## TECHNICAL MANUAL

## OPERATOR'S, UNIT, INTERMEDIATE DIRECT SUPPORT, AND INTERMEDIATE GENERAL SUPPORT MAINTENANCE MANUAL FOR <br> TEST SET, RADIO FREQUENCY POWER AN/USM-491

(NSN 6625-01-191-7679) (EIC: KD7)

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25.
DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CS-FT-T-TEMOD, Redstone Arsenal, AL 35898-5000.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

## HEADQUARTERS, DEPARTMENT OF THE ARMY 15 SEPTEMBER 1987



## $\square$

SAFETY STEPS TO FOLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

## 1 do not try to pull or grab the individual

2 If POSSIBLE, TURN OFF THE ELECTRICAL POWER
3
IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH, OR UFT THE PERSON TO SAFETY USING A DRY WOODEN POLE OR A DRY ROPE OR SOME OTHER INSULATING MATERIAL

4
SEND FOR HELP AS SOON AS POSSIBLE
5
AFIER THE INJ URED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

## WARNING



## HIGH VOLTAGE

is used in the operation of this equipment

## DEATH ON CONTACT

may result if personnel fail to observe safety precautions

Never work on electronic equipment unless there is another person nearby who is familiar with the operation and hazards of the equipment and who is competent in administering first aid. When technicians are aided by operators, they must be warned about dangerous areas.

Whenever possible, the power supply to the equipment must be shut off before beginning work on the equipment. Take particular care to ground every capacitor likely to hold a dangerous potential. When working inside the equipment, after the power has been turned off, always ground every part before touching it.

Be careful not to contact high-voltage connections or 115 volt ac input connections when installing or operating this equipment.

Whenever the nature of the operation permits, keep one hand away from the equipment to reduce the hazard of current flowing through the body.

Warning: Do not be misled by the term "low voltage.." Potentials as low as 50 volts may cause death under adverse conditions.

For Artificial Respiration, refer to FM 4-25.11.

## WARNING

HFE 71 DE is toxic to eyes, skin, and respiratory tract, and decomposes into other hazardous products when exposed to extreme heat. Wear chemical protective gloves and goggles/face shield. Avoid repeated or prolonged contact. Use only in well ventilated areas. If ventilation is not adequate, use approved respirator as determined by local safety/industrial hygiene personnel. Keep away from open flames, welding, or other sources of extreme heat.

## CAUTION

THIS EQUIPMENT CONTAINS PARTS


AND ASSEMBLIES SENSITIVE TO
DAMAGE BY ELECTROSTATIC DISCHARGE (ESD). USE ESD PRECAUTIONARY PROCEDURES WHEN TOUCHING, REMOVING OR INSERTING PRINTED CIRCUIT BOARDS.

## ESD

## CLASS 1

## GENERAL HANDLING PROCEDURES FOR ESDS ITEMS

- USE WRIST GROUND STRAPS OR MANUAL GROUNDING PROCEDURES
- KEEP ESDS ITEMS IN PROTECTIVE COVERING WHEN NOT IN USE
- GROUND ALL ELECTRICAL TOOLS AND TEST EQUIPMENT
- PERIODICALLY CHECK CONTINUITY AND RESISTANCE OF GROUNDING SYSTEM
- USE ONLY METALIZED SOLDER SUCKERS
- HANDLE ASDS ITEMS ONLY IN PROTECTED AREAS

MANUAL GROUNDING PROCEDURES

- MAKE CERTAIN EQUIPMENT IS POWERED DOWN
- TOUCH GROUND PRIOR TO REMOVING ESDS ITEMS
- TOUCH PACKAGE OF REPLACEMENT ESDS ITEM TO GROUND BEFORE OPENING
- TOUCH GROUND PRIOR TO INSERTING REPLACEMENT ESDS ITEMS

