I. C. INSTRUCTION BOOK No. 82-A

U. S. NAVY
DIVING AMPLIFIER EQUIPMENT

CONTRACT NXss-39978

Manufactured by
GUIDED RADIO CORPORATION
NEW YORK 13, N. Y.

CONTRACT GUARANTEE CLAUSE

The contractor warrants that at the time of delivery thereof the articles provided for under this contract will conform to the specifications herein and will be free from defects in material or workmanship. Notice of any such defect or nonconformance shall be given by the Government to the contractor within one year after delivery. If required by the Government, the contractor shall, with all possible speed and diligence, correct or replace any articles or parts thereof which are defective in material or workmanship, or which otherwise are not in conformity with the specification requirements. Where such correction or replacement requires return of the article to the contractor's plant, shipping costs, if any, to the plant from the delivery point provided for in the contract and back from the plant to such delivery point shall be paid by the contractor; all other shipping costs shall be paid for by the Government. This warranty shall then continue as to corrected or replaced articles until one year after the redelivery. When for any reason the Government does not require correction or replacement of any article which is defective or not in conformity with the specifications, it may pay for such article at such reduced price as shall be fair and equitable under the circumstances, or it may exercise any other remedy available to it by law.
GENERAL DESCRIPTION 1
Introduction 1
Amplifier and Tender's Reproducer 1
Divers' Reproducers 3
THEORY OF OPERATION 4
Amplifier Circuit 4
Control Circuits 6
OPERATING TECHNIQUE 9
Initial Set-Up 9
Operation 10
CARE AND MAINTENANCE 12
Amplifier and Tender's Reproducer 12
Divers' Reproducers 14
SPARE PARTS LIST 16
PLANS
Fig. 1 Socket Terminal Diagram andVoltage ChartDwg. No.

$$
G-1004 \quad 17
$$

$$
\text { Fig. } 2 \text { Amplifier Assembly and Tender's }
$$Reproducer

$$
\mathrm{H}-2345 \quad 18
$$

Fig. 3 Diver's Reproducer G-882 19
Fig. 4 System Schematic Diagram H-2344 20
Fig. 5 Block Cabling Diagram G-2357 21Fig. 6 Stowage Box for Divers' Reproducersand Power Cables G-256722
PHOTOGRAPHS
Fig. 7 Amplifier and Tender's Reproducer - Front view 23
Fig. 8 Amplifier and Tender's Reproducer -
Left side view - reproducer open 24
Fig. 9 Amplifier and Tender's Reproducer - Right side view 25
Fig. 10 Amplifier Chassis - Top view showing
Divers' reproducers terminal strips 26
Fig. 11 Amplifier Chassis - Bottom view showing Power terminall strips 27
Fig. l2 Diver's Reproducer 28
Fig. 13 Stowage Box containing Divers 1 reproducers and Power Cables 29
Page No.

DIVING AMPLIFIER EQUIPMENT

GENERAL DESCRIPTION:

Introduction:

This Diving Amplifier equipment is designed to provide for communication between a diver's tender station on the surface and one to three divers. Provision is also made for selective communication between divers, the selection being controlled at the tender's station. Both pick-up and reproduction of speech are obtained through the reproducers, these units being used both as loudspeakers and as microphones.

The system is normally set up for transmission of speech from all connected divers to the tender. Switching facilities are provided on the tender's control panel to select and talk to any one or all divers from the surface station. Additional switches are provided to select interdiver communication. Tone and volume controls are also provided to clarify the speech, both to and from the divers, to suit varying conditions of voice and pressure.

Amplifier and Tender's Reproducer:

The amplifier is housed in a heavy formed steel cabinet suitably treated and painted to resist corrosion. The front of the care incorporates the control panel on which are mounted the eleven (II) manual controls and the POWER ON indicator light. The normal operation and adjustment of these controls is explained in the section "Theory of Operation". On the top of the cabinet, as an integral unit, is mounted
the tender's reproducer. Two (2) handes on either side of the cabinet are provided for ease in carrying. The amplifier itself is mounted on a chassis of special design which is secured to the back of the bakelite control panel. This panel is secured to the front cover of the cabinet which is gasketed and bolted to the cabinet making the whole assembly splash-proof.

