a preset frequency.
(a) Set the MANUAL SELECT/AUTO

SWEEP switch to MANUAL SELECT.
(b) Set the PRESET FREQUENCY thumbwheel switches so that they indicate a frequency 105 to 325 MHz lower than the signal frequency. For example, if the frequency to be measured is expected to be 12.35 GHz , the thumbwheel switches should be set to indicate 12.2 GHz , which places the input frequency 105 to 325 MHz above the preset frequency. Erroneous readings may be displayed if the frequency of the applied signal is outside the preset range. (c) Adjust the SAMPLE RATE control as described in paragraph 2-7 c_(6)

## 2-8. Externally Enabled Operation.

a. Function. The use of the rearpanel INPUT INHIBIT connector makes possible a class of measurements known as dynamic frequency measurements measurements made at a specified point in time on a signal whose frequency is some repetitive function of time. When a high emitter-coupled-logic (ECL) level is applied, the counter is inhibited from making a measurement. Thus a signal at the INPUT INHIBIT connector can be used as an enable signal to make a measurement at a desired time. The width of the enable signal determines the duration of the measurement, typically 30 nanoseconds less than the applied pulse.
b. INPUT INHIBIT Requirements. The INPUT INHIBIT circuit is designed to be compatible with either a 50 ohm impedance pulse generator or ECL devices. An internal termination of 50 ohms returned to -2 volts makes this dual compatibility possible. An ECL high level signal (-0.8 to -1.1 V ) will inhibit measurement, while an ECL low level signal ( -1.5 to -2.0 V ) will enable measurement. ECL devices are designed to drive 50 ohm lines without reflections when the lines are terminated with 50 ohms returned to -2 V . The direct compatibility with a 50 ohm pulse generator results from the fact that zero volts from a 50 ohm source will produce -1 V at the INPUT INHIBIT (inhibiting the counter), while a -1 V signal into 50 ohms will produce -1.5 V at the INPUT INHIBIT thus enabling the counter.

2-9. Pulse Profile Measurements
a. Purpose. Automatic pulse measurements can determine the average frequency of a pulse. In some cases, however, additional information may be necessary. For example, a pulse magnetron may exhibit substantial frequency shift near the leading and trailing edges of the pulse, or a pulsed Gunn diode oscillator may exhibit frequency shift during a pulse due to peak power thermal effects.
b. Measurement Technique. Measurements of these characteristics are easily made with the counter and a delaying pulse generator (see fig. 2-3).


Figure 2-3. Pulse Profile Measurement Test Setup

The SIGNAL THRESHOLD OUTPUT of the counter is used to trigger the pulse generator. The generator's output pulse is used as an enable input to the counter. As the pulse delay is varied, the measurement window can be "walked" through the pulse. A plot of frequency versus delay gives the frequency-versus-time profile of the pulse directly as shown in fig. 2-4. The width of the measurement window is determined by the width of the pulse generator output. Measurement windows of 50 nanoseconds or less can be used, although wider windows yield higher accuracy.


Figure 2-4. Pulse Profile Measurement

2-10. Dynamic Characteristics of Time Varying Signals.
a. Purpose. Many complex signals are not pulses at all but simply continuous signals whose frequency varies repetitively with time. One example is the measurement of the response of a device such as a voltage-controlled oscillator (VCO). A square wave applied to the tuning voltage will produce a response curve of frequency versus time, allowing measurement of various settling times such as post-tuning drift. Another possible application would be the measurement of linearity and amplitude for frequency-modulated radar altimeter signals.
b. Measurement Technique. Fig. 2-5 shows a test setup designed to make measurements on time varying signals. It is similar to the pulse profile test setup, except that in this case, since there is always a signal present, a trigger must be obtained from the modulating source. This will trigger the pulse generator which controls the measurement.

2-11. Multiple Pulse Signal Measurements.
a. Purpose. Another type of measurement is that of a repetitive sequence of pulses differing in frequency. In this


Figure 2-5. Time Varying Signal Measurement Test Setup
case, it is desirable to measure the frequency of each pulse in the sequence separately.
b. Measurement Technique. The same test setup as shown in fig. 2-5 is required, with the trigger pulse synchronous with the sequence. In this measurement, the INPUT INHIBIT is used simply to discriminate between pulses. The enabling pulse can be slightly wider than the pulse to be measured. The counter will automatically restrict the measurement window entirely within the pulse. By shifting the delay time of the enabling pulse, each input pulse of the sequence can be separately measured.

2-12. Timing Considerations.
a. General. Under most circumstances, internal timing within the counter is of no concern to the user. However, in applications where a few nanoseconds are significant, some details of internal operation are important. These involve two areas: measurement window width and internal timing delays.
b. Measurement Window Width. The measurement window is the period during which the gate is actually open to enable the counting of a signal. This gate width will typically be 30 nanoseconds narrower than the pulse applied to the INPUT INHIBIT connector. The width of the gate is always an integral number of clock periods (5 nanoseconds). For applications where the measurement window needs to be known to an accuracy better than 20 nanoseconds, it is recommended that the GATE OUTPUT on the rear panel be observed directly on a high speed oscilloscope. The desired gate width may then be set by varying the INPUT INHIBIT pulse width. For accurate pulse representation, the oscilloscope input should be terminated in a 50 ohm load.
c. Internal Timing Delays. When it is necessary to measure the signal frequency at a precise point in time, the internal delays of the measuring instrument can be significant. The total delay between the time a signal is applied to the counter input connector, and the time it is available to be
counted, is nominally 60 nanoseconds. The SIGNAL THRESHOLD OUTPUT on the rear panel typically occurs 20 nanoseconds after the signal is applied. The GATE OUTPUT at the rear panel occurs at the measurement time with virtually no delay. In other words, when absolute time positioning of a signal is required, it is necessary to consider that the GATE OUTPUT signal, which represents the measurement period, is actually making a measurement of the signal which appeared at the input connector 60 nanoseconds earlier. If the SIGNAL THRESHOLD OUTPUT is used as an indication of input signal, then it occurs 40 nanoseconds prior to measurement. Fig. 2-6 shows the relative timing of these signals for a pulsed input signal. Timing, however, is not a function of input signal characteristics.

## 2-13. Accuracy.

a. General Considerations.
(1) In a cw frequency counter, measurement accuracy is generally specified as time base accuracy $\pm 1$ count. This means that the frequency measurement is in error by the same percentage as the time base reference oscillator. The maximum error in the time base is the sum of various possible errors, such as aging rate, temperature, etc.
(2) The second type of error, $\pm 1$ count, is derived from the relative timing of gate and signal. Simply stated, if an event occurs every 400 milliseconds, a counter could measure


Figure 2-6. Internal Timing Delays
either 2 or 3 events in a one second interval, since the processed input signal and the gate are asynchronous.
(3) A third possible source of error in a cw counter is gate error. A gate is supposed to represent a precise number of reference oscillator cycles. Due primarily to differences in the rise and fall times of various circuits, the actual gate will usually be a fixed amount wider or narrower than desired. If this error is less than one period of the maximum input frequency, no counter error will occur. Thus a 300 MHz counter needs a gate accurate to about 3 nanoseconds.
(4) Each of these three sources of error can contribute to the overall error In pulse frequency measurements. In fact for narrow pulses, the second and third sources of error, which are usually ignored in a cw counter, become the dominate sources of error in a pulse counter.
b. Time Base Errors. A frequency error in the time base reference oscillator results in a proportional frequency measurement error. Two main sources of time base error are aging rate and temperature. The temperature compensated crystal oscillator (TCXO) reduces temperature instability to less than $2 \times 10^{-6}$. By calibration against a frequency standard, this error can be made less than one count, and thus becomes insignificant.
c. Averaging Error. In order to obtain high resolution, the frequency of a number of measurements is averaged. Each individual measurement has a $\pm 1$ count uncertainty as previously noted. If N measurements are made, then an uncertainty of $\pm \mathrm{N}$ counts is possible, but very unlikely. The resultant averaged measurement will follow the rules of statistics, in that successive measurements will vary randomly to a certain degree. In fact, most of the readings (63 percent) will fall between $\pm \sqrt{N}$ counts; this is called the rms averaging error. $N$ is the number of gates required to accumulate 100 microseconds or 1 millisecond of gate time. The gate is typically

30 nanoseconds narrower than the input pulse, so that

## Averaging Error $($ rms $)=\frac{\mathrm{F}}{\sqrt{\mathrm{PW}-0.03}}$

where PW = pulse width in microseconds

$$
\begin{aligned}
& \mathrm{F}= 200 \mathrm{kHz} \text { with } 100 \text { usec gate, } \\
& \text { Band } \mathrm{A} \text {; or } 60 \mathrm{kHz} \text { with } \\
& 1 \mathrm{msec} \text { gate, Band } \mathrm{A} \text {; or } \\
& 100 \mathrm{kHz} \text { with } 100 \text { sec gate, } \\
& \text { Band } \mathrm{B} \text {; or } 30 \mathrm{kHz} \text { with } \\
& 1 \mathrm{msec} \text { gate, Band } \mathrm{B} \text {. }
\end{aligned}
$$

## d. Gate Error.

(1) When narrow pulses are counted, the gate is opened many times in order to obtain a high resolution measurement. Each time the gate opens and closes, there will be a small but finite error. The total error is proportional to the number of times the gate is cycled during a measurement, and is thus inversely proportional to the gate width. This error is also related to both temperature and input frequency. The worst case error, including all variables, is specified for the counter as:

## $\frac{ \pm 100 \mathrm{kHz}}{\mathrm{PW}}-0.03$ for Band A , and <br> $\frac{ \pm 40 \mathrm{kHz}}{\mathrm{PW}-0.03}$ for Band B

where PW = pulse width in microseconds.
(2) Unlike averaging error, which is random, gate error is systematic, and is not reduced by frequency averaging.

2-14. Techniques for Improving Accuracy.
a. Time Base Calibration. A frequency error in the time base oscillator results in the same percentage error in the frequency reading for either cw or pulsed signals. By directly measuring the 10 MHz time base frequency at the 10 MHz OUTPUT connector with a standard of known accuracy, this error can be
determined and corrected. As an example, the measured time base output is 10.0001 MHz . The time base is thus $1 \times 10^{-6}$ high in frequency, and all readings will be $1 \times 10^{-6}$ low in frequency. Thus, a reading at 10 GHz will be 10 kHz low. Although the reading can be corrected for this error, the counter should be recalibrated as soon as possible.
b. Gate Error.
(1) Gate error at any given frequency and pulse width can be virtually eliminated. This is accomplished by simulating a pulse input and determining the gate error. This calibration factor can then be added to, or subtracted from, the indicated measurement to obtain the correct frequency.
(2) First, determine the gate error using a cw source at approximately the same frequency (within 25 MHz ) as the indicated measurement. A pulsed input is then simulated by applying an enable signal, of the same width as the pulse to be measured, to the INPUT INHIBIT connector. Gate error is the difference in reading between the pulsed and non-pulsed measurement of the same Cw signal. This procedure provides the true gate error, and avoids error associated with any possible pulling of the signal source.

2-15. Operation Using General Purpose Interface Bus.
a. General.
(1) The counter may be operated via the General Purpose Interface Bus (GPIB) and may be controlled by, listened to and talked to by any device or devices compatible with IEEE STD-488. Table 2-4 lists the Capability Identification Codes assigned to the counter. This code is also printed on the counter rear panel adjacent to the GPIB 24 -pin connector so that programming instructions or keyboarding of a controller can be interfaced with the counter configuration and capabilities.
(2) The IEEE STD-488 GPIB system (fig. 2-7) consists of 16 signal lines

Table 2-4. Counter GPIB Capability Identification Codes

Identification	Description		States omitted	Other requirements	Other function subsets required
SH1	Complete capability		None	None	T1-T8
AH 1	Complete capability		None	None	None
T1	Capabilities      Talk   Basic Serial Only   Talker Poll Mode   Yes Yes Yes	Unaddress   If MLANo	None	Omit (MLA $\wedge$ ACDS)	SHl and AHl
L4	Capabilities   Basic   Listener   YesOnly   Mode	Unaddress	None	```Include (MTA ^ ACDS)```	AH1 and T1-T8
SR1	Complete capability		None	None	T1, T2, T5, or T6
RL2	No local lock out		LWLS and RWLS	rtl always false	L1-L4
DCl	Complete capability		None	None	L1-L4

$\mathrm{SH}=$ Source Handshake, $\mathrm{AH}=$ Acceptor Handshake, $\mathrm{T}=\mathrm{Talker}, \mathrm{MLA}=\mathrm{My}$ Listen Address, ACDS = Accept Data State, $\Lambda=A N D, M T A=M y T a l k$ Address, $L=$ Listener, RL = Remote Local, DC = Device Clear, LWLS = Local With Lockout State, RWLS $=$ Remote With Lockout State, $S R=$ Service Request


Figure 2-7. GPIB Capabilities
and Structure
used to carry data, control, and management information. The 16 lines are organized into three sets, as follows:
(a) Data Bus - 8 signal lines (b) Data Byte Transfer

Control - 3 signal lines
(c) General Interface

Management- 5 signal lines.
(3) The counter is a type $B$ device able to talk and listen (T1 and L4 codes). Mnemonics assigned to the various signal lines are as follows:
(a) Data Bus lines are:

DIO 1 through DIO 8 (Data Input/Output line 1 through 8) - used to transmit message bytes in bit-parallel, byteserial format, asynchronously and usually in a hi-directional manner.
(b) Data Byte Transfer Control lines are:

DAV (Data Valid) - used to indicate the condition (availability and validity) of information on DIO signal lines.

NFRD (Not Ready For Data) - used to indicate the condition of readiness of device(s) to accept data.
NDAC (Not Data Accepted) - used to indicate the condition of acceptance of data by device(s).
(c) General Interface Management lines are:

ATN (Attention) - used by a controller to specify how data on the DIO signal lines are to be interpreted and which devices must respond to the data.

IFC (Interface Clear) - used by a controller to place the interface system, portions of which are contained in all interconnected devices, in a known quiescent state.

SRQ (Service Request) - used by a device to indicate the need for attention and to request an interruption of the current sequence of events.

REN (Remote Enable) - used by a controller (in conjunction with other messages) to select between two alternate sources of device programming data.

EOI (End Or Identify) - used by a talker to indicate the end of a multiple byte transfer sequence or, in conjunction with ATN (by a controller), to execute a polling sequence.