ESD PROTECTIVE PACKAGING AND LABELING

- INTIMATE COVERING OF ANTISTATIC MATERIAL WITH AN OUTER WRAP OF EITHER TYPE 1 ALUMINIZED MATERIAL OR CONDUCTIVE PLASTIC FILM OR HYBRID LAMINATED BAGS HAVING AN INTERIOR OF ANTISTATIC MATERIAL WITH AN OUTER METALIZED LAYER
- LABEL WITH SENSITIVE ELECTRONIC SYMBOL AND CAUTION NOTE


## CAUTI ON

Devi ces such as CMDS, NMDS, MNOS, VMDS, HMDS, thi nfilm resistors PMDS, and MDSFET used in many equi pments can be damaged by static voltages present in most repair facilities. Mbst of the components contain internal gate protection circuits that are partially effective, but sound mai ntenance practice and the cost of equi pment failure in time and money dictate caref ul handling of all el ectrostatic sensitive components.

The following precautions should be observed when handling all el ectrostatic sensitive components and units contai ning such components.

## CAUTI ON

Failure to observe all of these precautions can cause permanent danage to the el ectrostatic sensitive device. This damage can cause the device to fail immediately or at a later date when exposed to an adverse envi ronment.

STEP 1 Turn off and/or di sconnect all power and signal sources and loads used with the unit.

STEP 2 Pl ace the unit on grounded conductive work surfaces.
STEP 3 Ground the repair operator using a conductive wrist strap or other device using a $1-\mathrm{M}$ series resistor to protect the operator.

STEP 4 Ground any tool s (incl uding sol dering equipment) that will contact the unit. Contact with the operator's hand provides a sufficient ground for tools that are otherwi se el ectrically isol ated.

STEP 5 Al el ectrostatic sensitive repl acement components are shipped in conductive foam or tubes and mist be stored in the origi nal shi pping contai ner until installed.

STEP 6 Wen these devices and assemblies are renoved from the unit, they should be pl aced on the conductive work surface or in conductive contai ners.

STEP 7 When not being worked on wrap di sconnected circuit boards in al umin foil or in plastic bags that have been coated or impregnated with a conductive material.

STEP 8 Do not handle these devices unnecessarily or remove from their packages until actually used or tested.

## CAUTI ON

Thorough drying of sol vent is necessary to prevent the production of corrosive byproducts.


Headquarters

OPERATOR'S, UNIT, INTERMEDIATE DIRECT SUPPORT, AND INTERMEDIATE GENERAL SUPPORT MAINTENANCE MANUAL FOR TEST SET, RADIO FREQUENCY POWER

AN/USM-491

(NSN 6625-01-191-7679) (EIC: KD7)
HAZARDOUS MATERIAL INFORMATION - This document has been reviewed for the presence of solvents containing hazardous materials as defined by the EPCRA 302 and 313 lists by the Engineering, Environment, and Logistics Oversight Office. As of the base document, dated 15 September 1987, all references to solvents containing hazardous materials have been removed from this document by substitution with non-hazardous or less hazardous materials where possible.

OZONE DEPLETING CHEMICAL INFORMATION - This document has been reviewed for the presence of Class I ozone depleting chemicals by the Engineering, Environment, and Logistics Oversight Office. As of the base document, dated 15 September 1987, all references to Class I ozone depleting chemicals have been removed from this document by substitution with chemicals that do not cause atmospheric ozone depletion.
DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CS-FT-T-TEMOD, Redstone Arsenal, AL 35898-5000.
WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

TM 11-6625-3164-14, dated 15 September 1987 is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the outer margin of the page. Illustration changes are indicated by a pointing hand. New or changed part numbers are indicated by an asterisk (*). Completely revised sections or chapters are indicated by a vertical bar adjacent to the title only.
2. This change implements Army Maintenance Transformation and changes the Maintenance Allocation Chart (MAC) to support Field and Sustainment Maintenance.

| Remove Pages | Insert Pages |
| :---: | :---: |
| A, B | A, B |
| ----- | E/(F blank) |
| i, ii | i ii |
| 0-1, 1-0 | 0-1, 1-0 |
| 5-1, 5-2 | 5-1, 5-2 |
| A-1/(A-2 blank) | A-1/(A-2 blank) |
| C-1 thru C-6 | C-1 thru $\mathrm{C}-6$ (C-7 blank) |
| D-1, D-2 | D-1, D-2 |
| Cover Page | Cover Page |

3. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

PETER J. SCHOOMAKER General, United States Army
Official: Chief of Staff


Distribution:
To be distributed in accordance with the initial distribution number (IDN) 367906, requirements for TM 11-6625-3164-14

INSERT LATEST CHANGED PAGES. DESTROY SUPERSEDED PAGES.