Connection to the three (3) divers cables is made through three (3) receptacles along the bottom of one side of the amplifier cabinet. These receptacles are designed to accommodate a standard Navy Diving Equipment plug. On the other side of the cabinet, arranged vertically, are the three (3) receptacles for connection to a source of power for operation of the amplifier.

The amplifier is designed to operate from ll5 volts D.C. $l 15$ volts A.C., or 12 volts D.C. Plugs and power cables, for connection to any one of these three power sources, are supplied with the system. The plugs are so polarized and connected as to prevent the insertion of any plug in the wrong receptacle. Only one of these power cables should be connected to its receptacle at any one time. Cap's for all receptacles are provided for their protection when not in use.

The tender's speaker unit is of the permanent magnet, direct radiator type. This is mounted in a heavy spun steel case which is secured to the cabinet by means of a suitable mounting bracket bolted to the cabinet top. A protective screen is provided for the front of the reproducer to protect
it against mechanical damage. The driver unit is secured in the case by means of eight (8) fillister head machine screws which also secure the screen.

The unit is provided with an impregnated fabric cone and a metal voice coil form treated to resist corrosion. The coil suspension is of the diaphragm type which effectively shields the voice coil and air gap in the magnet structure against the entrance of foreign material. The coil suspension is formed in the coil material itself making this a one piece unit except for the small dust cap in the center. Connection to the speaker unit is made through a rubber covered cable which enters the cabinet through a water-tight coupling in the bottom of the speaker housing.

Divers Reproducers:

The divers reproducers, which mount in the diving helmets, consist of small permanent magnet driver units with suitable mounting brackets and protective grilles. These speakers have an impregnated fibre cone. All metal parts used are of either non-corrosive material or are suitably treated to resist corrosion.

THEORY OF OPERATION:

Amplifier Circuit:

The amplifier is a three stage, balanced resistancecapacitance coupled circuit using two (2) type I2SC7 vacuum tubes for the first two stages, each functioning as a pushpull voltage amplifier. The second of these stages is coupled to four (4) type 7A5 vacuum tubes, push-pull parallel connected, which serve as the output stage. The speech input circuits are coupled to the amplifier circuit through two (2) input transformers isolated from each other by Delta T pad type volume controls. Tone controls, consisting of a condenser and an inductor with suitable variable resistances, are introduced between the first and second voltage amplifier stages. These provide means for continuously varying the tone of the output from a condition where low frequencies are predominant and the high frequencies suppressed to the condition in which the high frequencies are boosted and low frequencies suppressed. Separate volume and tone controls are provided for the Divers and Tenders speech input circuits, each being connected in proper sequence by the operation of the speech control switches. The output is coupled to the reproducer circuits by means of a suitable output transformer.

Provisions are made for operation of this amplifier from any one of three different power supplies, namely, 115 volts D.C., 115 volts A.C., or 12 volts D.C. For 115 volt A.C. operation, a power transformer and a rectifier tube with a
single section conienser input filter circuit are provided to supply the necessary plate voltage. The heaters of the tubes are connected in a series parallel circuit and lighted directly from the line through suitable voltage dropping resistors. For operation on 115 volt D.C., the heaters are lighted in the same manner as for A.C., and the necessary plate voltage is secured by introducing the positive side of the power line to the filter input.

For 12 volt D.C. operation, the heater circuits are split into two sections, each section being connected directly across the 12 volt supply. A synchronous vibrator type of voltage converter is used to secure the necessary plate voltage. This converter is supplied as a unit mounted on the chassis. Incorporated in this unit is a self driven vibrator, a transformer and the necessary filter chokes and condensers to remove the high transient voltages developed by the rapid switching of the battery current by the vibrator. The transformer has two (2) center tapped windings, a low voltage winding and a high voltage winding. One side of the battery supply voltage connects to the center tap of the low voltage winding, while the other polarity is switched by contacts on the vibrator from one end of this winding to the other, thus producing an effective alternating current in the winding. On the high voltage secondary a similar switching operation is performed by another set of contacts operating on the same arm of the vibrator. This effects a synchronous rectification, thus providing a pulsating direct current at
approximately 120 volts. Final filtering of this D.C. is accomplished by the two condensers and choke provided for A.C. operation.

From the above description it can be seen that the polarity of the battery supply to the vibra-pack must be correct in order to secure the proper polarity for amplifier operation. For this reason, the polarity of the battery clips for the 12 volt power cable is distinctly marked to avoid wrong connection.