## NOTE

The EOI function is not included in this counter.
(4) The 16 GPIB lines are connected to the rear-panel GPIB IEEE STD 488/ 1975 connector as shown in table 2-5. To the left of and below the connector are seven ADDRESS SWITCHes for setting the GPIB modes or addresses of the counter.
b. On Line and Off Line Operation. (1) The Talk Only On Line and Off Line operation are summarized in table $2-6$. The setting of ADDRESS SWITCH 7 determines the mode of operation of the counter. When the switch is set to the 1 position before power is applied to the counter, the counter can be a talker

Table 2-5. GPIB IEEE STD 488/1975
Connector Pin Assignments

Pin	Signal   line	Pin	Signal   line	
			13	DIO 5
1	DIO 1	14	DIO 6	
2	DIO 2	15	DIO 7	
3	DIO 3	16	DIO 8	
4	DIO 4	17	REN	
5	EOI	18	Gnd (6)*	
	(not used)	19	Gnd (7)*	
6	DAV	20	Gnd (8)*	
7	NRFD	21	Gnd (9)*	
8	NDAC	22	Gnd (10)*	
9	IFC	23	Gnd (11)*	
10	SRQ	24	Gnd (Logic)*	
11	ATN			
12	(Shield)			

*Gnd ( ) refers to the signal ground return of the referenced contact pin; EOI and REN $(5,17)$ ground return on pin 24.
only with continuous output from the GPIB connector. Selection of sample rate control (either by the front-panel SAMPLE RATE control or Fast Active) and output format (either ExponentScientific or Exponent-Four) is set by ADDRESS SWITCHes 1 and 2. The four other ADDRESS SWITCHes, 3 through 6, do not effect the output when the counter is being used in the Talk Only mode.
(2) When Off Line operation is selected, ADDRESS SWITCH 7 is placed in the 1 position before power is applied to the counter. After power is applied, the front-panel controls will be operative unless ADDRESS SWITCH 1 is in the 1 position, in which case the SAMPLE RATE control will be inactive.
(3) When On Line operation is selected, ADDRESS SWITCH 7 is placed in the 0 position before power is applied to the counter. Address assignment to the counter is accomplished by placing ADDRESS SWITCHes 1 through 5 in the appropriate configuration shown in table 2-6. After being turned on, the counter will respond to the ASCII Listen or Talk Address character that has been set by the ADDRESS SWITCHes 1 through 5, as indicated in table 2-7. Configuration of the ADDRESS SWITCHes is shown in fig. 2-8.

## NOTE

ASCII ? and $\qquad$ is reserved for GPIB Unlisten and Untalk and therefore cannot be assigned as an address to a counter or any other device. ADDRESS SWITCH settings of 11110 cannot be used as an address for the counter.

PRESS TOP OF SWITCH TO SET TO 0	$\begin{array}{lllllll} 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$

Figure 2-8. GPIB IEEE STD 488/1975 ADDRESS SWITCH Positions

Table 2-6. On Line and Off Line ADDRESS SWITCH Settings

Mode	ADDRESS SWITCH							Function
	1	2	3	4	5	6	7	
On Line Operation	A1	A2	A3	A4	A5	X	0	Address assignment to counter. ADDRESS SWITCH 7 must be in 0 position.
Off Line Operation	0*	0*	x	x	x	x	1	Continuous output determined by SAMPLE RATE control. Exponent in scientific format.
	1*	0*	x	x	x	x	1	Continuous output, fast active. SAMPLE RATE control inactive. Exponent in scientific format.
	0*	1*	x	x	x	x	1	Continuous output determined by SAMPLE RATE control. Exponentfour output format.
	1*	1*	x	x	x	x	1	Continuous output, fast active. SAMPLE RATE control inactive. Exponent-four output format.
	x*	x*	x	X	X	X	0	No output

$\mathrm{x}=\mathrm{Don}^{\prime} \mathrm{t}$ care

* = May be continuously set or reset as long as ADDRESS SWITCH 7 is set to 1 during power application. After application of power, ADDRESS SWITCH 7 may be set to 0 .
C. $\frac{\text { Remote/Local Operation. }}{\text { (1) In addition to On }}$
(1) In addition to On Line and Off Line modes of operation, the GPIB provides for Remote and Local Operation. In Remote Operation, the counter is On Line and is under control of programming signals from a controller. In Local Operation, the counter front-panel controls are active and controller signals do not affect counter operation; however, output signals are available to the GPIB (Talker Only Mode) depending on the counter rear-panel ADDRESS SWITCH settings. The controller can switch between Remote and Local by sending the appropriate ASCII codes for Remote Enable (REN) or Go To Local control (GTL) to the counter.
(2) When the counter is On Line and in Remote and the controller has
selected the counter with ATN (Attention) to the counter address followed by Listen, the counter will respond to programming instructions from the controller. Programming instructions can select all control functions of the counter front panel except power on/off, sample rate, and self-test. Programming instructions from the controller to the counter are identified as Device Dependent Data.
d. Device Independent Data, On Line Operation. Device independent data consists of the following, which are sent by controller while in the command mode.
(1) Go To Local (GTL). An
addressed command given by the controller. The counter must have received its Listen address prior to the GTL

Table 2-7. ADDRESS SWITCH Settings vs ASCII Characters

ADDRESS SWITCH					ASCII   Listen address character	ASCII   Talk address character	*Decimal Talk/Listen address
1	2	3	4	5			
Setting							
0	0	0	0	1	SP	©	00
1	0	0	0	1	!	A	01
0	1	0	0	1	"	B	02
1	1	0	0	1	\#	C	03
0	0	1	0	1	\$	D	04
1	0	1	0	1	\%	E	05
0	1	1	0	1	\&	F	06
1	1	1	0	1	1	G	07
0	0	0	1	1	1	H	08
1	0	0	1	1	1	I	09
0	1	0	1	1	*	J	10
1	1	0	1	1	+	K	11
0	0	1	1	1	1	L	12
1	0	1	1	1		M	13
0	1	1	1	1	,	N	14
1	1	1	1	1	1	0	15
0	0	0	0	0	0	P	16
1	0	0	0	0	1	Q	17
0	1	0	0	0	2	R	18
1	1	0	0	0	3	S	19
0	0	1	0	0	4	T	20
1	0	1	0	0	5	U	21
0	1	1	0	0	6	V	22
1	1	1	0	0	7	W	23
0	0	0	1	0	8	X	24
1	0	0	1	0	9	Y	25
0	1	0	1	0	:	Z	26
1	1	0	1	0	,	1	27
0	0	1	1	0	<	1	28
1	0	1	1	0	=	1	29
0	1	1	1	0	>	-	30

*Decimal Talk/Listen addresses are provided as a cross-reference for controllers which use them in their program instructions.
command being issued. When GTL is received, the counter will go to the Local mode with all front-panel
switches operative. Fast Cycle, or the last YIG Preset command received by the counter while in the Remote mode, will remain and will not be cleared by this command. The front-panel REMOTE indicator will be off.
(2) Selected Device Clear (SDC). An addressed command given by the controller. The counter must have received its Listen address prior to the SDC command being issued. When SDC is received, the counter will be cleared to its initial state and remains addressed to Talk or Listen. ADDRESS SWITCHes 1 - 7 will be read.
(3) Device Clear (DCL). Same as

SDC command, except that counter's Listen address does not have to be received prior to issuing of DCL.
(4) Serial Poll Enable (SPE). An addressed command given by the controller.
(5) Serial Poll Disable (SPD). An addressed command which negates SPE.
e. Device Dependent Data, On Line Operation.
(1) Definition. Device dependent data is that data, inputted in string form, to which the counter uniquely responds while in the Remote mode, and while addressed to Listen.
(2) Implementation. While in the command mode, the controller places the counter in the Remote mode by setting the REN line active, then by sending the listen address of the counter. When the counter is in the Remote mode and addressed to Listen, the controller leaves the command mode and enters the data transfer mode. It is in this mode and counter setup that device dependent data can be sent by the programmer. The mnemonics, format, and specifications for the device dependent data are described below and summarized in table 2-8.
(3) Format. The format for device dependent data from a controller is as follows:

Mnemonic Sign Value Scale Factor
(a) Mnemonic. Two alpha, or one alpha and one numeric, characters, depending on the function being programmed.
(b) Sign. The sign "+" or "-" of the value portion of the function being programmed. (The "+" sign is optional.)
(c) Value. The particular numeric value assigned to the function being programmed. Leading and trailing zeros need not be programmed.
(d) Scale Factor. Exponent
symbol used with the value portion of the function being programmed $M=$ megahertz $\left(10^{6}\right), G=$ gigahertz ( $10^{\circ}$ ).

## NOTE

If any of the above does not pertain to the particular function being programmed, it should be omitted.

For example, BA: BA is the Mnemonic. The Sign, Value, and Scale Factor are not necessary. This function sets the counter to Band $A$.
(4) Mnemonics.
(a) YIG Preset (YP). This command will program a YIG Preset equal to the Value and Scale Factor. Negative YIG Presets will be taken as positive. Mnemonic YP, Sign + (optional), Value and Scale Factor.
Example: YP 1.2 G or $\mathrm{YP}-1.2 \mathrm{G}$. Both program $1.2 \times 10^{9} \mathrm{~Hz}$ (1.2 GHz) into the counter.
Example: YP M or YP G: Clears the YIG Preset.

Between YP and M or G, only the Sign, numeric Value, or decimal point will be recognized by the counter. YIG preset information will be updated only during a converter reset.

## NOTE

In the following commands, the Mnemonic is shown following the command title. Sign, Value, and Scale Factor are not used.

Table 2-8. Programming Summary

Function	ASCII	Mnemonic	Sign	Value	Scale   Factor	Comments
YIG Preset		YP	+	YIG preset range	M or G	+ sign optional
Cycle   Counter		CC				One-shot action
Reset   Counter and Converter		RC				One-shot action
Converter   Auto		CA				
Converter Manual		CM				
Hold Active		HA				No data transmission
Hold Passive		HP				
$\begin{aligned} & 1 \mathrm{~ms} \text { Gate } \\ & \text { Time Active } \end{aligned}$		TA				Gate time: 1 ms
$\begin{aligned} & 1 \mathrm{~ms} \text { Gate } \\ & \text { Time Passive } \end{aligned}$		TP				Gate time: $100 \mu \mathrm{~s}$
Band A		BA				
Band B		BB				
Remote   Resolution:   10 kHz		R4				
Remote Resolution: 100 kHz		R5				
Remote Resolution: 1 MHz		R6				
Fast Active   Fast Passive		$\begin{aligned} & \text { FA } \\ & \text { FP } \end{aligned}$				Sample rate Sample rate
Transmit Normal		TN				
Transmit   Service   Request		TS				
$\begin{aligned} & \text { Exponent- } \\ & \text { Scientific } \end{aligned}$		ES				Output data
Exponent-   Four		E4				Output data

Table 2-8. Programming Summary - Continued

Function	ASCII	Mnemonic	Sign	Value	Scale   Factor	Comments
Device Clear   (DCL)	DC4					Controller   dependent
Selected   Device Clear   (SDC)	EOT				Controller   dependent	
Go to Local   Control   (GTL)	SOH				Controller   dependent	
Serial Poll   Enable (SPE)	CAN				Controller   dependent	
Serial Poll   Disable   (SPD)	EM				Controller   dependent	
My Listen   Address   (MLA)						Device dependent

(b) Cycle Counter (CC). This
command resets the basic counter section, and causes it to take a new reading. When the CC command is sent, reset occurs; to obtain another reset, CC must be resent.
(c) Reset Counter and Converter
(RC). This command resets both the basic counter and converter sections, and causes the counter to take a new reading. When $R C$ is sent, a reset occurs; to obtain another reset, RC must be sent again.
(d) Hold Active (HA). When

HA is sent in the Remote mode, the counter stops taking readings, data transmission is stopped, and the last frequency read is displayed and held by the counter. In the Fast Active mode (subparagraph (s) below), the HA command will have no effect upon the counter's
display operation while in the Local mode, but will stop data transmission. If programmed during the FA mode, and FA is then terminated, the counter will respond to the HA command.
(e) Hold Passive (HP). This command terminates HA.
(f) 1 ms Gate Time Active (TA). This command puts the counter in the 1 ms gate time mode.
(g) 1 ms Gate Time passive
(TP). This command terminates TA.
(h) Band A (BA). This command selects Band A of the counter, 300 MHz to 950 MHz .
(i) Band B (BB). This command selects Band $B$ of the counter, 925 MHz to 18 GHz .
(j) Converter Auto (CA). This command selects the automatic sweep mode of the counter, and operates in
conjunction with the YIG Preset (YP) command and value, (k) Converter Manual (CM).

This command selects the Manual mode of the counter, and operates in conjunction with YIG Preset (YP) command and value.
(m) Transmit Normal (TN). This command causes the counter to continuously transmit its reading when addressed to Talk.
(n) Transmit Service Request
(TS). This command causes the counter to take a reading, format the data, store the result, and activate the SRQ line to indicate to the controller that a reading is ready for transmission. After the reading is transmitted, the SRQ line is deactivated and the process is repeated. The status byte transmitted during serial polling indicates that data is ready for transmission (bit 7 active).