## LIST OF EFFECTIVE PAGES

NOTE
ON CHANGED PAGES, THE PORTION OF THE TEXT AFFECTED BY THE LATEST CHANGE IS INDICATED BY A VERTICAL LINE OR OTHER CHANGE SYMBOL IN THE OUTER MARGIN OF THE PAGE.

Date of issue for original and changed pages are:
Original $0 \quad 15$ September 1987
Change 124 February 2006
Total number of pages in this publication is 166 consisting of the following:


OPERATOR'S, UNIT, INTERMEDIATE<br>DIRECT SUPPORT AND INTERMEDIATE GENERAL SUPPORT MAINTENANCE MANUAL FOR<br>TEST SET, RADIO FREQUENCY POWER AN/USM-491<br>(NSN 6625-01-191-7679) (EIC: KD7)

## REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, U. S. Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via email, fax or the World Wide Web. Our fax number is: DSN 788-6546 or Commercial 256-842-6546. Our email address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual immediately preceding the hardcopy 2028. For the World Wide Web use: https://amcom2028.redstone.army.mil.

## HAZARDOUS MATERIAL INFORMATION

This document has been reviewed for the presence of solvents containing hazardous materials as defined by the EPCRA 302 and 313 lists by the Engineering, Environment, and Logistics Oversight Office. As of the base document, dated 15 September 1987, all references to solvents containing hazardous materials have been removed from this document by substitution with non-hazardous or less hazardous materials where possible.

OZONE DEPLETING CHEMICAL INFORMATION
This document has been reviewed for the presence of Class I ozone depleting chemicals by the Engineering, Environment, and Logistics Oversight Office. As of the base document, dated 15 September 1987, all references to Class I ozone depleting chemicals have been removed from this document by substitution with chemicals that do not cause atmospheric ozone depletion.

WARNING - This document contains technical data whose export is restricted by the Arms Export Control Act (Title 22, U. S. C., Sec 2751 et seq) or the Export Administration Act 1979, as amended, Title 50, U.S.C., App. 2401 et seq. Violations of these export laws are subject to severe criminal penalties. Disseminate in accordance with provisions of DOD Directive 5230.25.
DISTRIBUTION STATEMENT D - Distribution authorized to Department of Defense and DoD contractors only to protect critical technical data on systems or hardware. This determination was made Oct 1986. Other requests shall be referred to: Program Manager, TMDE, ATTN: SFAE-CS-FT-T-TEMOD, Redstone Arsenal, AL 35898-5000.