Proper cross connections for operation under the three voltage supply conditions are obtained by cross strapping in the three power plugs supplied with the system. These plugs are of such design and are so polarized as to prevent the insertion of any one of them into the wrong receptacle. Insertion of more than one plug into its receptacle at any one time may result in an internal short circuit causing the fuses to blow and should thus be avoided.

Each power supply is fused individually and is controlled on the amplifier control panel by means of an ON-OFF power switch. A POWER ON indicator light is provided on the control panel to indicate when the system is turned on and in readiness for operation. This light is bridged across the 12 volt heater circuit through a suitable voltage dropping resistor. Reference should be made to drawing No. H-2344 for all amplifier connections.

Control Circuits:

The eleven (11) manually adjusted controls for this
system are located on the control panel. These consist of two (2) volume controls, two (2) tone controls, three (3) switches for controlling transmission of speech between tender and diver, three (3) switches for controlling speech between divers, and the power switch.

The volume controls are provided so as to obtain the correct level on either the tender's or the divers reproducers. These are entirely independent of each other, and the adjustment of one does not affect the operation of the other. They are connected in proper operating sequence by means of the switching circuits.

The function of the two (2) tone controls is to vary the frequency response of the amplifier for maximum intelligibility for both directions of transmission. These controls also are independent and properly connected by the switching circuits.

The three 2-position switches, one for each diver, located at the top of the panel, provide means for transfering the divers reproducers from the amplifier input to output, and the tender's reproducer from output to input, while simultaneously introducing into the circuit the proper volume and tone controls. These switches are so connected that the normal or unoperated position provides speech transmission from all connected divers to the tender's reproducer.

The three (3) switches mounted directly below the previously mentioned divers switches are so arranged that wher depressed the associated diver's reproducer is connected to
the output of the amplifier in parallel with the tender's reproducer. The remaining two divers are still connected to the amplifier input. In this manner, speech from one or both of these divers is transmitted to the diver for whom the switch has been depressed. The tone and volume controls remain operative in the circuit the same as for speech transmission from the divers to the tender. The tender's reproducer is left connected to the amplifier output so that he may monitor speech between divers and perform the necessary switching operations for intercommication between divers. The power switch provides means for turning on or off the power supply to the amplifier while it is still connected ready for use. This must be turned to the "Or" position in order to apply the proper operating voltages to the amplifier components.

The POWER ON signal lamp provides a visual indication . of the application of power to the amplifier.

OPERATING TECHNIQUE:

Initial Set-Up:
In order to set up this system for operation, it is first necessary to ascertain what power supply is available. Once this has been established, select the proper power cord and insert the polarized plug into its receptacle. The other end of the power supply cable may then be connected to the available power mains. In the case of the ll5 volt A.C. supply, the polarity of the two conductors of the power supply cable is not ordinarily important, unless it is found that a reversal of polarity reduces the hum in the speakers. However, the amplifier will not function at all if the correct polarity is not observed in the case of the.ll5 volt D.C., or the l2 volt D.C. cables. No harm to the equipment will result from improper connection to these cables, but if the amplifier fails to function after setting up the system according to instructions, the polarity of the D.C. power connections should be checked.

To connect the divers cables to the system, it is only necessary to insert the Navy type divers plugs into the receptacles provided along the bottom of the amplifier cabinet. The system may be operated with one, wo or three divers cables so connected. After all necessary plugs are inserted into their proper receptacles, it is important that the locking rings be screwed on to the receptacle bushings in order to insure permanent and positive continuity of these circuits.

Operation:

To put this system into operation, it is first necessary to energize the amplifier by means of the amplifier power switch. With this switch in the "ON" position, the POWER ON indicator lamp should light up indicating that the proper voltage is applied to the vacuum tube heaters. Approximately 30 seconds should be allowed for the vacuum tubes to become heated to their proper operating temperature.

The volume controls and tone controls should first be adjusted to approximately their mid-point positions. The system is now completely set-up for operation.

As communication is established the volume control should be adjusted so that a condition of maximum intelligibility is secured. It will be found that this condition exists with these controls set for as low an output level as can be heard over the surrounding noise. Tone controls should next be adjusted to such position as will further increase intelligibility. It may be found necessary after adjusting the tone controls, to readjust the volume controls to compensate for the frequency response characteristics of the ear. Experience in operating these sets will also demonstrate that "naturalness" of any particular voice is not necessarily the condition of maximum intelligibility.