## NOTE

Remote Resolution commands determine the resolution of the counter readings while in the Remote mode.
(p) Remote Resolution: 10 kHz
(R4).

$$
\begin{aligned}
& \text { Resolution of } 10 \mathrm{kHz} \text {. } \\
& \text { (q) Remote Resolution: } 100 \mathrm{kHz} \\
& \text { Resolution of } 100 \mathrm{kHz} \text {. } \\
& \text { (r) Remote Resolution: } 1 \mathrm{MHz}
\end{aligned}
$$

(R5). (R6). Resolution of 1 MHz .
(s) Fast Active (FA). The FA command causes the counter to go into the fast cycle mode of operation. In this mode, the front-panel SAMPLE RATE control is inactive, and the fastest sample rate transmissions are attained.
(t) Fast Passive (FP). This command terminates FA.
(u) Exponent-Scientific (ES). This command causes the counter to output data in an engineering notation format if counter is addressed to Talk. (v) Exponent-Four (E4). This command causes the counter to provide data in four exponent format if counter is addressed to Talk.
f. Output Data Format.
(1) Basic Format.
(a) The output data is transmitted with the most significant byte first, in a bit-parallel, byte-serial form, and in 7-bit ASCII code. The general format is

> xx.xxx xx Ey CR LF
where $C R$ is Carriage Return, LF is Line Feed, x represents digits 1 through 9 , and $y$ the exponent $0,3,6$, or 9. The decimal point will be located in the proper place, though it may be deleted depending on the data output format and/or the reading.
(b) There will always be

12 bytes of information transmitted per
reading. Leading zeros are always replaced with ASCII code Null characters. The last four bytes transmitted are always

Ey CR LF
where y represents exponents $0,3,6$, or 9, and CR and LF the ASCII codes used as delineators.
(c) The ASCII code character E is used to-specify the exponent 0,3 , 6 , or 9 , depending upon the value and format of the reading. Thus the data output commands (E4 or ES) affect only the numeric portion and exponent value of the transmitted data.
(2) Exponent-Four Output (E4)

Format.
(a) In the E4 format, the exponent value of the transmitted data will always be 4 with no decimal point inserted. The reading will be transmitted as seen on the counter's frontpanel display, with the resolution of the reading dependent upon the frontpanel switches or the remote resolution commands. The digits affected by the resolution setting are set to zero. Some examples in the E4 format are as follows, with N representing an ASCII Null character.
(b) Display reading:
11234.56 MHz

Resolution	Reading t	transmitted
10 kHz	N1123456	6 E4 CR LF
100 kHz	N1123450	E4 CR LF
1 MHz	N1123400	E4 CR LF

434.56 MHz

Resolution	Reading transmitted		
10 kHz	NNN43456	E4	CR LF
100 kHz	NNN43450	E4	CR LF
1 MHz	NNN43400	E4	CR LF

(3) Exponent-Scientific Output (ES) Format.
(a) In the ES format, the exponent value of the transmitted data is always $0,3,6$, or 9 , depending on the frequency reading. A decimal point is entered to correspond to the exponent so the transmitted data will be a mixed number of whole and fractional parts, such as $545.727,15.72,5.2$, etc.
(b) All leading zeros are transmitted as ASCII Null characters, and the digits which are affected by the remote resolution are disregarded. (Null characters are inserted at the beginning of the data so that 12 characters are always transmitted.)
(c) If the resolution or frequency reading includes a decimal point that is not necessary, the decimal point is disregarded and a Null character is inserted at the beginning of the data.
(d) If the resolution affects the whole part of the number being transmitted (no decimal point or fractional part), zeros are inserted for those numbers before being transmitted.
(e) If the resolution covers the entire-number, then all Nulls are transmitted with the exponent value of the reading, so the user can tell by the exponent value the manner in which the resolution covered the reading. For example: 0 Hz is transmitted as NNNNNNNOEO CR LF.
(f) When local resolution is used (by pressing the RESOLUTION
switches on the counter front panel), those digits affected by the resolution are replaced by zeros. Examples in the ES format are:

1. Frequency input:
1234.56 MHz
Remote
resolution $\quad$ Reading transmitted

10 kHz	N 1.23456	E 9	CR	LF	
100 kHz	NN 1.2345	E 9	CR	LF	
1 MHz		NNN 1.234	E 9	CR	LF
	2. Frequency input:				
.56 GHz					

Remote resolution
$\underline{\text { Reading transmitted }}$
$10 \mathrm{kHz} \quad$ NN 560.00 E6 CR LF
$1 \mathrm{MHz} \quad$ NNNNN 560 E6 CR LF
(g) Transmitted readings, as printed out on a printer, are shown below.

## NOTE

Leading Null characters are not printed.

Printer output		Frequency	
434.6 E 6		434600000 Hz	
11.7693 E 9		11769300 OOO Hz	
539.99999 E 9	539999990 Hz		
OEO	0 Hz		
E 6	? but in MHz range		

g. Wake-up Conditions. The wake-up conditions of the counter for the on Line mode, after power is applied or commands SDC or DCL have been issued by the controller, are as follows:
(1) Signal lines of the data bus are in tri-state mode.
(2) Counter is in Local mode
(REMOTE indicator not lighted).
(3) Counter has sampled ADDRESS

SWITCHes 1 through 7.
(4) Counter is not addressed to

Talk or Listen
(5) No YIG Preset (YP).

```
 (6) Transmit Normal (TN).
 (7) Remote - Band B (BB).
 (8) Remote - Hold Passive (HP).
 (9) Remote - }1\textrm{ms}\mathrm{ Gate Time
Passive (TP).
 (10) Remote - Resolution: }10\textrm{kHz
(R4).
 (11) Remote - Fast Passive (FP).
 (12) Remote - Exponent-Scientific
```

(ES) format.
(13) Remote - Converter Auto (CA).
(14) Counter and converter have been
reset.
h. Band A (300-950 MHz) Operation.
CAUTION
Peak power applied to BAND A
input connector should be between
-10 and +10 dBm for normal opera-
tion. Peak input must not exceed
+27 dBm or damage to the counter
may result, even if the counter
is turned off.
(1) Perform the preliminary procedures of paragraph 2-7 b.
(2) Press the POWER switch to turn off the counter.
(3) Select an address for the counter by setting the GPIB IEEE STD 488/1975 ADDRESS SWITCHes 1 through 5 (fig. 2-8) in accordance with table 2-7. Make sure that ADDRESS SWITCH 7 is set to 0 .
(4) Connect the GPIB controller to counter with a GPIB cable and appropriate interface to the counter rear-panel GPIB IEEE STD 488/1975 connector.
(5) Press the POWER switch to turn on the counter.
(6) Apply power to the controller.
(7) Connect the signal source to
the BAND A input connector.
(8) Program REN (Remote Enable)
from the controller.
(9) Check that the counter frontpanel REMOTE indicator lights.
(10) Program BA to select Band A. Execute.
(11) Select and program R4, R5, or R6 for the desired resolution. Execute.
(12) If the input signal level is high enough for counting, both the
front-panel LEVEL and LOCK indicators will light.
(13) Turn the counter SAMPLE RATE control to provide the desired display update rate. The GATE indicator will flash in accordance with the sample rate. If the control is set to its switched HOLD position, the display will retain the last reading. If a new reading is desired, program CC to cycle counter. Execute.
(14) If the counter is in a remote location, the controller can override the counter SAMPLE RATE control to obtain a HOLD, retaining the last reading, To program a HOLD:

## (a) Program HA (Hold Active).

Execute.
(b) To remove the HA (same as
switching the counter SAMPLE RATE control out of HOLD), program HP (Hold Passive) to terminate the Hold Active. Execute.
(15) Program GTL (Go To Local) control with ASCII SOH or with a controller-unique command as appropriate. Execute. The counter should now have the REMOTE indicator off and should be in the Local operation Off Line modes.
i. Band B ( $925 \mathrm{MHz}-18 \mathrm{GHz}$ )

Operation.

## CAUTION

Peak power applied to the BAND B Input connector should be within the following ranges for normal operation:

```
925 MHz - 10 GHz: -10 to +10 dBm
10-18 GHz: -5 to +10 dBm
```

The peak input power must not exceed +30 dBm or damage to the counter may result, even if the counter is turned off.
(1) Initial Procedures. (a) Perform the preliminary procedures of paragraph 2-7 b. (b) Perform procedures of paragraph 2-15h, steps (2) through (9), except that in step (7) connect the signal source to the BAND B input connector.

## (c) Program BB to select

Band B. Execute.
(d) Select and program R4, R5, or R6 for the desired resolution. Execute.
(e) If the input signal level is high enough for counting, both the front-panel LEVEL and LOCK indicators will light. If the REDUCE SIGNAL indicator lights, the input signal power is approaching the maximum safe operating level and should be reduced.
(2) Automatic Mode. In the automatic mode, the counter searches for the input signal by sweeping from a start frequency which is 105 MHz above a preset frequency.
(a) Program CA (Converter

Auto). Execute.

## NOTE

For full search, YP (YIG Preset) is not programmed, which is equivalent of setting the START SWEEP thumbwheel switches to 00.0 GHz .
(b) To improve acquisition speed, the sweep start frequency may be set by programming YP (YIG Preset) followed by a number. The lowest frequency which can then be acquired and displayed or recorded will be 105 MHz above the YIG Preset; erroneous readings may be displayed or recorded if the applied signal frequency is less than 105 MHz above the YIG Preset.
(c) To set the sweep start frequency equivalency of thumbwheel settings, program YP followed by a value and scale factor. Example: for a start frequency of 1.2 GHz , program YP 1.2 G (mnemonic YP, value 1.2 , scale factor G). Execute.
(d) To reset the YIG Preset
frequency to 00.0 GHz , program YP G (leaving out the value). Execute.

NOTE

To change the YIG Preset frequency from one value to another, or before resending the same
value, YP must be set back to 00.0 GHz and the preset frequency programmed.
(e) Adjust the SAMPLE RATE control or program as described in paragraph 2-15 h, steps (13) through (15).
(3) Manual Mode. In the manual mode, the search sweep is inhibited, reducing the acquisition time. However, the signal frequency to be measured must be between 105 and 325 MHz above the preset frequency.
(a) Program CM (Converter

Manual). Execute.
(b) Program YIG Preset, Value, and Scale Factor to the desired frequency which must be 105 MHz to 325 MHz lower than the signal frequency. Example: if the expected measurement frequency is 12.35 GHz , program YP 12.2 G (which places the input frequency 105 to 325 MHz above the preset frequency). Execute.

## NOTE

Erroneous readings may be displayed or recorded if the applied signal frequency is outside of the preset range.
(c) Adjust the SAMPLE RATE control or program as described in paragraph 2-15 h, steps (13) through (15).
j. Programming Example Using Calculator as Controller.
(1) A typical program, utilizing a Hewlett-Packard 9815 Calculator as a GPIB controller, is shown in table 2-9. The program sets the counter as follows: (a) Band A (BA)
(b) Remote Resolution - 10 kHz
(c) 1 ms Gate Passive (TP)
(d) Hold Passive (HP)
(e) Fast Active (FA)
(f) Exponent-Scientific
(g) No YIG Preset (YPM)
(2) The program then instructs the counter to take frequency readings and

Table 2-9. Typical Program Using Hewlett-Packard 9815 Calculator as Controller

Program step	Command	Comment
0000	Clear	Clear counter
0001	CMD 5	Controller to COMMAND mode
0003	@	
0004	B	Set REN line active
0005	END	Clear COMMAND mode
0006	CMD 5	Enter COMMAND mode
0008	U	Controller talk address
0009		
0010	3	Counter listen address
0011	Blank	Counter goes to data transfer mode
0012	B	Device dependent data starts here
0013	A	Counter set to Band A
0014	R	Resolution 4
0015	4	Resolution
0016	T	1 ms Gate Passive
0017	P	
0018	H	Hold Passiv
0019	P	
0020	F	Fast Active
0021	A	
0022	E	onent-Scientifi
0023	S	
0024	Y	
0025	P	Clear YIG Preset
0026	M	

Table 2-9. Typical Program Using Hewlett-Packard 9815 Calculator as Controller - Continued

Program step	Command	Comment
0027	END	End device dependent mode
0028	Clear	
0029	1	
0030	Enter	
0031	Read 5	
0032	Print	
0033	Go to 0028	Repequency
0034	EnD	
0035		
0036		

prints out the results. For an input frequency of 580.75 MHz , the print-out might appear as

580750000
580760000
580740000
580760000
580760000
580750000
(3) The character $E$ and exponent values are not presented; however, this is entirely dependent on the controller. Although the information was sent, the controller formatted and printed the data in this form.The way in which output data may be interpreted, and how data is sent to the counter, is entirely dependent on the controller used.
(4) Programs may be written to display the entire data transmission.

An example of such an output, in which the program sampled the frequency at different resolutions and printed the results, is

RESOLUTION SCAN
285.24 E 6 285.1E6

285E6 285.2E6

OFFSET SHIFT

## CHAPTER 3

OPERATOR AND ORGANIZATIONAL MAINTENANCE

## Section I. LUBRICATION

```
3-1. No lubrication is required for the counter.
```


## Section II. TROUBLESHOOTING PROCEDURES

3-2. Table 3-7 lists the common malfunctions which you may find during operation or maintenance of the counter. You should perform the tests/ inspections and corrective actions in the order listed.

3-3. This manual cannot list all malfunctions that may occur, nor all tests or inspections and corrective actions. If a malfunction is not listed or is not corrected by listed corrective actions, notify your supervisor.

Table 3-1. Operator and Organizational Troubleshooting


Table 3-1. Operator and Organizational Troubleshooting - Continued


Table 3-1. Operator and Organizational Troubleshooting - Continued
$\xrightarrow{\text { MALFUNCTION }}$
6. Counter does not count correctly with GPIB controller connected.

Step 1. Check that rear-panel ADDRESS SWITCH 7 is set to 0 (top pushed in).

Set ADDRESS SWITCH 7 to 0 . Remove counter power and controller power. Wait five seconds, then press counter POWER pushbutton and apply power to GPIB controller. This should remove microprocessor lock-up so that GPIB controller can function.

## Section III. MAINTENANCE PROCEDURES

3-4. Introduction.

Operator and organizational maintenance is limited to inspection, exterior cleaning, fuse and power cable replacement, and performance of the counter self-test.

## 3-5. Inspection.

Inspection is accomplished by performing the preventive maintenance checks listed in table 2-3.

## 3-6. Cleaning.

Cleaning instructions appear in paraqraph 2-5.

3-7. Replacement.
a. Fuse. Replace a blown fuse as follows:
(1) Disconnect power cable at rear of counter and slide plastic fuse cover over power connector.

## CAUTION

The FUSE PULL lever attached to the body of the power module
housing does not come off. Firm but careful rotation of the fuse puller will lift up one end of the fuse so that finger force can remove the fuse. Failure to heed this caution by exerting too much force may damage the plastic pivot of the built-in fuse puller.
(2) Remove installed fuse by lifting up on FUSE PULL lever.
(3) Visually inspect fuse, or check with an ohmmeter, to confirm that it is blown.
(4) Reinstall original fuse (if not blown) or replace defective fuse with one of proper rating: 1.5 A slow-blow for 115 Vat, 0.75 A slow-blow for 230 Vat.
(5) Slide fuse cover over fuse and reconnect power cable to connector.
b. Power Cable. If the power cable is frayed or damaged, it must be replaced.

3-8. Test.

After each maintenance action, the counter must be tested in accordance with the procedures in paragraph 2-7 b.

# CHAPTER 4 <br> DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE 

## Section I. REPAIR PARTS, SPECIAL TOOLS; TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE); AND SUPPORT EQUIPMENT

4-1. Common Tools and Equipment.
For authorized common tools and equipment, refer to the Modified Table of Organization and Equipment (MTOE) applicable to your unit.

4-2. Special Tools, TMDE, and Support Equipment.

No special tools are required. TMDE and support equipment are listed in the

Maintenance Allocation Chart, Appendix B of this manual.

4-3. Repair Parts.

Repair parts are listed and illustrated in the repair parts and special tools list, TM 11-6625-3031-24P, covering direct support and general support maintenance for this equipment.

## Section II. SERVICE UPON RECEIPT

4-4. Upon receipt of the pulse counter and prior to performing maintenance follow the assembly and preparation for use instructions in paragraph 2-6. Become familiar with the control settings
and indicators by reviewing the operating instructions starting with paragraph 2-7. Then proceed with the following troubleshooting instructions.