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

## TABLE OF CONTENTS

Page
SECTI ON 0 I NSTRUCTI ONS
SCOPE ..... 0-1
CONSOL DATED I NDEX OF ARMY PUBLI CATI ONS AND BLANK FORM ..... 0-1
MAI NTENANCE FORMB, RECORDS, AND REPORTS ..... 0-1
REPORTI NG EQUI PNENT I MPROVEMENT RECOMENDATI ONS (EI R) ..... 0-1
ADM NI STRATI VE STORAGE ..... 0-1
DESTRUCTI ON OF ARM ELECTRON CS MATERI EL ..... 0-1
SECTI ON I I NTRODUCTI ON
DESCRI PTI ON ..... 1-1
CAPABI LITIES. ..... 1-1
DESI GN FEATURES ..... 1-1
EMI RONMENTAL REQUI REMENTS. ..... 1-3
STORAGE DATA ..... 1-3
TOOLS AND TEST EQUI PMENT. ..... 1-3
UARRANTY I NFORMATI ON ..... 1-3
SECTI ON II PREPARATI ON FOR USE AND I NSTALLATI ON I NSTRUCTI ONS
I NSTALLATI ON ..... 2-1
PONER REQUI RENENTS ..... 2-1
CABLE CONNECTI ONS ..... 2-1
SENSORS ..... 2-1
RECORDER OUTPUT. ..... 2-1
STATUS OUTPU ..... 2-2
SECTI ON III THEORY OF OPERATI ON
GENERAL THEORY ..... 3-1
MAJ OR MDOULES DESCRI PTI ON ..... 3-1
SENSOR ..... 3-1
I NPUT MDDULE A6 ..... 3-1
CONTRO MODULE A5. ..... 3-1
DISPLAY MDDULE A2 ..... 3-3
CALI BRATOR ASSEMBLY ..... 3-3
REAR PANEL ASSEMBLY ..... 3-3
POMER SUPPLY MODULE A7 ..... 3-3
I NTERFACE MDDULE A23 ..... 3-3
DETAI LED THEORY OF OPERATI ON ..... 3-3
SENSOR CI RCUIT ..... 3-3
I NPUT MDDULE A6 ..... 3-4
CONTRO MDDULE A5 ..... 3-6
DI SPLAY MDDULE A2 ..... 3-9
CALI BRATOR ASSEMBLY ..... 3-10
REAR PANEL ASSEMBLY ..... 3-10
POWER SUPPLY MDDULE A7 ..... 3-10
I NTERFACE MODULE A23 ..... 3-11
Page
SECTI ON I V OPERATI NG I NSTRUCTI ONS
OPERATI NG CONTROLS, I NDI CATORS, AND CONNECTORS ..... 4-1
SENSOR CALI BRATI ON DATA. ..... 4-1
POWER APPLI CATI ON ..... 4-1
OPERATOR CHECKOT ..... 4-6
OPERATI NG I NSTRUCTI ONS ..... 4-8
MEASUREMENT PARAMETERS ..... 4-8
USE OF NUMERI CAL KEYS ..... 4-8
SELECT FUNCTI ON ..... 4-9
MDDE SELECTI ON ..... 4-9
RANGE SELECTI ON. ..... 4-9
dB LIM TS SELECTI ON ..... 4-10
CALI BRATI ON FACTOR SELECTI ON ..... 4-10
REFERENCE LEVEL dB SELECTI ON ..... 4-11
ENTRY LI M T VALUES ..... 4-12
RECALL OF ENTERED VALUES ..... 4-13
ZEROI NG THE I NSTRUMENT ..... 4-13
COMPENSATI NG THE I NSTRUMENT ..... 4-14
ERROR MESSAGES ..... 4-15
MEASUREMENTS ..... 4-15
MAKI NG PONER MEASUREMENTS. ..... 4-15
WAVEFORM SENSI TI VI TY ..... 4-15
HI GH-LEVEL MEASUREMENTS ..... 4-16
H GH- FREQUENCY MEASUREMENTS ..... 4-16
TEMPERATURE EFFECTS ..... 4-16
STAND NG WAVE RATI O MEASUREMENT ..... 4-16
SH ELDI NG RECOMENDATI ONS. ..... 4-18
ANALOG OUTPUT ..... 4-19
IEEE-488 BUS INTERFACE ..... 4-19
REMDTE ADDRESS ASSI GNMENT. ..... 4-20