Observance of the following rules is necessary for satisfactory results in the use of the system:

1) Speak distinctly and as close to the transmitting
speaker as practical. Remember that the reproducer at the other end can reproduce only what is picked up at the transmitting speaker. Thus, if the amplifier is used in a noisy location it will be necessary to speak closer to the tender's speaker and to articulate each syllable carefully. Adjustment of the tone and volume controls to the diver will help to compensate for certain types of noise and to improve intelligibility. However, these controls cannot compensate for poor enunciation or slurred syllables.
2) Do not shout into the speaker. This will only result in blasting at the other speaker. If speech cannot be heard at the receiving end because of noisy conditions at the transmitting end, speak closer to the transmitter with the volume control turned down slightly. This will lower the amplified noise and the closer speaking will raise the signal output.
3) Do not clip off sentences by releasing the talk switches too soon. When any of the three "Tender to Diver" or Diver to Diver" switches are pressed, the selected diver is connected to the amplifier output. As long as this switch is held inoperative, the selected diver will receive whatever signal is being sent. If this switch is released too soon, the last word or syllable of the sentence may be cut off.

CARE AND MAINTENANCE:

Amplifier and Tender's Reproducer:
The Diving Amplifier Equipment is designed to be sufficiently rugged to withstand a considerable amount of abuse such as might be expected in normal operation. However, it should be remembered that the unit is essentially a vacuum tube amplifier, and care should be used in handling the cabinet to prevent it from being dropped, or from receiving unusually rough usage.

Should trouble be experienced in operation of the unit, it will be found that the nature of the trouble will present definite leads for intelligent servicing. First, the power supply should be checked. The POWER ON signal light provides a good indication as to the proper application of power to the amplifier. If this light remains dark with the power supply switch in the "ON" position, and the power cable properly connected, the source of trouble may be either a faulty power source, a blown fuse within the amplifier, or possibly a burned-out indicator light. If, after checking the supply voltage to the amplifier, and the polarity in case of D.C. operation, the system still fails to function, the amplifier should be withdrawn from its case by removing the six machine screws which secure the front panel of the amplifier to the case and sliding the amplifier forward. The vacuum tubes thus will be made available for replacement. These should all be replaced by a new set and the system again tested for operation. If the defect is thus located, the new
set of tubes should next be replaced by the original set, one by one, until the defective tube or tubes are found. Under normal operation, a slight hum or buzz should be heard in the speaker which is connected to the output. If such amplifier noise is not heard on either speaker upon operation of the proper diver's switch, the indication is a faulty amplifier. If such noise is heard in the diver's speaker and not in the tender's speaker, a faulty tender's reproducer unit or connections thereto are indicated. In a similar manner, a fault in the diver's cable or reproducer can be located.

In servicing the amplifier, after having checked the vacuum tubes, voltages at the various sockets should be checked against the values given in the Socket Terminal Voltage Chart. Any extreme variation from the voltages shown on this chart at these points indicates defective circuit components. If it becomes necessary to remove the amplifier from the cabinet for servicing, the power may be applied for any of the three power supply conditions by observing the following procedures:

1. 115 volts A.C. - strap terminals 15 and 16 at the terminal strip and apply power to terminals 15 and 17.
2. 115 volts D.C. - strap terminals 19 and 21 and apply power to 20 and 21.
3. 12 volts D.C. - strap terminal 22 to 27,23 to 24, and 26 to 27. Apply power to 22 and 25 .

In normal use, the above strapping is done in the indi-
vidual plugs for each power supply. Drawing No. H-2344 shows all connections to the terminal strips, as well as a schematic of the amplifier and switching circuits.

The amplifier assembly and tender's reproducer are shown on Drawing No. H-2345. It can be seen from this drawing that in order to reach the driver unit and wiring to the tender's reproducer, it is necessary to remove the eight (8) \#8-32 machine screws around the periphery of the speaker. The driver unit can then be removed from its case and the wiring from the voice coil to the terminal strip and to the cable connecting to the amplifier may be inspected. A defective unit can be detected by disconnecting the voice coil at the terminal strip and testing for continuity of the unit with an ohmmeter. Connection of the ohmmeter to the voice coil terminais should cause a slight click in the speaker if it is functioning properly. A defective unit should be replaced by one in good condition.