## Section III. TROUBLESHOOTING

## 4-5. Introduction.

> a. Table 41, a symptom index, is provided so that you can match what is observed on the counter with the symptom index and, from there, go to the page in the troubleshooting table which covers the malfunction. Use of the counter operating controls and display observation constitutes the initial troubleshooting, followed by measurements of increasing complexity.
> b. Standard troubleshooting practice should start with the obvious, for example: blown fuses, power and signal connections, improper seating or poor connection of cables, etc. After these
basic troubleshooting practices have eliminated the obvious, then disassembly or cover removal of the counter should be considered.

## SAFETY PRECAUTION

> A periodic review of safety precautions in TB $385-4$, Safety Precautions for Maintenance of Electrical/Electronic Equipment, is recommended. When the equipment is operated with covers removed, DO NOT TOUCH exposed connections or components. MAKE CERTAIN you are not grounded when making connections or adjusting components.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of performing first aid, is present.
c. The troubleshooting table lists the common malfunctions which you may find during the operation or maintenance of the counter or its components. You should perform the tests/inspections and corrective actions in the order listed.
d. This manual cannot list all malfunctions that may occur, nor all tests or inspections and corrective actions.

If a malfunction is not listed or is not corrected by listed corrective actions, notify your supervisor.

NOTE
General Purpose Interface Bus (GPIB) troubleshooting procedures are in the depot maintenance work requirements, CECOM DMWR 11-66253031, for this equipment.

4-6. Reference Diagrams. Block diagrams are shown in fig. 1-2, 1-3, and 1-4. Subassembly and cable locations are shown in fig. 4-1. Foldout schematic diagrams are located in the rear of this manual.

Table 4-1. Symptom Index

Symptom	Troubleshooting procedure page
1. Display	4-4
No zeros	4-4
Display does not indicate 88888.88 when TEST DISPLAY pushbutton is pressed	4-6
Display does not indicate 200 MHz when TEST 200 MHz pushbutton is pressed	4-6
Missing digit	4-7
Band A incorrect reading	4-8
Band B incorrect reading	4-10
2. LED Indicators	4-13
LEVEL indicator does not light.	4-13
LEVEL indicator blinks or lights continuously without Band B input signal	4-14
LOCK indicator does not light	4-15
LOCK indicator blinks or lights continuously without Band $B$ input signal	4-15
GATE indicator does not light	4-15
REDUCE SIGNAL indicator does not light	4-16



CABLE INTERCONNECTIONS


Table 4-2. Direct Support and General Support Troubleshooting

MALFUNCTION
$\longrightarrow$ CORRECTIVE ACTION

1. No zeros.

Step 1. Check if rear-panel fuse F 1 is blown.

> Replace fuse with fuse of proper rating for line operating voltage: 1.5 A slow-blow for $115 \mathrm{Vac}, 0.75 \mathrm{~A}$ slow-blow for 230 Vat.

NOTE
While inspecting fuse or replacing fuse make sure that appropriate line voltage is visible on voltage selector card under fuse post housing. Card should be seated so that it does not interfere with slide protective cover.

Step 2. Check that power cable is seated in rear-panel connector.

Seat power cable.
Step 3. Inspect power cable for physical damage. Remove cable from counter and check continuity.

Replace power cable.
Step 4. Check that following cables are seated properly at both ends:
W22 from transformer T1 to Power Supply A107.
W17 from Display A110 to Counter Interconnect A100.
W14 from Display A110 to Count Chain Control A102.
W46 from Count Chain A103 to GPIB BCD Output AM120.
W47 from Count Chain A103 to GPIB BCD Output AM120.
W1 from Count Chain A103 to High Frequency A106.
Seat cable connections.

Step 5. Place rear-panel MIN. PRF switch in 50 Hz position and STORAGE switch in ON position. Press and release front-panel RESET pushbutton. If zeros now appear on display, Control A104 may be faulty.

Remove and replace Control A104.

Step 6. Check cables W1, 46, and $W 47$ for opens or shorts.
Replace defective cable.

Table 4-2. Direct Support and General Support Troubleshooting - Continued
MALFUNCTION

Step 7. Check continuity of cables:
W17 and W14 from Display A110.
If open or shorted, replace Display A110.
W22 from transformer T1.
If open or shorted, replace transformer T1.
Step 8. Disconnect cable W27 from J8 on Counter Interconnect A100 (fig. 4-2). Measure dc voltages between ground and pins of J8, which should be +5 V at pin $1,-5.2 \mathrm{~V}$ at $\mathrm{pin} 2,+12 \mathrm{~V}$ at pin 3 , and -12 V at pin 4.

If one or more voltages are not as specified, proceed to step 9. If all voltages are normal, remove and replace the following circuit cards in sequence specified:
Count Chain Control A102
Count Chain A103
Control A104
Gate Generator A105
High Frequency A106
Display A110
GPIB Remote/Local Control AM121
GPIB BCD Output AM120.
Step 9. Same as step 8.
Disconnect all circuit cards and cables, one at a time, until abnormal voltage(s) are restored to correct level. Replace defective circuit card or module which caused fault.

Step 10. Disconnect cable $W 22$ from A107J1. Check for ac voltages on cable connector: 18 volts ac between pin 1 (brown wire) and pin 2 (red wire), 9 volts ac between pin 4 (yellow wire) and pin 5 (green wire). If ac voltages are normal, Power Supply A107 may be faulty.

Replace Power Supply A107.
Step 11. Remove protective cover from power module (31, fig. 4-3) and check for following ac voltages on power module: pins $F$ to $D$, 115 volts ac; pins $E$ to $C, 115$ volts ac. If ac voltages are normal, transformer $T 1$ may be faulty.

Replace transformer assembly.

# Table 4-2. Direct Support and General Support <br> Troubleshooting - Continued 

MALFUNCTION

Step 12. Check for following ac voltages on power module: pins J to B, 115 volts ac; pins L to $N$, 115 volts ac. If ac voltage on pins $L$ and $N$ is normal, and pushing and releasing POWER switch several times does not place 115 volts on pins $J$ and $B$, POWER switch is faulty.

Replace POWER switch S101.
2. Display does not indicate 88888.88 when TEST DISPLAY pushbutton is pressed.

Step 1. Remove and replace Count Chain Control A102. If 88888.88 now appears on display when TEST DISPLAY pushbutton is pressed, original A102 was defective.

Replace Count Chain Control A102.
Step 2. Using card extender, elevate Count Chain Control A102 from Counter Interconnect A100. Jumper pins $E$ and $A$ on A102P1. If 88888.88 now appears on display, TEST DISPLAY switch S 2 on Counter Interconnect A100 may be defective.

Replace Counter Interconnect A100.
Step 3. Check that cables W14 from Display A110 to Count Chain Control A102 and W17 from Display A110 to Counter Interconnect A100 are firmly seated.

Seat cable connections.

Step 4. Check continuity of following cables:
W17 from Display A110.
If open or shorted, replace Display A110.
W14 from Display A110.
If open or shorted, replace Display A110.
3. Display does not indicate 200 MHz when TEST 200 MHz pushbutton is pressed.

Step 1. Remove and replace following circuit cards in sequence to fault isolate by substitution. After each substitution, press TEST 200 MHz switch and check display.
Control A104
Reference Oscillator Buffer A108
High Frequency A106
Gate Generator A105
Count Chain A103

Table 4-2. Direct Support and General Support Troubleshooting - Continued


> Table $4-2$ Direct Support and General Support Troubleshooting - Continued

MALFUNCTION	INSPECTON

Table 4-2. Direct Support and General Support Troubleshooting - Continued


Step 6. Check gate accuracy; see paragraph 4-8 c.
Adjust as required.

Step 7. Remove and replace following circuit cards in sequence to fault
isolate by substitution:
Control A104
Prescaler A109
Reference Oscillator Buffer A108
Gate Generator A105
High Frequency A106
Count Chain Control A102
Count Chain A103
Dual Delay Line A116
GPIB Remote/Local Control A14121.
Replace defective circuit card.
NOTE
If High Frequency A106 card is replaced, adjust in accordance with paragraph 4-8d.

Step 8. Check that following cables are seated properly at both ends:
W30 from BAND A connector A1J111 to Prescaler A109.
W34 from Prescaler A109 to Dual Delay Line A116.
W35 from Dual Delay Line A116 to High Frequency A106.
W33 from Prescaler A109 to Gate Generator A105.
W3 from Gate Generator A105 to High Frequency A106.
W1 from High Frequency A106 to Count Chain A103.
W54 from GPIB Remote/Local Control AM121 to Counter Interconnect A100.

W55 from GPIB Remote/Local Control AM121 to Counter Interconnect A100.

Seat cable connections.

Step 9. Check cables W30, W54, and W55 for opens or shorts. Replace defective cable.

```
Table 4-2. Direct Support and General Support
 Troubleshooting - Continued
```

Step 10. Check following cables:
W34 from Dual Delay Line A116
If open or shorted, replace Dual Delay Line A116.
W35 from Dual Delay Line A116
If open or shorted, replace Dual Delay Line A116.
If open or sherescaler A109 from Gate Generator A105
If open or shorted, replace Gate Generator A105.
W1 from Count Chain A103
If open or shorted, replace Count Chain A103.
6. Band B incorrect reading.

Step 1. Check that rear-panel MIN. PRF switch is in 50 Hz position and STORAGE switch is in ON position.

Place switches in correct positions.

Step 2. Check that input signal is connected to BAND B connector and that BAND B selector switch is pressed in.

Connect and operate appropriately
Step 3. Check input signal frequency and level. Must be between 925 MHz and 18 GHz , with levels as follows: 925 MHz to 10 GHz , between -10 dBm and +7 dBm ; 10 to 18 GHz , between -5 dBm and +7 dbm .

Adjust input frequency and level.
Step 4. Check that MANUAL SELECT/AUTO SWEEP switch is set to AUTO SWEEP and START FREQUENCY thumbwheel switches are set to 00.0 GHz .

Place switches in proper positions.
Step 5. Check that REDUCE SIGNAL indicator is not lighted or only flashes occasionally.

Reduce signal level.
Step 6. If GPIB controller is connected to counter, check that REMOTE indicator is not lighted. If lighted, GPIB program commands are controlling counter.

# Table 4-2. Direct Support and General Support Troubleshooting - Continued 



Table 4-2. Direct Support and General Support Troubleshooting - Continued


```
Table 4-2. Direct Support and General Support
 Troubleshooting - Continued
```



W55 from GPIB Remote/Local Control AM121 to Counter Interconnect A100.

W56 from Counter Interconnect A100 to GPIB Remote/Local Control AM121.

Seat cable connections.

Step 11. Check following cables:
W9, W10, W13, W21, W31, W54, W55, W56, and W29 for opens or shorts.

Replace defective cable.
Step 12. Check following cables:
W1 from Count Chain A103.
If open or shorted, replace Count Chain A103.
W3 from Gate Generator A105.
If open or shorted, replace Gate Generator A105.
W4, W5, W6, W7, and W8 from Converter Interconnect A200.
If open or shorted, replace Converter Interconnect A200.
W11 and W12 from Dual Delay Line A116.
If open or shorted, replace Dual Delay Line A116.
W14 and W17 from Display A110.
If open or shorted, replace Display A110.
W15 from thumbwheel switch assembly.
If open or shorted, replace thumbwheel switch assembly. W16 from Source/Amplifier A201.

If open or shorted, replace Source/Amplifier A201.
W19 from I.F. Processor A204.
If open or shorted, replace I.F. Processor A204.
W20 from Limiter/Attenuator A206.
If open or shorted, replace Limiter/Attenuator A206
7. LEVEL indicator does not light.

Step 1. Check level of input signal with power meter/thermistor mount. Input level must be above -10 dBm for frequencies between 300 MHz and 10 GHz , and above -5 dBm for frequencies between 10 and 18 GHz .

Table 4-2. Direct Support and General Support Troubleshooting - Continued


Step 2. Repeat step 1.
Replace YIG Control A202.

## Table 4-2. Direct Support and General Support Troubleshooting - Continued


9. LOCK indicator does not light.

Step 1. Check for +5 Vdc on pin 1 of $W 17 P 1$, then jumper pin 6 (ground)
to pin 3. LOCK indicator should light.
Replace Display A110.
Step 2. Remove and replace following in sequence to fault isolate
by substitution:
Control A104
Converter Sequencer A203
I.F. Processor A204.

Replace defective assembly.
Step 3. Check that following cables are seated properly at both ends:
W17 from Display A110 to Counter Interconnect A100.
W18 from Converter Interconnect A200 to Counter Interconnect A100 .

W7 from Converter Interconnect A200 to I.F. Processor A204. Seat cable connections.

Step 4. Check following cables:
W17 from Display A110.
If open or shorted, replace Display A110.
W7 and W18 from Converter Interconnect A200.
If open or shorted, replace Converter Interconnect A200.
10. LOCK indicator blinks or lights continuously without Band $B$ input signal.

Step 1. Adjust in accordance with paragraphs 4-8 d through f.
Replace Converter Sequencer A203.

Step 2. Repeat step 1.
Replace YIG Control A202.
11. GATE indicator does not light.

Step 1. Check for +5 Vdc on pin 1 of $W 17 \mathrm{P} 1$, then jumper pin 6 (ground) to pin 4. GATE indicator should light.

Replace Display A110.

> Table 4-2. Direct Support and General Support
> Troubleshooting - Continued



Figure 4-2. Counter Interconnect A100, Connector and Switch Locations

## Section IV. MAINTENANCE PROCEDURES

4-7. Disassembly, Replacement, and Reassembly.
a. General Instructions. Access to the interior of the counter is obtained by removing the top and/or bottom covers. Each cover may be removed by loosening the four screws which secure it to the counter frame. Circuit cards are held in place by a retainer (22, fig. 4-3) which is secured by six screws (20) and lockwashers (21).

## $\overline{\text { WARNING }}$

Before proceeding with any further disassembly, be sure the counter is disconnected from the ac power source. Voltages as high as 230 Vac may exist in the counter. Serious injury or DEATH may result from contact with these potentials.