REMDTE MESSAGE TERM NATOR ..... 4-21
REMDTE COMMAND RESPONSE ..... 4-21
REMDTE OPERATI NG STATES ..... 4-21
REMOTE MEASUREMENT MDDE FUNCTI ONS ..... 4-22
REMOTE DATA ENTRY/ RECALL FUNCTI ONS ..... 4-23
REMOTE SPECI AL FUNCTI ONS ..... 4-23
REMDTE COMMAND EXTENSI ONS. ..... 4-24
REMDTE AVAI LABI LI TY ..... 4-25
PROGRAMM NG EXAMPLES ..... 4-26
REMOTE PROGRAMM NG SYNTAX. ..... 4-26
STORE/ RECALL FUNCTI ONS SYNTAX ..... 4-27
OTPU DATA FORMAT ..... 4-27
HOLD I NDI CATI ON FUNCTI ON SYNTAX. ..... 4- 28
SRQ FUNCTI ON SYNTAX ..... 4-28
MEASUREMENT TRI GGER SYNTAX. ..... 4-28
LIMT SERVI CE REQUEST ..... 4-28
SECTI ON V MAI NTENANCE I NSTRUCTI ONS
SAFETY REQUI REMENTS ..... 5-1
TEST EQUI PMENT REQUI RED ..... 5-1
Page
PREVENTI VE MAI NTENANCE AND CLEANI NG ..... 5-1
PERFORMANCE TESTS. ..... 5-2
PRELI M NARY SETUP ..... 5-2
AUTOMATI C ZERO FUNCTI ON TEST ..... 5-3
RANGE HOLD FUNCTI ON TEST. ..... 5-3
BASI C I NSTRUMENT ACCURACY TEST. ..... 5-3
HI GH POVER LEVEL ( 15 dBM AND 25 dBM ) ACCURACY TEST ..... 5-4
dB REFERENCE LEVEL FUNCTI ON TEST ..... 5-7
dB LIMT TEST ..... 5-8
CALI BRATI ON FACTOR TEST. ..... 5-9
I NSTRUMENT AD USTMENTS ..... 5-10
GENERAL ..... 5-10
POVER SUPPLY ADI USTMENTS ..... 5-10
I NPUT BOARD AND CHOPPER ASSEMBLY ADI USTMENTS ..... 5-11
ANALOG TO DI GI TAL CONVERTER AD USTMENT ..... 5-15
RECORDER OUTPUT ADJ USTMENT ..... 5-17
CALI BRATOR ASSEMBLY ADJ USTMENT ..... 5-18
SENSOR AD USTMENTS ..... 5-21
AD USTMENT OF RANGES O THROUGH 4. ..... 5-21
AD USTMENT OF RANGES 5 AND 6 ..... 5-24
SENSOR REPLACEMENT ADJ USTMENTS ..... 5-29
TROUBLESHOOTI NG PROCEDURES. ..... 5-32
D SASSEMBLY/ ASSEMBLY ..... 5-32
REMOVAL OF I EEE- 488 I NTERFACE BOARD A23 ..... 5-32
I NSTALLATI ON OF I EEE- 488 I NTERFACE BOARD A23. ..... 5-50
REMOVAL OF CONTRO BOARD A5 ..... 5-50
I NSTALLATI ON OF CONTRQ BOARD A5 ..... 5-53
REMDVAL OF PONER SUPPLY BOARD A7 ..... 5-53
I NSTALLATI ON OF POUER SUPPLY BOARD A7 ..... 5-55
REMDVAL OF CHOPPER MDDULE A4 ..... 5-55
I NSTALLATI ON OF CHOPPER MDDULE A4 ..... 5-57
REMOVAL OF INPUT BOARD A6 ..... 5-58
I NSTALLATI ON OF I NPUT BOARD A6 ..... 5-59
REMOVAL OF CALI BRATOR ASSEMBLY ..... 5-59
I NSTALLATI ON OF CALI BRATOR ASSEMBLY ..... 5-61
REMOVAL OF D SPLAY BOARD A2 ..... 5-61
I NSTALLATI ON OF D SPLAY BOARD A2 ..... 5-64
REMOVAL OF REAR PANEL ASSEMBLY ..... 5-64
I NSTALLATI ON OF REAR PANEL ASSEMBLY. ..... 5-66
SECTI ON VI PREPARATI ON FOR RESH PMENT
PACKAG NG ..... 6-1
SECTI ON VIT STORAGE
PREPARATI ON FOR STORAGE ..... 7-1
PACKI NG FOR STORAGE ..... 7-1
STORAGE ..... 7-1