Divers Reproducers:

The divers reproducers are small permanent magnet type units contained in a bracket suitable for mounting in the divers helmets. Connections to these units are made on terminals mounted on the frame of the speaker cone support. Should a defective unit be suspected, test the divers speaker cable for continuity through the voice coil. If the speaker is not defective, a click should be heard upon application of tne ohmmeter to the two cable conductors. If such a test does not locate the fault, the cable leads
should be unsoldered from the voice coil terminals at the speaker and a similar test made at these terminals. A defective unit should be replaced by a new one. This may be done by removing the four (4) \#6-32 elastic stop nuts holding the protective screen, mounting bracket, and speaker unit assembly together. In replacing with a new unit, the rubber magnet cushion (Part No. 7-Dwg.No. G-882) should be removed from the old speaker and placed on the new unit. The re-assembly should be made as shown in the above drawing.

NOTE:

- BOX CONSTRUCTEDIN ACGOROANCE
WITH NAVY SPECIFICATION $42 B 9$.

SPECIFICATIONS OF WEIGHTS AND DIMENSIONS				
Box No.	A	B	c	WEIGHT PACKED
SB-107	$18 \frac{1}{6}$	$15 \frac{1}{8}$	$6 \frac{1}{16}$	77 LBS.
SB-				LBS.
SB-				LBS.
SB-				LBS
SB-				LBS.
SB-				LBS.
SB-				LBS.
SB-				LBS
S8-				LBS
SB-				LBS

NAMES AND NUMBERS OF VESSELS
APPLICATION-DIVING AMPLIFIER EQUIPMEN

DIVING AMPLIFIER EQUIPMENT

SOCKET TERMINAL VOLTAGE AND RESISTANCE CHART

VT-1	$V T-2$	$V T-3$	VT-4	VT-5	VT-6	T-7
12507	12507	745	7A5	7 7 5	745	$5 U 4 \mathrm{G}$
I-NO READING	1-NO READING	1-6V-A.C-10V SCALE	1-12V-A.C-50V SCALE	1-18\%-A.C.SOV SCALE		
2-22 y-50\% SCALE	2-37 v-50V SCALE	2-105V-250 V SCALE	1-12V-A.V-SVV SCALE	2-105V-250V SCALE	1-24V-A.C-SOV.SCALE	1 -NOT CONNECTED
3 - no READING	3-NO READING	3-105V -250 v Scale	O5V-250V SCALE	2-105K-250V SCALE	-105V-250V SCALE	2-120V-250V SCALE
4-NO READING	4-NO READING	4 -NOT CONNECTED	4-NOT CONNECTED	4 -NOT CONNECTED	Ot CONNECTE	3-NOT CONNECTED
5-22V-5OV SCALE	5-37 V-50V. SCALE	5 -NOT CONNECTEU	4-NOT CONNECTED	5-NOT CONNECTED	5 -NOT CONNECTED	4-130V-AC-2SOVSCALE
6-0.4V-25V SCALE	6-0.5v-2.5V SCALE	6-NO READING	S-NO READING	σ-NO READING	6-NO READING	-NOT CONNECTED
7-NO READING	7-24V-AC-SOV SCALE	7-8.5V-10 V SCALE	7 -8.5V-10 V. SCALE	7-8.5V-1OV SCALE	7 -25V-10V SCALE	6-13OV.AC-2SOV SCALE T-NOT CONNECTED
8-I2V-AC-SO V.SCALE	8-12 V-AC.-SOV SCALE	8-No READING	B-6V-AC-IOV SCALE	8-12 V-A.C.-50V SCALE	8-18V-AC-SOV SCALE	$\begin{aligned} & \text { 8-12OV CONNECTED } \\ & \hline 250 \mathrm{~V} \text { SCALE } \end{aligned}$
	ALL	VOLTAGE READING	TAKEN FROM SOC	KET TO GROUNO		