## CAUTION

Always use an IC extractor to disconnect ribbon cables to prevent damage to the connectors.
b. GPIB Circuit Cards AM120 and AM121. Circuit cards AM120 and AM121 must be removed from and reassembled In the counter as a single assembly, although either may be replaced in the event of failure.
(1) Disassembly.
(a) Remove the top and bottom covers from the counter.
(b) Remove six screws (20, fig. 4-3) and lockwashers (21) securing retainer (22), and remove the retainer.
(c) Disconnect the ribbon cables from AM120 (51) and AM121 (9).
(d) Remove screw (37), lockwasher (36), two studs (33), three nuts (50), and three lockwashers (49) which secure circuit card AM120 (51) and adapter (48) to rear panel assembly (42).
(e) Remove two screws (26) and lockwashers (27) which secure posts (28) to the frame.
(f) Pull assembled circuit cards away from the rear panel and out of the top of the counter.
(g) Remove two screws (5),
flat washers (6), and lockwashers (7)

1. Spacer
2. Fan assembly
3. Screw
4. Lockwasher
5. Screw
6. Flat washer
7. Lockwasher
8. Post
9. Circuit card AM121
10. Post
11. Lockwasher
12. Flat washer
13. Screw
14. Nut
15. Lockwasher

16. Circuit card A100
17. Flat washer
18. Screw
19. POWER switch
20. Screw
21. Lockwasher
22. Retainer
23. Side panel
24. Screw
25. Lockwasher
26. Screw
27. Lockwasher
28. Post
29. Transformer assembly
30. Post
31. Power module
32. Post
33. Stud
34. Lockwasher
35. Screw
36. Lockwasher
37. Screw
38. Lockwasher
39. Screw
40. Lockwasher
41. Screw
42. Rear panel assembly
43. Lockwasher
44. Screw
45. Lockwasher
46. Screw
47. Frame
48. Plate
49. Lockwasher
50. Nut
51. Circuit card AM120

Figure 4-3. Counter, Partial Exploded View
to disassemble posts (8) from the circuit cards.
(h) Remove four screws (13), flat washers (12), and lockwashers (11) holding the circuit cards together. Separate the circuit cards, two posts (8), and two posts (10).
(2) Reassembly.
(a) Assemble circuit cards (9
and 51), two posts (8), and two posts (10).
(b) Secure the circuit cards
with four lockwashers (11), flat washers (12), and screws (13).
(c) Secure posts (28) to the assembled circuit cards with two lockwashers (7), flat washers (6) and screws (5).
(d) Position the assembled circuit cards so that the connector on AM120 extends through the opening in the rear panel. Be sure plate (48) is in place.
(e) Secure plate (48) to rear panel assembly (42) with lockwasher (36), screw (37), and nut (50).
(f) Secure the plate and circuit cards to the rear panel assembly with two studs (33), lockwashers (49), and nuts (50).
(g) Secure posts (28) to the frame with two lockwashers (27) and screws (26).
(h) Reconnect the ribbon cables to AM120 and AM121.
(i) Install retainer (22) on the frame and secure with six lockwashers (21) and screws (20).
(j) Install the top and bottom covers.
c. Fan Assembly.
(1) Disassembly.
(a) Remove the top and bottom covers from the counter.
(b) Remove six screws (20, fig. 4-3) and lockwashers (21) securing retainer (22), and remove the retainer.
(c) Unplug the fan wiring harness.
(d) Remove four screws (41) and lockwashers (40) securing fan assembly (2) and spacers (1) to rear panel assembly (42).
(e) Move the assembled fan and spacers forward and out of the top of the counter.
(f) Remove four screws (3) and lockwashers (4) securing two spacers
(1) to the fan. Remove the spacers.
(2) Reassembly.
(a) Position two spacers (1) on fan (2) and secure with four lockwashers (4) and screws (3).
(b) Position the assembled fan and spacers on rear panel assembly (42)
and secure with four lockwashers (40) and screws (41).
(c) Connect the fan wiring
harness.
(d) Install retainer (22) and secure it to the frame with six lockwashers (21) and screws (20).
(e) Install the top and bottom covers.
d. Power Transformer.
(1) Disassembly.
(a) Remove the top and bottom covers from the counter.
(b) Remove six screws (20, fig. 4-3) and lockwashers (21) securing retainer (22) to the frame, and remove the retainer.
(c) Remove four screws (44) and lockwashers (43), from the top and bottom, which secure two corner posts (30) to frame (47).
(d) Remove two screws (46) and lockwashers (45), from the top and bottom, which secure post (32) to frame (47).
(e) Remove four screws (24) and lockwashers (25), from the top and bottom, which secure transformer assembly (29) to frame (47).
(f) Separate the top and bottom frame members to remove two rear corner posts (30) and post (32).
(g) Slide side panel (23) from between the top and bottom frame members.
(h) Remove two nuts (14), lockwashers (15), flat washers (17), and screws (18) which secure POWER switch (19) to circuit card A100 (16).
(i) Remove the switch through the side panel opening.
(j) Cut the cable ties holding the switch wiring harness to the frame.
(k) Remove two nuts (50), lockwashers (49), and studs (33), which secure the connector on circuit card (51) to rear panel assembly (42).
(m) Disconnect the following cables fig. 4-1):

$$
\begin{array}{ll}
\text { W22 } & \text { from A107J1 } \\
\text { W23 } & \text { from A108J1 } \\
\text { W24 } & \text { from A109J6 } \\
\text { W25 } & \text { from A106J6 } \\
\text { W26 } & \text { from A109J3 } \\
\text { W27 } & \text { from A100J8 } \\
\text { W28 } & \text { from A100J1. }
\end{array}
$$

(n) Remove rear panel assembly (42, fig. 4-3) from frame (47).
(0) Cut the cable tie securing the inside cover on power module (31). Remove the cover.
(p) Tag and disconnect the wiring from the power module.
(q) Remove rear panel assembly (42).
(r) Unplug the transformer wiring harness from Power Supply A107 (fig. 4-1) and remove transformer assembly (29, ig. 4-3).
(2) Reassembly.
(a) Position transformer assembly $\overline{(29)}$ between the top and bottom frame members.
(b) Plug the transformer
wiring harness into the receptacle on A107 (fig. 4-1).
(c) Connect the tagged leads to power module (31, fig. 4-3).
(d) Install the power module cover and secure with a new cable tie.
(e) Position rear panel
assembly (42) in frame (47).
(f) Reconnect the following cables fig. 4-1):

W22 to A107J1
W23 to A108J1
W24 to A109J6
W25 to A106J6
W26 to A109J3
W27 to A100J8
W28 to A100J1.
(g) Secure the connector on circuit card (51, fig. 4-3) to rear
panel assembly (42) with two studs (33), lockwashers (49), and nuts (50).
(h) Position POWER switch (19) on circuit card (16) with the pushbutton extended through the opening in the front panel.
(i) Secure the switch to the circuit card with the screws (18), flat washers (17), lockwashers (15) and nuts (14).
(j) Install the switch wiring
harness to the frame with new cable ties.
(k) Slide side panel (23) through the channels between the top and bottom frame members, being careful not to damage the RFI shield braid.
(m) Separate the top and bottom frame members and install post (32) and corner posts (30).
(n) Secure post (32) with two lockwashers (45) and screws (46).
(0) Secure transformer assembly (29) to the frame with four screws (24) and lockwashers (25).
(p) Secure two corner posts
(30) to the frame with four screws (44) and lockwashers (43).
(q) Install retainer (22) and secure with six lockwashers (21) and screws (20).
(r) Install the top and bottom covers.

4-8. Adjustments.
a. Display Brightness. Relative brightness of the LED displays may be adjusted for the work area conditions encountered. To adjust the brightness, remove the top cover of the counter and adjust resistor A102R35 on Count Chain Control A102 (fig. 4-4). Turning A102R35 clockwise increases the display brightness and counterclockwise decreases the brightness.
b. Power Supply Voltages.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for power supply adjustments are:
(a) Oscilloscope OS-261/U
(b) Multimeter, Digital

AN/USM-451

table 4-3 and adjust the corresponding control on Power Supply A107 (fig. 4-4) to obtain the correct dc voltage. The peak-to-peak ripple voltage displayed on the oscilloscope at each test point should not exceed the maximum specified in table 4-3.
(f) Reduce the variable transformer output to 103.5 Vac. Measure the voltages at each of the test points listed in table 4-3. They must be within the ranges specified.
(g) Increase the variable transformer output to 126.5 Vac and again measure the voltages at each test point to be certain that they remain within tolerance.
(h) Turn off counter, disconnect test equipment, and reinstall circuit card retainer and top cover.
c. Gate Accuracy. This adjustment affects Band $A$ operation and is required whenever High Frequency Circuit Card A106 is replaced or when adjustment is indicated as a troubleshooting corrective action.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for the gate accuracy adjustment are:
(a) Oscilloscope OS-261/U. (b) Multimeter, Digital AN/USM-451.
(c) Transformer, Variable, Staco 3PN501V.
(d) Generator Subassembly MX-8364A (P)/USM-308.
(e) Generator Plug In PL-1242/ USM-308 (V) .
(f) Generator, Pulse SG-1105/U.
(g) Meter, Power ME-441/U.
(h) Thermistor Mount, HewlettPackard 8478B.
(i) Termination, Feedthrough, Tektronix 011-0049-01.
(2) Adjustment Procedure.
(a) Set counter controls as
follows:

SAMPLE RATE control Counterclockwise RESOLUTION switches Both out 1 ms GATE switch out BAND A switch In MANUAL SELECT/AUTO AUTO SWEEP

SWEEP switch Thumbwheel switches 00.0 GHz
(b) Adjust power supply voltages as described in paragraph 4-8 b (2), steps (a) through (g).
(c) Disconnect digital volt-
meter and oscilloscope, and reset variable transformer output to 115 Vat.
(d) Set sweep generator subassembly and plug-in for cw output at 950 MHz . Using power meter and thermistor mount, adjust cw output level to -10 dBm.
(e) Connect pulse generator
output to vertical input of oscilloscope

Table 4-3. Power Supply Voltages and Adjustments

Test point on A100J3	$\begin{gathered} \text { DC } \\ \text { voltage } \end{gathered}$	Adjustment control	Max. ripple (mV pk-pk)
Pin 9	$\begin{aligned} & +5 \mathrm{~V} \pm 10 \mathrm{mV} \\ & (+4.990 \text { to }+5.010 \mathrm{~V}) \end{aligned}$	A107R15	10
Pin 11	$\begin{aligned} & +12 \mathrm{~V} \pm 10 \mathrm{mV} \\ & (+11.990 \text { to }+12.010 \mathrm{~V}) \end{aligned}$	A107R7	12
Pin 8	$\begin{aligned} & -12 \mathrm{~V} \pm 10 \mathrm{mV} \\ & (-11.990 \text { to }-12.010 \mathrm{~V}) \end{aligned}$	A107R21	12
Pin 10	$\begin{aligned} & -5.2 \mathrm{~V} \pm 10 \mathrm{mV} \\ & (-5.190 \text { to }-5.210 \mathrm{~V}) \end{aligned}$	A107R31	5

through 50 ohm feedthrough termination; termination must be attached directly to oscilloscope input connector. Set up pulse generator for 100 nanosecond pulse width, 50 kHz repetition rate, and -1 volt output level (fig. 4-5).
(f) Connect output of sweep generator and plug-in to BAND A connector on counter. Record Cw frequency displayed.
(g) Connect pulse generator output to counter rear-panel INPUT INHIBIT connector. Adjust SAMPLE RATE control so that you can read and record 10 or more displayed frequency readings of the pulsed input. Calculate average of readings.
(h) If average frequency obtained in step (g) is within 1.42 MHz of cw frequency measured in step (f), proceed directly to step (k). Otherwise, continue with step (i).

## NOTE

Example: If cw frequency measured in step (f) was 950.00 MHz , averaged frequency obtained in step (g) should be between 948.58 and 951.42 MHz .
(i) Adjust resistor A106R60 (fig. 4-4) to minimize differences between averaged pulse frequency and cw frequency recorded in step (f).


Figure 4-5. Pulse Generator Output
(j) Repeat step (g) to be sure that average of pulsed frequencies is within 1.42 MHz of Cw frequency. (k) Turn off counter, disconnect test equipment, and reinstall circuit card retainer and top cover.

## NOTE

The adjustments which follow affect Band B operation and must be performed in the sequence presented, since some adjustments are dependent upon previous ones. The comb level must be set in accordance with paragraph 4-8 g after any adjustment is made.

Before making any adjustments, check, and if necessary, adjust the power supply voltages as described in paragraph 4-8 b (2), steps (a) through (e).
d. 40 kHz Clock. Adjustment of the 40 kHz clock is required whenever YIG Comb Generator A207 or Converter Sequencer A203 is replaced, or when adjustment is indicated as a troubleshooting corrective action.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for the 40 kHz clock adjustments are:
(a) Oscilloscope OS-261/U.
(b) Extender, Card,

EIP 2020041.
(2) Adjustment Procedure. (a) Set counter controls as
follows:
BAND B switch
MANUAL SELECT/AUTO
SWEEP switch
Thumbwheel switches 01.0 GHz
(b) Use card extender to
elevate YIG Control A202.
(c) Connect jumper between

A202TP1 and A202TP3 (fiq. 4-6).
(d) Connect jumper between

A202TP5 and A202TP9 (ground).
(e) Connect oscilloscope
channel 1 to pin 9 of A202U1. Set to $5 \mathrm{~V} / \mathrm{div}$.


NOTE: OTHER PARTS OMITTED FOR CLARITY.

FI $\operatorname{gnYnig}$
Figure 4-6. YIG Control A202, Adjustment and Test Point Locations
(f) Connect oscilloscope channel 2 to pin 4 of A202U1. Set to 2 V/div.
(g) Apply power to counter.
(h) Adjust resistor A202R89 for symmetrical waveform as shown in channel 1 (upper) trace of fig. 4-7. All pulses in the train should be of equal duration. The channel 1 (upper) trace is the detected modulation pulse and the 20 kHz reference is the channel 2 (lower) trace.

## NOTE

The leading and trailing edges of the 20 kHz reference should be in the center of the detected modulation pulse. If they are not, replace Converter Sequencer A203 and repeat step (h).

Slope and offset adjustments can be made without any changes in the existing test set-up, and are normally accomplished after the 40 kHz clock adjustment. If the 40 kHz clock adjustments bring the counter into normal operation, complete the procedure by disconnecting the two jumpers from test points installed in steps (c) and (d), remove the card extender, and reinstall A202 in the counter.
e. Slope and Offset. The slope and offset adjustment is required whenever

YIG Comb Generator A207, Converter Sequencer A203, or YIG Control A202 is replaced, or when adjustment is indicated as a troubleshooting corrective action.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for the slope and offset adjustment are:

> (a) Oscilloscope OS-261/U.
(b) Extender, Card,

EIP 2020041.
(2) $\frac{\text { Adjustment Procedure. }}{\text { (a) Perform } 40 \mathrm{kHz} \mathrm{clock}}$ adjustment: $\square$ paragraph 4-8d(2).
(b) Without removing jumpers or oscilloscope leads from A202, change


Figure 4-7. Detected Modulation and 20 kHz Reference Pulse Timing
counter front-panel thumbwheel switch setting in 1 GHz steps from 01.0 through 18.0 GHz and, at each setting, adjust resistor A202R87 (£ig. 4-4) for symmetrical waveform (fig. 4-7). (c) Repeat steps (a) and (b) as necessary to obtain symmetry on the 18 increments from 1 GHz through 18 GHz .