|  |  | Page |
| :---: | :---: | :---: |
| APPENDIX A | REFERENCES | A-1 |
| APPENDIX B | COMPONENTS OF END ITEM AND BASI C I SSUE I TEMS LI STS | B-1 |
| APPENDI X C | MAI NTENANCE ALLOCATI ON CHART. | C-1 |
| APPENDIX D | EXPENDABLE SUPPLI ES AND MATERI ELS | D-1 |
| APPENDI X E | ADD TI ONAL AUTHORI ZATI ON LI ST | E- |

## LIST OF ILLUSTRATIONS



|  |  | Page |
| :---: | :---: | :---: |
| 5-24 | Test Set up for Chopper Assenbly and Input Board Troubl eshooting | 5-39 |
| 5-25 | Chopper Assenbly and Input Board Test Points | 5-40 |
| 5-26 | Test Set up for when the LED Displays Invalid Character or is Locked Up. | 5-41 |
| 5-27 | Locati on of IC6, IC7, IC18, and P1 on the Control Board | 5-45 |
| 5-28 | IEEE Interface Board Test Points . | 5-49 |
| 5-29 | IEEE-488 Interface Board | 5-51 |
| 5-30 | Control Board | 5-52 |
| 5-31 | Power Suppl y Board | 5-54 |
| 5-32 | Chopper Mbdul e and I nput Board (Vi ew A) | 5-56 |
| 5-32 | Chopper Mbdule and I nput Board (Vi ew B) | 5-57 |
| 5-33 | Calibrator Assenbly | 5-60 |
| 5-34 | Displ ay Board | 5-63 |
| 5-35 | Rear Panel Assently | 5-65 |
| 6-1 | Packagi ng Di agram | 6-1 |
|  | Components of End Item. | B-2 |
| FO-1 | Mai n Frame, Schematic Diagram. | FP-1 |
| abl e | LIST OF TABLES |  |
| unber |  | Page |
| 1-1 | Performance Speci fications | 1-4 |
| 1-2 | AN USM 491 Response Time | 1-7 |
| 4-1 | Operating Control s, Indi cators and Connectors | 4-3 |
| 4-2 | Address Assi gnment. | 4-20 |
| 4-3 | Message- Ter mi nat or Sel ection. | 4-21 |
| 4-4 | Measurement Mbde Functions | 4-22 |
| 4-5 | Remote Data/Entry Recall Functions | 4-24 |
| 4-6 | Internal Range for Various Sensor Levels | 4-25 |
| 5-1 | DC Cal i bration Test | 5-16 |
| 5-2 | Full Scale Sensor Adj ustment Data . | 5-22 |
| 5-4 | Downscal e Sensor Adj ustnent Level s | 5-23 |
| 5-6 | Downscal e Correction Data Entry | 5-24 |
| 5-5 | Sensor Low Frequency Gai n Data | 5-31 |
| 5-6 | Sensor High Frequency Calibration Factors. | 5-31 |
| 5-7 | Troubl eshooting Procedures . . . . . . . . . . . | 5-33 |

## SECTION 0

## INSTRUCTIONS

## 0-1. SCOPE.

This manual contains instructions for the Test Set, Radio Frequency Power, AN/USM-491. The Test Set consists of the Boonton Electronics Corporation Model 4200 RF Microwattmeter and Series 4200-6E sensor. Throughout this manual the nomenclature item is referred to as either the Test Set, Instrument or AN/USM-491. The 4200-6E sensor is referred to as the sensor.

0-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS.
Refer to the latest issue of DA PAM 25-30 to determine whether there are new additions, changes, or additional publications pertaining to this equipment.

## 0-3. MAINTENANCE FORMS, RECORDS, AND REPORTS.

a. Report of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA PAM 750-8 as contained in Maintenance Management Update.
b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 Report of Discrepancy (ROD) as prescribed in AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.73B/AFR 400-54/MCO 4430.3H.
c. Discrepancy in Shipment Report (DISREP) (SF 361. Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19D/DLAR 4500.15.