1-GROUND
2-NO READING
3-1200 OHMS
4-1200 OHMS
5-NO READING
6-3000 OHMS
7-GROUND
8-2.5 OHMS
1-GROUND
2-NO READING
3-1 MEGOHM
4-1 MEGOHM
5-NO READING
6-30OO OHMS
7-4.5 OHMS
8-2.5 OHMS
1-1.5 OHMS
2-NO READING
3-NO RE ADING
4-NOT CONNECTED
5-NOT CONNECTED
6-520 M OHMS
$7-100$ OHMS
B-GROUND
1-2.5 OHMS
2-NO READING
3-NO READING
4-NOT CONNECTED
5-NOT CONNECTED
6-520 M OHMS
7-100 OHMS
$8-1.5$ OHMS
1-3.5 OHMS
2-NO READING
3-NO READING
4-NOT CONNECTED
5-NOT CONNECTED
6-520.M OHMS
7-100 OHMS
$8-2.5$ OHMS
1-4.5 OHMS
2-NO READING
3-NO READING
4-NOT CONNECTEO
5-NOT CONNECTED
6-520 M OHMS
7-100 OHMS
$8-35$ OHMS
1-NOT CONNECTED
2-NO READING
3-NOT CONNECTED
4-4O OHMS
5-NOT CONNECTED
6-35 OHMS
7-NOT CONNECTED
8-NO READNG

ALL VOLTAGES MEASURED ON 5000 OHM PER VOLT METER

VOLTAGES MEASURED WITH AMPLIFIER CONNECTED TO IIS VOLT 60 CYCLE LINE
NOTE: OPERATION ON 115 VOLTS D.C. OR 112 VOLTS D. C. MAY CAUSE SOME VARIATION FROM ABOVE VOLTAGES

ALL RESISTANCE VALUES MEASURED WITH NO POWER CONNECTION TO AMPLIFIER AND ALL CONTROLS IN EXTREME CLOCKWISE-ROTATED POSITION

Fig. 1

(1)

Fig. 3

LIST OF MATERIAL		
	- asscription	\|extrecke
	${ }_{\text {Lick }}^{\text {STM }}$	F-2332
	Sme As j-2	
$\frac{1-3}{1-4}$	CMASSIS Convector	
\%	CMW55I/ cawvector	\%e.
	Caste convector	
	Cast cowncror	
N-8	Casie connector	
$\stackrel{1}{1-9}$		PCAIRSC7
$\frac{\mathrm{vr1}}{102}$		
2res	VACCOUM TUSE	PCA
	SAME A5 V-3	
Wr6.6	STMEE As V-3	
$\frac{\mid r-7}{\left\lvert\, \frac{15-1}{15-1}\right.}$		

KEY

$$
\begin{gathered}
\dagger \text { DEN } \\
\text { FROM } \\
\frac{1}{\bar{j}} O E N
\end{gathered}
$$

POWER REQUIREMENTS.

OPERATION Powes suob ourrar

wotes:

Fig. 4

QUANTITIES ARE FOR ONE UNIT							
$\begin{aligned} & \text { pictef } \\ & \text { No } \end{aligned}$	NAME OF PIECE	$\begin{aligned} & N O \\ & R E O \end{aligned}$	MATERIAL	$\begin{array}{\|c\|} \hline \text { MATERIAL } \\ \text { SPECOFICATION } \end{array}$	Remarks	DRAWING	G NOS.
No.	CABLE CONNECTOR	1	zinc allor		anmon eir	CONTRACTOE	BUREAU
2	CABLE CONNECTOR	1	zinc allor				
3	CABLE CONNECTOR	1	zinc alloy				
4	jack plug	6	Brass		NOTE-1		
-	CABLE 2 CONOUCTOR (17IN)	3			c-928-3		
6	CONNECTING CABLE	3	covericio		NOTE-1		
7	JACK	3	BRASS		NOTE-1		
8	CABLE 2 CONDUCTOR (30 FT)	2			C.928-2		
9	CABLE 2 Conductor (gifr)	1	Ruboit		C. 928 - 1		
10	Positive battery clip	1			motcta		
11	negative battery clip	1					
12	L-IA4 DIVERS REPROOUCER	3			$\bigcirc .882$		
13	CA- 218 AMPLIFIER CABINET	1			H-2345		

Fig. 5

NOTE:
 1-BOX CONSTRUCTED IN ACCORDANCE WITH NAVY SPECIFICATION 42 B9.

Fig. 6
Stowage Box for Divers' Reproducers and Power Cables - Dwg. No. G-2567

Fig. 7
Amplifier and Tender's Reproducer - Front view

Fig. 8

Fig. 9
Amplifier and Tender's Reproducer - Right side view

Fig. 10
Amplifier Chassis - Top view showing Divers' reproducers terminal strips

Fig. II
Amplifier Chassis - Bottom view showing Power terminal strips

Fig. 12

Fig. 13