## NOTE

Adjustment of A202R87 may affect the previous 40 kHz adjustments. Therefore, this interaction must be compensated for by readjustment of A202R89 for best possible compromise. It may be necessary to go back and forth between the slope and offset adjustment (A202R87) and the 40 kHz clock adjustment (A202R89) to obtain the best possible result.
(d) Disconnect oscilloscope
probes.
(e) Disconnect test point
jumpers.
(f) Remove card extender and reinstall A202 in counter.
f. Attenuator Driver. Attenuator driver adjustments are required whenever Converter Sequencer A203 or Limiter/ Attenuator A206 is replaced, when it is known that the Band B input vswr is too high, or when adjustment is indicated as a troubleshooting corrective action.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for the attenuator driver adjustments are:
(a) Oscilloscope OS-261/U.
(b) Generator Subassembly

MX-8364A(P)/USM-308.
(c) Generator, Sweep, Plug In PL-1304/USM-308 (V).
(d) Generator, Sweep, Plug In PL-1242/USM-308 (V).
(e) Meter, Power ME-441/U.
(f) Thermistor Mount,

Hewlett-Packard 8478B.
(g) Attenuator, Coaxial, Fixed,

Hewlett-Packard 8491B-003.
(h) Crystal Detector, Hewlett-Packard 423A.
(i) Directional Coupler, Hewlett-Packard 779D.
(j) Extender, Card,

EIP 2020041.
(2) Adjustment Procedure.
(a) Set generator subassembly and plug-in PL-1304/USM-308(V) for Cw output at 10 GHz . Using power meter and thermistor mount, adjust cw output level to +7 dBm .
(b) Set counter controls as
follows:

```
BAND B switch
MANUAL SELECT/AUTO AUTO SWEEP
 SWEEP switch
Thumbwheel switches 00.0 GHz
```

(c) Use card extender to elevate Converter Sequencer A203.
(d) Connect jumper between

A203TP16 and A203TP21 (fi $q$. 4-8).
(e) Carefully set up equipment as shown in fig. 4-9. Set oscilloscope for maximum vertical sensitivity, dc coupled.
(f) Apply power to counter.
(g) Adjust A203R44 (fig. 4-8
for maximum return loss, as evidenced by minimum dc level displayed on oscilloscope. A typical oscilloscope display is shown in fig 4-10

NOTE
As A203R44 is rotated from full counterclockwise to full clockwise position, the dc level displayed on the oscilloscope will go from a maximum through a minimum, and then to a maximum again. The correct adjustment for maximum return loss (minimum reflected signal) corresponds to the minimum dc level.
(h) Remove jumper installed in step (d).

## NOTE

If the preceding adjustment was made because A203 or A206 was replaced, omit steps (i) and (j) which follow, and continue with the procedures in paragraph 4-8 $\underline{f}$ (3).


NOTE: OTHER PARTS OMITTED FOR CLARITY.

ELBOY018
Figure 4-8. Converter Sequencer A203, Adjustment and Test Point Locations
(i), Turn off counter and disconnect test equipment.
(j) Remove card extender and reinstall A203 in counter.
(3) Attenuator Control Test. This test is required only if A203 or A206 has been replaced.
(a) Temporarily connect a
$0.47 \mu \mathrm{f}$ capacitor across A203C2
(fig. 4-8).
(b) Connect oscilloscope channel 1 10X probe to pin 1 of A203J1 (fig. 4-8) to display $I$ series , and channel 2 10X probe to A203TP17 to display attenuator control ramp.
(c) Disconnect cable W8 (fig.

4-1) from A204J4 and ground center conductor of cable.
(d) Connect jumper between A203TP14 and A203TP16 (fig. 4-8).
(e) As shown in fig. 4-11, I series (upper trace) should not change during first one to three steps of attenuator control ramp (lower trace). If Iseries changes, replace A203.

## NOTE

If A203 is replaced, repeat steps (a) through (e).
(f) Remove jumper between A203TP14 and A203TP16, remove capacitor connected across A203C2, and reconnect cable W8 to A204J4.
(g) Set generator subassembly and plug-in PL-1242/USM-308(V) for Cw output at 1.4 GHz . Using power meter and thermistor mount, adjust cw output level to +5 dBm .


Figure 4-9. Return Loss Measurement Setup


Figure 4-10. Return Loss Measurement Waveform
(h) Connect output of generator subassembly and plug-in to counter BAND $B$ input.
(i) Adjust A203R21 (fig. 4-4)
until REDUCE SIGNAL indicator lights.
(j) Press RESET switch and
readjust A203R21 as necessary.
(k) Turn off counter and disconnect test equipment.
(m) Remove card extender and reinstall A203 in counter.
g. Comb Leveling. The comb leveling adjustment is required if any of the adjustments covered in paragraphs 4-8d through $f$ have been made.
(1) Test, Measurement, and Diagnostic Equipment Required. TMDE (or equivalents) required for comb leveling are:
(a) Oscilloscope OS-261/U.
(b) Extender, Card, EIP 2020041.
(2) Adjustment Procedure.
(a) Set counter controls as
follows:

BAND B switch
MANUAL SELECT/AUTO
SWEEP switch
Thumbwheel switches
00.0 GHz
(b) Use card extender to elevate Converter Sequencer A203.


Figure 4-11. Typical Attenuator Control Ramp Offset
(c) Connect A203TP14, A203TP15, and A203TP16 (fig. 4-8) together.
(d) Connect oscilloscope 10x probe to A203TP12 and connect external trigger input to A203TP20.
(e) Apply power to counter.
(f) Adjust A203R90 to level
comb line displayed on oscilloscope to nominal 2 volt amplitude, as shown in fig. 4-12.
(g) Turn off counter and disconnect oscilloscope.
(h) Remove jumpers from test points on A203.

(i) Remove card extender and reinstall A203 in counter.
(j) Reinstall circuit card retainer and top cover.

4-9. Performance Test.
a. Purpose. The performance test described in this section of the manual is used to verify that the counter meets its established specifications over the entire frequency range, with both pulsed and cw inputs. The counter should be tested in accordance with these procedures after replacement of any part or assembly.
b. Test, Measurement and Diagnostic Equipment Required. TMDE (or equivalent) required for the performance test are:
(1) Transformer, Variable,

Staco 3PN501V.
(2) Meter, Power ME-441/U.
(3) Thermistor Mount,

Hewlett-Packard 8478B.
(4) Generator Subassembly

MX-8364A (P)/USM-308.
(5) Generator Plug In PL-1240A/ USM-308 (V).
(6) Generator Plug In PL-1242/ USM-308 (V).
(7) Generator, Sweep, Plug In PL-1304/USM-308 (V).
(8) Oscillator, Sweep, Plug In, Hewlett-Packard 8695A.
(9) Adapter, Hewlett-Packard P281 (*) -013.
(10) Termination, Feedthrough, Tektronix 011-0049-01.
(11) Generator, Pulse SG-1105/U.
(12) Oscilloscope OS-261/U.
(13) Electronic Counter Mainframe TD-1209/U.
(14) Counter Module, Electronic TD-1211/U.
c. Initial Procedures.
(1) Set front-panel controls as follows:

POWER switch	Off
SAMPLE RATE control	Full
	counterclockwise
RESOLUTION switches	Both out
1 ms GATE switch	Out


BAND B switch	In
MANUAL SELECT/AUTO	AUTO SWEEP
SWEEP switch	
Thumbwheel switches	00.0 GHz



NOTE
See fig. 2-g for explanation of ADDRESS SWITCH positions.
(3) Connect variable transformer to 115 Vac power line and adjust for an output of $115 \pm 1 \operatorname{Vac}$ (114 to $116 \mathrm{Vac})$.
(4) Connect counter power cable to variable transformer. Apply power to counter by pushing POWER switch on. Allow 20 minutes of warm-up time to stabilize counter components.
(5) Check for the following:
(a) Fan is blowing air out of rear panel.
(b) Display shows all zeros. (c) REDUCE SIGNAL indicator is not lighted.
d. Self-test.
(1) Press TEST DISPLAY switch. Display should indicate 88888.88 while switch is held in. Release switch.
(2) Press TEST 200 MHz switch. Display should indicate 200.00 , with two leading zeros blanked, while switch is held in. Release switch.
(3) Press right RESOLUTION switch and again hold TEST 200 MHz switch in. Display should indicate 200.0 , with two leading zeros blanked. Release switch.
(4) While holding TEST 200 MHz switch in, vary variable transformer output from 103.5 to 126.5 Vac. Display must continue to show 200.00 over entire line voltage range.
(5) Release TEST 200 MHz switch and reset variable transformer output to $115 \pm 1$ Vac.

## CAUTION

Throughout the procedures which follow, instructions are given to set various signal sources to specific output levels. In each case, this must be done by measuring the output of the signal source, before connecting it to the counter, using a thermistor mount and rf power meter.

If the signal source is in a sweep mode, the sweep rate must be set at a slow speed to allow monitoring the output power over the sweep range. In no case should the output be allowed to exceed the level specified for each test step.
e. Band B Response.
(1) Set up generator subassembly and plug-in PL-1242/USM-308(V) for -10 dBm Cw output at 925 MHz .
(2) Connect generator and plug-in to BAND B input connector. Counter should indicate input frequency of 925 MHz .
(3) Rotate SAMPLE RATE control from full counterclockwise to full clockwise positions, without actuating HOLD switch, and observe LED indicators. LEVEL and LOCK indicators should be lighted continuously; GATE indicator
should flash rapidly when SAMPLE RATE control is near counterclockwise extreme, and slowly as control approaches clockwise limit.
(4) Rotate SAMPLE RATE control
fully clockwise until HOLD switch actuates. Display should hold last reading. Change generator frequency; counter display should not change.
(5) Push RESET pushbutton and release. Display should now change to new input frequency. Disconnect generator and plug-in from counter.
(6) Turn SAMPLE RATE control to mid-point and push 1 ms GATE switch in.
(7) Adjust generator and plug-in to sweep from 0.925 to 2 GHz at low power level of -10 dBm , as specified in table 4-4. Reconnect plug-in to counter BAND B input connector and set sweep time to permit counter to track swept frequency. Counter should display correct frequency, without dropping out, over entire swept frequency range. REDUCE SIGNAL indicator should not light during any portion of sweep.
(8) Disconnect plug-in from counter and change output to high level of +10 dBm . Reconnect to BAND B connector. Counter should again display correct frequency, without dropping out, over entire swept frequency range.

Table 4-4. Band B Response Tests

Sweep frequency range (GHz)	Plug-in	Low power level (dBm)	High power level (dBm)
0.925-2	PL-1242/USM-308 (V)	-10	+10
2-4	PL-1242/USM-308 (V)	-10	+7
4-8	PL-1240A/USM-308 (V)	-10	+7
8-10	PL-1304/USM-308 (V)	-10	+7
$10-12.4$	PL-1304/USM-308 (V)	-5	+7
12.4-18	```Hewlett-Packard 8695A with waveguide-to- coax adapter```	-5	+7

NOTE

Periodic display hesitation will be noticed.

At an input level approximately +4 to +6 dBm at 1.4 GHz , the REDUCE SIGNAL indicator should be lighted.
(9) Repeat steps (7) and (8) for each frequency range listed in table 4-4, using plug-in specified, at low and high power levels shown in the table.
(10) Disconnect plug-in from counter.
f. Band B Gate Error.
(1) Reset counter front-panel controls as follows:

RESOLUTION switches	
SAMPLE RATE control	Both out
Full	
counterclockwise	

(2) Set up generator subassembly and plug-in PL-1242/USM-308(V) for +7 dBm Cw output at 1150 MHz .
(3) Connect pulse generator output to vertical input of oscilloscope through 50 ohm feedthrough termination; termination must be attached directly to oscilloscope input connector. Set up pulse generator for 100 nanosecond pulse width, 50 kHz repetition rate, and -1 volt output level (fig. 4-5).
(4) Connect plug-in to BAND B connector on counter. Press RESET switch and record $c w$ frequency displayed.
(5) Connect pulse generator output to counter rear-panel INPUT INHIBIT connector. Adjust SAMPLE RATE control so that you can read and record 10 or more displayed frequency readings of the pulsed input.
(6) Calculate average of readings obtained in step (5). Average should be within 570 kHz of cw frequency measured in step (4).

NOTE
Example: If Cw frequency measured in step (4) was 1150.00 MHz , averaged frequency obtained in step (6) should be between 1149.43 and 1150.57 MHz .
(7) Disconnect pulse generator from INPUT INHIBIT connector.

## NOTE

The pulse generator must be disconnected from the counter before making measurements at a new frequency to allow for frequency stabilization.
(8) Repeat steps (4) through (7) with +7 dBm cw output from plug-in at the following frequencies: 1200 MHz , $1250 \mathrm{MHz}, 1325 \mathrm{MHz}$, and 1350 MHz .

## NOTE

Do not change settings of pulse generator or generator sub-assembly/plug-in controls at this point.
g. 1 ms Gate.
(1) Set up generator subassembly and plug-in for +7 dBm cw output at 1400 MHz .
(2) Connect plug-in to BAND B connector and pulse generator to INPUT INHIBIT connector.
(3) Connect rear-panel GATE OUTPUT connector to vertical input of oscilloscope through 50 ohm feedthrough termination; termination must be attached directly to oscilloscope input connector.
(4) Press 1 ms GATE time switch on counter.
(5) Verify that a 1 millisecond low-going pulse is displayed, going from 0 Vdc to less than -0.5 Vdc .
(6) Push right-hand RESOLUTION switch.
(7) Verify that a 100 microsecond low-going pulse is displayed, going from 0 Vdc to less than -0.5 Vdc .