## 0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR).

If your Test Set needs improvement, let us know. Send us an EIR. You the user are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design or performance. Put it on an SF 368 (Product Quality Deficiency Report). Mail it to us at: Commander, U.S. Army Aviation and Missile Command, AMSAM-MMC-MA-NM, Redstone Arsenal, AL. 35898-5000. We'll send you a reply.

## $0-5$. ADMINISTRATIVE STORAGE.

Administrative storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness.

## 0-6. DESTRUCTION OF ARMY ELECTRONICS MATERIEL.

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.


Figure 1-1. Test Set, RF Power AN/USM-491

## SECTION I

## INTRODUCTION

## 1-1. DESCRI PTI ON

The AN/ USM 491 is a microprocessor-based solid state RF microwattmeter. The Test Sets calibrated power level and frequency range is determined by the sensor. Refer to Table 1-1 for performance specifications. The frequency range of the Test Set may be extended by use of the MX-18291/USM 491 sensor, refer to Appendix E.

## 1-2. CAPABI LI TI ES.

This test set is designed to perform the following operations:
a. Low- power transmitter, signal generator, and oscillator power measurements.
b. SWR and return-loss measurements with directional couplers and slotted lines.
c. Gain and insertion loss measurements.
d. RF attenuation measurements.
e. Antenna measurements.

## 1-3. DESI GN FEATURES.

a. Low Noi se. The test set has been desi gned and constructed to mimime noi se from all sources. The sensor cable is of a special low-noi se design; vigorous flexing causes only momentary min deflections on the most sensitive range of the instrument. The sensor is insensitive to shock and vibration; even sharp tapping on the sensor barrel causes no visible deflection on any range. Internal si gnal amplification occurs at approxi mately 94 Hz , thereby reducing susceptibility to 50 or 60 Hz fields. A low- noise solid-state chopper is used.
b. LED Display. Measured power level s are displayed by a LED type readout with decimal points and minus sign. Annunciators associated with the LED display indicate the units of measurement. The result is a clear, unanbi guous readout that minimzes the possibility of misinterpretation. This display is al so used to show data bei ng entered into non-vol atile memory and to display data recalled from non-vol atile menory; the display and annunci ators blink on and off during data entry and recall to indicate that displayed val ues are not measured val ues.
c. Anal og Indi cations. A front-panel anal og meter provides rel ative power indications for peaking or nulling applications. A dc voltage proportional to the measured power level is available at a rear-panel connector for application to a recorder or other external device.
d. Pushbutton Measurenent Mbde Sel ection. A choi ce of measurement modes is available to the operator. Indications in terns of power or dBm can be sel ected by pressing the appropriate front-panel key switch. A dB reference level can be
entered through the keyboard and a display mode sel ected to indi cate power level s in dB, rel ative to a dB reference level.
e. Aut onatic Ranging. Auto-ranging under control of the microprocessor eliminates the need for manual ranging. Alternately, a measurement range can be retai ned for all measurements, if desired, by sel ecting the range hold mode. Applications of power levels that are outside of the maximum or ni mum measurement capability of the instrument (or range in the hol d mode) result in an error indication on the LED di splay.
f. Autonatic Zeroing. An aut omatic zeroing circuit eliminates the need for tedi ous, often inaccurate, manual zeroing. With zero input to the sensor, pressing a front-panel key switch directs the microprocessor to compute and store zero corrections for each range, and the instrument is thereafter corrected on each range in accordance with the stored data.