## NOTE

Do not disconnect test equipment from counter at this point.
h. Signal Threshold.
(1) Move cable from GATE OUTPUT connector to SIGNAL THRESHOLD OUTPUT connector.
(2) With counter displaying input frequency, signal threshold output displayed on oscilloscope should be less than -0.5 Vdc.
(3) Remove Band B input signal.
(4) Verify that signal threshold output signal goes to approximately 0 Vdc.
(5) Disconnect oscilloscope from counter.
i. Preset Frequencies.
(1) Adjust generator and plug-in for cw output of +7 dBm at 1.0 GHz . Reconnect plug-in to counter BAND B input connector.
(2) Set MANUAL SELECT/AUTO SWEEP switch to MANUAL SELECT and set thumbwheel switches to 01.0 GHz , as specified in table 4-5. Display should show all zeros.
(3) Increase input frequency. Counter should start counting at approximately 1.105 GHz ( 105 MHz above thumbwheel setting).
(4) Continue to increase input frequency. Counter display should drop out at approximately 1.36 GHz ( 360 MHz above thumbwheel setting).
(5) Lower input frequency to thumbwheel setting of 1.0 GHz . Counter should display all zeros.
(6) Set MANUAL SELECT/AUTO SWEEP switch to AUTO SWEEP. Display should change to some incorrect frequency.
(7) Increase input frequency. Counter should again start counting correctly at approximately 1.105 GHz and continue to count all higher frequencies correctly.
(8) Repeat steps (1) through (7) for all other thumbwheel switch settings listed in table 4-5. Use plug-in, specified in the table, set up to provide +7 dBm Cw output at thumbwheel switch frequency. Approximate frequency at which counter should start counting for each switch setting is also shown in the table, along with MANUAL SELECT drop-out frequency.
(9) Disconnect plug-in from
counter.
j. Band A Response.
(1) Reset counter front-panel controls as follows:

1 ms GATE switch Out
BAND A switch In

Table 4-5. Preset Frequency Tests

Thumbwheel   switch setting   $(\mathrm{GHz})$	Plug-in	Start count   frequency   $(\mathrm{GHz})$	MANUAL SELECT   drop-out frequency   (GHz)
01.0	PL-1242/USM-308(V)	1.105	1.36
01.2		1.305	1.56
01.4		1.505	1.76
01.8		2.105	2.16
02.0	PL-1240A/USM-308(V)	4.105	2.36
04.0	PL-1304/USM-308(V)	8.105	4.36
08.0		10.105	8.36
10.0			10.36

(2) Adjust generator subassembly and plug-in PL-1242/USM-308(V) to sweep from 300 to 950 MHz at output level of -10 dBm .
(3) Connect plug-in to counter BAND A input connector and set sweep time to permit counter to track swept frequency. Counter should display correct frequency, without dropping out, over entire swept frequency range.
(4) Disconnect plug-in from counter and change output level to +10 dBm . Reconnect to BAND A connector. Counter should again display correct frequency, without dropping out, over entire swept frequency.
(5) Disconnect plug-in from counter.
k. Band A Gate Error.
(1) Set up generator subassembly and plug-in PL-1242/USM-308(V) for +7 dBm Cw output at 450 MHz .
(2) Connect pulse generator output to vertical input of oscilloscope through 50 ohm feedthrough termination; termination must be attached directly to oscilloscope input connector. Set up pulse generator for 100 nanosecond pulse width, 50 kHz repetition rate, and -1 volt output level (fig. 4-5).
(3) Connect plug-in to BAND A connector on counter. Press RESET switch and record cw frequency displayed.
(4) Connect pulse generator output to counter rear-panel INPUT INHIBIT connector. Adjust SAMPLE RATE control so that you can read and record 10 or more displayed frequency readings of the pulsed input.
(5) Calculate average of readings obtained in step (4). Average should be within 1.42 MHz of cw frequency measured in step (3).

NOTE
Example: If CW frequency measured in step (3) was 450.00 MHz , averaged frequency obtained in step (5) should be between 448.58 and 451.42 MHz .
(6) Disconnect pulse generator from INPUT INHIBIT connector.

## NOTE

The pulse generator must be disconnected from the counter before making measurements at a new frequency to allow for frequency stabilization.
(7) Repeat steps (3) through (6) with +7 dBm Cw output from plug-in at the following frequencies: 650 MHz , $880 \mathrm{MHz}, 925 \mathrm{MHz}$, and 950 MHz .
(8) Disconnect plug-in from counter.
m. Time Base Frequency. The time base frequency must be measured with the ambient temperature between $0^{\circ}$ and $50^{\circ} \mathrm{C}$ ( $32^{\circ}$ and $122^{\circ} \mathrm{F}$ ).
(1) Connect counter mainframe TD-1209/U with module TD-1211/U to 10 MHz OUTPUT connector on rear panel of counter. Frequency of 10 MHz OUTPUT should be between 9.999980 and 10.000020 MHz .
(2) Reduce output voltage of variable transformer to 103.5 Vac and allow 15 minutes for time base oscillator to stabilize. 10 MHz OUTPUT frequency should be within 1 Hz of frequency measured in step (1).
(3) Repeat step (2) with variable transformer output at 126.5 Vac.
(4) Turn off counter and disconnect all TMDE.

## Section V. PREPARATION FOR STORAGE OR SHIPMENT

4-10. Preparation of Equipment.
To prepare the counter for storage or shipment, disconnect the power cable, roll it up, and tie with a strip tie or twine.

4-11. Packing Instructions.
a. Support the corners of the counter in styrofoam posts or cushion the counter with cells or pads fabricated of styrofoam or corrugated fiberboard.
b. Place the cushioned unit, together with the power cable and technical manual, within a close-fitting, slotted, corrugated box. Seal the closure with gummed tape and blunt all corners of the box.
c. Place the boxed counter within a moisture-vaporproof barrier, and heatseal the closure. Then place within a second close-fitting, slotted, corrugated fiberboard box and seal the entire closure with water-resistant tape or adhesive.
d. Overwrap the boxed equipment in waterproof barrier material. Completely seal all joints, seams, and closures
with adhesive or other suitable seal equal in moisture resistance to that of the body material.
e. For storage or domestic shipment, place the equipment, packaged as described above, within a close-fitting cardboard shipping carton. Seal the entire closure with water-resistant tape or adhesive and mark the shipping carton in accordance with MIL-STD-129.

## WARNING

Prevent personnel injury when applying or removing steel strapping by wearing heavy gloves and protective eyewear. Do not handle packing cartons by the steel strapping.
f. For overseas shipment only, place the equipment, packaged as described in step $d_{\text {, }}$ within a nailed wooden box lined inside with a 2-inch thickness of excelsior compacted to 3 pounds per cubic foot. The shipping container should not be lined with a waterproof bag. Strap the shipping container with metal straps and mark in accordance with MIL-STD-129.

## APPENDIX A REFERENCES

DA Pam 310-1
TB 43-0118

TB 43-180

TB 385-4

TM 11-6625-2735-14

TM 11-6625-2835-14\&P

TM 11-6625-2953-14

TM 38-750
TM 740-90-1
TM 750-244-2

Consol idated I ndex Army Pubs and Forns
Field Instructions for Painting and Preserving El ectroni cs Command Equi prent I ncl uding Canouf I age Pattern Painting of Electrical Equi pment Shelters

Calibration Requi rements for the Maintenance of Army Materiel.

Safety Precautions for Maintenance of Electrical/ El ectronic Equi pment

Oper at or's, Organizational, Direct Support, and General Support Mai ntenance Manual (I ncl uding Depot Maintenance) for Oscilloscope OS-261 (NSN 6625-00-127-0079) (NAVELEX 0967-LP-170-1090; TO 33A1-13-498-1)

Oper at or's, Organizational, Direct Support, and General Support Maintenance Manual (Incl uding Repai r Parts and Special Tools Lists) for Pul se Generator, SG 1105/U (Hew ett-Packard Mbdel 8013B) (NSN 6625-01-010-3524)

Operator's, Organi zational, Direct Support, and General Support Mai ntenance Manual; Multimeter, AN USM- 451 (NSN 6625-01-060-6804)

The Army Maintenance Management System (TAMMS)
Admini strative Storage of Equi pment
Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (El ectroni cs Command)

## APPENDIX B

## MAINTENANCE ALLOCATION CHART (MAC)

## INTRODUCTION

## The Army Maintenance System MAC

This introduction provides a general explanation of all maintenance and repair function authorized at the two maintenance levels under the Two-Level Maintenance System concept.

This MAC (immediately following the introduction) designates overall authority and responsibility for the performance of maintenance functions on the identified end item or component. The application of the maintenance functions to the end item or component levels, which are shown on the MAC in column (4) as:

Field - includes two columns, Unit maintenance and Direct Support maintenance. The Unit maintenance column is divided again into two more subcolumns, C for Operator or Crew and O for Unit maintenance. Sustainment - includes two subcolumns, general support (H) and depot (D).

The tools and test equipment requirements (immediately following the MAC) list the tools and test equipment (both special tools and common tool sets) required for each maintenance function as referenced from the MAC.

The remarks (immediately following the tools and test equipment requirements) contain supplemental instructions and explanatory notes for a particular maintenance function.

## Maintenance Functions

Maintenance functions are limited to and defined as follows:

1. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination (e.g. by sight, sound, or feel). This includes scheduled inspection and gagings and evaluation of cannon tubes.
2. Test. To verify serviceability by measuring the mechanical, pneumatic, hydraulic, or electrical characteristics of an item and comparing those characteristics with prescribed standards on a scheduled basis, i.e., load testing of lift devices and hydrostatic testing of pressure hoses.
3. Service. Operations required periodically to keep an item in proper operating condition; e.g., to clean (includes decontaminate, when required), to preserve, to drain, to paint, or to replenish fuel, lubricants, chemical fluids, or gases. This includes scheduled exercising and purging of recoil mechanisms. The following are examples of service functions:
a. Unpack. To remove from packing box for service or when required for the performance of maintenance operations.
b. Repack. To return item to packing box after service and other maintenance operations.
c. Clean. To rid the item of contamination.
d. Touch up. To spot paint scratched or blistered surfaces.
e. Mark. To restore obliterated identification.
4. Adjust. To maintain or regulate, within prescribed limits, by bringing into proper position, or by setting the operating characteristics to specified parameters.
5. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.

## MAINTENANCE ALLOCATION CHART (MAC)

6. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments of test, measuring, and diagnostic equipment used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
7. Remove/install. To remove and install the same item when required to perform service or other maintenance functions. Install may be the act of emplacing, seating, or fixing into position a spare, repair part, or module (component or assembly) in a manner to allow the proper functioning of an equipment or system.
8. Paint. To prepare and spray color coats of paint so that the ammunition can be identified and protected. The color indicating primary use is applied, preferably, to the entire exterior surface as the background color of the item. Other markings are to be repainted as original so as to retain proper ammunition identification.
9. Replace. To remove an unserviceable item and install a serviceable counterpart in its place "Repair" is authorized by the MAC and assigned maintenance level is shown as the third position code of the Source, Maintenance and Recoverability (SMR) code.
10. Repair. The application of maintenance services, including fault location/troubleshooting, removal/installation, disassembly/assembly procedures and maintenance actions to identify troubles and restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item or system.

## NOTE

The following definitions are applicable to the "repair" maintenance function:
Services. Inspect, test, service, adjust, align, calibrate, and/or replace.
Fault location/troubleshooting. The process of investigating and detecting the case of equipment malfunctioning; the act of isolating a fault within a system or Unit Under Test (UUT). Disassembly/assembly. The step-by-step breakdown (taking apart) of a spare/functional group coded item to the level of its least component, that is assigned an SMR code for the level of maintenance under consideration (i.e., identified as maintenance significant).
Actions. Welding, grinding, riveting, straightening, facing, machining, and/or resurfacing.
11. Overhaul. That maintenance effort (service/action) prescribed to restore an item to a completely serviceable/operational condition as required by maintenance standards in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
12. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (e.g., hours $/ \mathrm{miles}$ ) considered in classifying Army equipment/components.

## APPENDIX B <br> MAINTENANCE ALLOCATION CHART (MAC)

## Explanation of Columns in the MAC

Column (1) Group Number, Column (1) lists FGC numbers, the purpose of which is to identify maintenance significant components, assemblies, subassemblies, and modules with the Next Higher Assembly (NHA).

Column (2) Component/Assembly. Column (2) contains the item names of components, assemblies, subassemblies, and modules for which maintenance is authorized.

Column (3) Maintenance Function. Column (3) lists the functions to be performed on the item listed in column (2). (For a detailed explanation of these functions, refer to "Maintenance Functions" outlined above).

Column (4) Maintenance Level. Column (4) specifies each level of maintenance authorized to perform each function listed in column (3), by indicating work time required (expressed as manhours in whole hours or decimals) in the appropriate subcolumn. The work time figure represents the active time required to perform that maintenance function at the indicated level of maintenance. If the number or complexity of the tasks within the listed maintenance function varies at different maintenance levels, appropriate work time figures are to be shown for each level. The work time figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time (including any necessary disassembly/assembly time), troubleshooting/fault location time, and quality assurance time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the MAC. The symbol designations for the various maintenance levels are as follows:

## Field:

C Operator or Crew maintenance
O Unit maintenance
F Direct Support maintenance

## Sustainment:

L Specialized Repair Activity
H General Support maintenance
D Depot maintenance

## NOTE

The "L" maintenance level is not included in column (4) of the MAC. Functions to this level of maintenance are identified by work time figure in the " H " column of column (4), and an associated reference code is used in the REMARKS column (6). This code is keyed to the remarks and the SRA complete repair application is explained there.

Column (5) Tools and Equipment Reference Code. Column (5) specifies, by code, those common tool sets (not individual tools), common Test, Measurement and Diagnostic Equipment (TMDE), and special tools, special TMDE and special support equipment required to perform the designated function. Codes are keyed to the entries in the tools and test equipment table.

Column (6) Remarks Code. When applicable, this column contains a letter code, in alphabetical order, which is keyed to the remarks table entries.

Table 1. MAC for COUNTER, PULSE, ELECTRONIC TD-1338(V) 1/USM


APPENDIX B
MAINTENANCE ALLOCATION CHART (MAC)
Table 2. Tools and Test Equipment for COUNTER, PULSE, ELECTRONIC TD-1338(V) 1/USM

(1)   TOOLS/TEST EQUIP CODE	(2)   MAINT LEVEL	(3)   NOMENCLATURE	(4)   NATIONAL STOCK NUMBER	(5)   TOOL NUMBER
1	F, D	Tool Kit, Electronic Equipment	5180-00-610-8177	TK-105/G
2	F, D	Oscilloscope	6625-01-470-7541	OS-303/G
3	F,D	Generator, Pulse	6625-01-266-5934	PD04WRLEE CO6
4	F,D	Generator Subassembly	6625-00-442-3470	MX-8364A   (P)/USM-308
5	F,D	Coupler, Directional	5985-00-490-2834	HP-779D
6	F,D	Generator, Sweep, Plug In	6625-00-444-2327	$\begin{aligned} & \hline \text { PL-1304/ } \\ & \text { USM-308(V) } \\ & \hline \end{aligned}$
7	F,D	Oscillator, Sweep, Plug In	6625-00-928-0368	8699B
8	F, D	Generator Plug In	6625-00-251-5212	8699B
9	F,D	Generator Plug In	6625-00-165-1263	$\begin{gathered} \text { PL-1240/ } \\ \text { USM-308(V) } \end{gathered}$
10	F, D	Detector, Crystal	6625-00-877-7148	423A
11	F,D	Meter, Power	6625-00-436-4883	ME-441/U
12	F, D	Electronic Counter Mainframe	6625-00-024-7066	5300A/5301A
13	F, D	Counter Module, Electronic	6625-00-298-9676	5302A
14	F, D	Thermistor Mount	6625-01-067-0413	8478BH27
15	F,D	Multimeter, Digital	6625-01-145-2430	AN/USM-486
16	D	Computer, Desktop	7420-01-026-1686	9825A
17	D	Interface, GPIB	7010-01-132-5845	98034A
18	D	Cable, GPIB	5995-01-124-9989	10833
19	F, D	Attenuator, Coaxial, Fixed	5985-00-455-4487	8491B-003
20	F, D	Tool, IC Extractor	5120-00-115-9185	T114-1
21	F, D	Transformer, Variable		3PN501V
22	F, D	Generator, Delay		EIP 400
23	F,D	Extender, Card		EIP 2020041
24	F,D	Thermometer, Precision/Scientific, 0-50 deg		
25	F, D	Termination, Feed through	5985-01-185-6226	011-0049-01
26	F, D	Adapter	5985-00-004-0105	P281(*)-013

Table 3. Remarks for COUNTER, PULSE, ELECTRONIC TD-1338(V) 1/USM

REMARKS   CODE	
A	Visual inspection
B	Self-test only
C	Test after replacing card or module
D	GPIB operational test
E	Repair by replacing fuse or power cable
F	Repair by replacing card or module
G	Reference oscillator calibration
H	Display brightness adjustment
I	Power supply voltage adjustment
J	Gate ramp adjustment
K	YIG comb line adjustment
L	40 kHz clock adjustment
M	Slope and offset adjustment
N	Attenuator driver adjustment

## APPENDIX C

 COMPONENTS OF END ITEM AND BASIC ISSUE ITEMS LISTSNot applicable

## APPENDIX D

ADDITIONAL AUTHORIZATION LIST

Not applicable

## APPENDIX E








COUNT Chaln Control (A102)
General
Count Chain Control A102 controls and processes the flow
of in in mation on count chain board A A10, and drives the
 The clock generator, $a=16$ counter, and $a-8$ ine decoder.
serve to procuce $a$ sequence of eight addresses. These








isplay Address Generator (UE, Us-11)


 $4-40$












 eroo. otherwise the display would disappear compleel)
Ithere were no input to the counter (zero frequency)]
 detector via U12 to disable ent detector during cleck
pulses, so switcohing transients so not tause problems.



 , minn䢒 displayed, while non-zero data has teading zeros sup-
pressed.



 Gate Indicator Driver (U3. U5. U7)





Figure FO -/A
Component
and
Locator
Descriptive Information
doscriptive inforat (A102)


count chain (A103)
General



 The 511 Counter measures frequencies by dividing
input frequency in cascaded Decimal Counting
nits

 Each DCU has at four-line BCD output to show its acour-
mulated count. These BCD outputs are decoded and

Counting Chain (U16-21)
The counting chain incorporates seven DcU's. The first
twware highenspeed tona the remining five, as they
must onerate
 DCU. the D ouput of each DCD dir ectly drives the clock
input of the next cCu. The first DCU is presettable by 4-42





 er local oscillatoo frequency to to the counting chain to obStorage Unit (U6-12, U14)
Seven 4 -bit latheses are provided which store the infor-
mation from the eculs. The last six are triven directly


 1 the 1 ms gate command is activated, the data aselector sel telects Storage Unit (U6-12, U14) Seven 4 -bit lathes are provided which store the infor-
mation from the ecuss. The last six are drive directy




 tion to be stored and held until hene next load command
All intormaion from the cunting chain to the balance of
the counde is Data Out $n$ ind

The multiplexeer converts the parallel pCD information
located in the latches, to the serial form neecessary to












Men			
			为



hich frequency (A106)
The High Frequency barard provides the initial signal pro
cessing and first decade of counting for the Direce counte.


 One of the thre input signals. is selected by enabing one
of three differential ampliferss: U1B, UUA, or
U2B. U1A provides additional gain for the converter FF Fisinal whe
input U1B is selected. Enabling of the approviate amplit

 as an overdriven voltage-t-current converter. The oci-
1ector current of Q drives the pulse forming network




 $4-50$
gegative pulses. The output of the pulse inverter drives
einput of decade e ividerer U4. The bias point tor
U4's


 dersistor tor this signal is located on the Count cha
Soara ( (Ala3) to provide a termination for the connoctin
he BCD output information is available on P 1 pins $11-1$



hee gate signal (an inverted ECL Ievel logic signal) enter


 in gate wid
The gate output to the rar panal is supplied by the Cate
Output
cuitry. uffer, consisting of of11, Q12, and asscoitated ciit




The negaive

Compensated reference. To implement this referenence an
external pre- -regulato is required. In the -12 V circuit




A room temperature, crystal controled oscillator (RTO)
is used as as the basic referecece against which all input sig-


circuit Description
The signal from the osciliator is either a aquare wave
from the ero, or a sine wave from the optional rcxo.


 sin common eniter input stages (Q7. ©il), are followe


## Figure Fo-10A

Component Locator
and
REFERENCE OSCILLATOR BUFFER (A 108)


display (A10)



 The digit displays are 7 -segment LED's, with the anodes
of all sementito of eact digit tid together. When the anode
is ast is at a positive voltage, grondidig any are. ahhen the the ano
associated resistor illuminates hat segmente In his multiplexed systen, the anode supply voltage
applied in pulses (turrugh anode drivers), which are

 The LED digits eaco




> Figure FO-11A Component Licator and Descriptive Informatior DISPLAY (A110)



Figure fo-12A COMPONENT LOCATOR
CONVERTER INTERCONNECT (A200)


Ceneral
source of up to one wat of power at $200 \mathrm{MH2}$ is required
drive the step recovery diode Comb Cenerator in Yic
 herent with the master oscilliator in the counter. stability
is required to provide an 1 F spectrum that is dependent
onty only upon the input signal spectrum. Conerence with the
master osciliato is is required to make counting accuracy
 power is generated by a class camplifier that contains al
leveling topo to set the power output at any desired level
lem Circuit Description
The phase lock loop is a standard second order loop. im he 200 Mhz LC sccillator is is modified Colpitts circuil
with bias stabilization supplied by 010 . The output fre-





The main power amphifer consists of four stages: buffer stages 015 and $Q 11$. . Output power 1 level is controlled by adiusting the value or the negative voltage supplied by
Q17 and 018 to the linear amplifer and C Cass C stages.





## Yic Control (A202) <br> coneral








Kain DAC






 4-62


 yG Driver



YIG Passband Modulation
As part of the centering function, the center frequency of
the YyG passband is modulated by means of an auxiliary








YIG centering circul
Centering of the Yig passband is achieved by detecting
the outuput of he modulated comb generator and p pase


 put of $U 1$. Its amplitude and sign are directly related









Fomporent Locator
$\stackrel{\text { and }}{ }$
YIG CONTROL (A202)



## onverter sequencer (A203)

eneral






Sequence Generator
The basic part of the Converter Sequencer is the Sequence
Cenerator, composed of a binary counter (U8)







 disabled. If so, the disable esest command over-rides the
Docis sect, and the Yicio stops at the botom (or preset) fre
quency.










 Me-shot imes out, an
go on to sequence 4 .
tep of the sequence i,




 Sequence is s used as a 2 u sec delay period to provide
he nenessayy time for operation of the Attenuator control

sequence 7 is the Lock sensing portion of the sequence.
the siginal received durins sequenece 4 or 5 resulted in


 trenuator Control







 mase or cw signals. U3 will retrigger as long as





Attenuator Driver
The output of U E is a voltage corr sponding to the desired
attenuatuon. This signal is converted into two related cur
 Series current is generated by the network of $U 5$ and $Q 6$.
R53 is
is the sense resistor for the R.53 is the sense resistor for the current source. The on on
inear current output versus input level is achieved with

 Total current is the sum of series current and shunt cur--
rent.
whe estunt current wave worm is shaped by diode net-

 Power Level Contro
During Sequence 1 , the yig comb level is set. This func
tion is accomplished by varying the PowEr REFERENCE ton is accompished by varying he Po. This in inen
level into the Source/Amplififer (A2011. Thi varies the 200 MHz power into the Yig /Comb Generator
(A207). The comb line outrut is detecteded hy the Mixer.

Operation of the Power Level Control beging at the end of
the 1.5 ms period of U11 clock pulses from U18 are then Mlowed to step the Power Level DAC (U19, R74 thru R80).
When the comb outuu exceeds the threshold, U17 urigers.
 to the DAC and ending the sequence. If the De DC reaches
tole

Figure Fo-15A
Component Locator
Descriptive Information


TM 11-6625-3031-14

$\xrightarrow{2020094} \mathrm{~N} / 78$

IF PRocessor (A204)





IF Amplifer
The IF component of the Mixer output is amplified in a six
Stage emplifier having an overall gain of 50 ab and a
sand




Stages 5 and 6 are liiniting amplifiers. each consisting

 deo Circuits
he video output of the Mixer, representing the detected
 nut any offset between the differential outputs at $U 1$ pins
and
g. $4-68$


 or level.
The remaining Video circuit is the 20 ktz amplifier con-
sisting of oin and 013 . This circuit provides an additiona
voltage


In-Band Detector
The In-Band Detector deterrines whether or not an IF sig




 is held constant, the detected sitnals are e determined en-
irely by the filter character sistics. One of the filer net



By comparing the ouputs of these two networks in U2, a
 21, and increasing the crossonver point from 325 MHz Lock Logic
The Lock logic determines whether or not the proper con--
ditions exist to oonsider the Converter locked. The condi-
 BAND B THRESHOLD (at O11 colle etor). Once his condi-
ion is met, the Lock command is latched, and remans








 BAND must occur within 70 nanoseconds or the latch will
be resest. If If INAND drops out while BAND B THRESHOLD


Figure fo-16A

## component locato

$\underset{\text { Descriptive }}{\text { and }}$


By Order of the Secretary of the Army:

Official:
E. C. MEYER

General, United States Army
ROBERT M. JOYCE
Major General, United States Army
The Adjutant General

## DISTRIBUTION :

```
To be distributed in accordance with Special List.
```

\& U.S. GOVERNMENT PRINTING OFFICE: 1987 O-181-421 (60178)

## These are the instructions for sending an electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however only the following fields are mandatory: $1,3,4,5,6,7,8,9,10,13,15,16,17$, and 27.

From: "Whomever" [whomever@wherever.army.mil](mailto:whomever@wherever.army.mil)
To: 2028@redstone.army.mil
Subject: DA Form 2028

1. From: Joe Smith
2. Unit:home
3. Address: 4300 Park
4. City: Hometown
5. St: MO
6. Zip: 77777
7. Date Sent: 19-OCT-93
8. Pub no: 55-2840-229-23
9. Pub Title: TM
10. Publication Date: 04-JUL-85
11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T
15. Submitter LName: Smith
16. Submitter Phone: 123-123-1234
17. Problem: 1
18. Page: 2
19. Paragraph: 3
20. Line: 4
21. NSN: 5
22. Reference: 6
23. Figure: 7
24. Table: 8
25. Item: 9
26. Total: 123
27. Text:

This is the text for the problem below line 27.





# The Metric System and Equivalents 

## Linear Measure

1 centimeter $=10$ millimeters $=.39$ inch
1 decimeter $=10$ centimeters $=3.94$ inches
1 meter $=10$ decimeters $=39.37$ inches
1 dekameter $=10$ meters $=32.8$ feet
1 hectometer $=10$ dekameters $=328.08$ feet
1 kilometer $=10$ hectometers $=3,280.8$ feet

## Weights

1 centigram $=10$ milligrams $=.15$ grain 1 decigram = 10 centigrams = 1.54 grains 1 gram $=10$ decigram $=.035$ ounce 1 decagram = 10 grams $=.35$ ounce
1 hectogram = 10 decagrams = 3.52 ounces
1 kilogram $=10$ hectograms $=2.2$ pounds
1 quintal $=100$ kilograms $=220.46$ pounds
1 metric ton $=10$ quintals $=1.1$ short tons

$$
\begin{aligned}
& 1 \text { centiliter }=10 \text { milliters }=.34 \text { fl. ounce } \\
& 1 \text { deciliter }=10 \text { centiliters }=3.38 \text { fl. ounces } \\
& 1 \text { liter }=10 \text { deciliters }=33.81 \mathrm{fl} . \text { ounces } \\
& 1 \text { dekaliter }=10 \text { liters }=2.64 \text { gallons } \\
& 1 \text { hectoliter }=10 \text { dekaliters }=26.42 \text { gallons } \\
& 1 \text { kiloliter }=10 \text { hectoliters }=264.18 \text { gallons }
\end{aligned}
$$

## Square Measure

1 sq. centimeter $=100$ sq. millimeters $=.155$ sq. inch
1 sq. decimeter $=100$ sq. centimeters $=15.5$ sq. inches
1 sq. meter $($ centare $)=100$ sq. decimeters $=10.76$ sq. feet
1 sq. dekameter $($ are $)=100$ sq. meters $=1,076.4$ sq. feet
1 sq. hectometer (hectare) $=100$ sq. dekameters $=2.47$ acres
1 sq. kilometer $=100$ sq. hectometers $=.386$ sq. mile
Cubic Measure

1 cu. centimeter $=1000 \mathrm{cu}$. millimeters $=.06 \mathrm{cu}$. inch
1 cu . decimeter $=1000 \mathrm{cu}$. centimeters $=61.02 \mathrm{cu}$. inches
1 cu . meter $=1000 \mathrm{cu}$. decimeters $=35.31 \mathrm{cu}$. feet

## Approximate Conversion Factors

To change

inches	centimeters
feet	meters
yards	meters
miles	kilometers
square inches	square centimeters
square feet	square meters
square yards	square meters
square miles	square kilometers
acres	square hectometers
cubic feet	cubic meters
cubic yards	cubic meters
fluid ounces	milliliters
pints	liters
quarts	liters
gallons	liters
ounces	grams
pounds	kilograms
short tons	metric tons
pound-feet	Newton-meters
pound-inches	Newton-meters

Multiply by
2.540
.305
.914
1.609
6.451
.093
.836
2.590
.405
.028
.765
29,573
.473
.946
3.785
28.349
.454
.907
1.356
.11296

To change
ounce-inches
centimeters
meters meters kilometers square centimeters square meters square meters square kilometers square hectometers cubic meters cubic meters milliliters liters
liters
liters
grams kilograms

To

Newton-meters	.007062
inches	.394
feet	3.280
yards	1.094
miles	.621
square inches	.155
square feet	10.764
square yards	1.196
square miles	.386
acres	2.471
cubic feet	35.315
cubic yards	1.308
fluid ounces	.034
pints	2.113
quarts	1.057
gallons	.264
ounces	.035
pounds	2.205
short tons	1.102

## Temperature (Exact)

Fahrenheit	5/9 (after	Celsius	C
temperature	subtracting 32)	temperature	


[^0]:    WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq.. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25.

    DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CSS-ME-TEMOD, Redstone Arsenal, AL 35898-5000.

    DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