## NOTE

Sensor calibration data is programmed into the instrument at the factory. If additional sensor(s) are required after the instrument is in the field, the new sensor data can be installed at the Intermedi ate Mai ntenance Level.
g. Autonatic Sensor Compensation. Calibration factors are stored in the microprocessor. Calibration data is written into non-volatile storage at the factory, and it may al so be witten into storage in the field. When the sensor and the measurement frequency are specified through front-panel keyboard entry, measurement val ues are corrected automatically with calibration factors. Alternately, the calibration factor in $d B$ for the sensor being used may be entered through the keyboard, and the measurement val ues are then corrected aut onatically in accordance with the calibration factor. Both power and $d B$ val ues are corrected.
h. Builtin Power Reference. An accurate, 1.000 milli watt, 50 Mzz si gnal for instrument adjustment is provided by a built-in power reference. Adjustment is si mply a matter of connecting the sensor to the power reference and pressing a key; the correction is computed automatically by the microprocessor. The correction circuit has built-in protection against inadvertent key actuation when the sensor is not connected to the power reference. Correction is limited to approxi mately 7. $5 \%$ from the original factory set val ue. Computer corrections that exceed this range are rejected automatically, and the instrument returns to its previ ous sensitivity.
i. Pushbutton High/ Low dB Limit Sel ection. High/low dB limits may be entered through the front-panel keyboard. A front-panel annunciator indicates when measured $d B$ levels are outside the preset limits. Si gnals are al so activated at a rear-panel connector to provide remote indications of out-of-limit measurements.
j. Solid-state Chopper. Si gnal amplification in the instrument occurs at approxi matel y 94 Hz . Input signal from the sensor are converted into a 94 Hz si gnal by a solid-state, low-level input modul at or (chopper), which represents a di stinct improvement over el ectromechanical choppers. Extended service life is
assured through the elimination of contact wear, contamination, and other problens associated with el ectromechanical choppers.
k. IEEE-488 Bus Interface. The IEEE-488 General Purpose Interface Bus (GPI B) permits external control of the instrument and data capture by a wide variety of compatible controllers. The instrument may be operated with other GPIB-compatible devices to achieve specific test automation goals, with no specialized control interface requirements for proper el ectrical operation. Al though no standard GPIB interface data formats have yet been established, certain common practices are achi eving de facto standard status. These practices have been adhered to in the design of the interface formats and delineators, thereby assuring the user of format compatibility with al most all controllers.

## 1-4. EV RONMENTAL REQU REMENTS.

The AN USM 491 is desi gned for normal use in an el ectronics laboratory or maintenance facility used for the troubleshooting and repair of el ectronics. This incl udes those el ectronic components which emit RF radiation. However, high concentrations of RF radiation, extreme anbient temperatures, and hi gh humidity are not consi dered normal envi ronmental conditions and the ANUSM 491 should not be operated in that envi ronment.

## NOTE

- Operation of the test set in close proximity to a source of hi gh power RF radi ation could cause inaccuracies in measurements and possible damage to the instrument and/or sensor.
- Operation of the test set at temperatures bel ow $18^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F}\right)$ and above $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ may affect the uncertainty of measurement accuracy (see Table 1-1).
- Humidity affects the di el ectric properties of RF components and therefore will result in incorrect measurements. The test set should not be operated in an envi ronment of high humidity.


## 1-5. STORAGE DATA.

The AN USM- 491 should be stored in a cool, dry place and packed in accordance with the instructions of Section 2 of this manual.

## 1-6. TOOLS AND TEST EQU PMENT.

Tools and test equi pment required for operation and maintenance of the AN -USM-491 are listed in Appendix C(Maintenance Allocation Chart).

## 1-7. GARRANTY I NFORMATI ON

The AN USM- 491 is warranted by the manufacturer to the original purchaser to be free from defects in material and workmanship and to operate within applicable specifications for a period of two years from date of shi prent.

Table 1-1. Performance Specifications

| Par anet er | Speci fications |
| :---: | :---: |
| FREQUENCY RANGE | 100 KHz to 18 GHz |
| POWER RANGE | - 40 dBm to +30 dBm ( 100 nW to 1 W |
| ( Display calibrated in mW | ( May be extended to +50 dBm by pl acing a |
| $\mu \mathrm{W}$ nW dBm and dB rel ative | 20 dB attenuat or of known exact val ue in- |
| to sel ected reference) | line with the sensor. Cal cul ate: <br> True Power = Display + Attenuation) |
| I NPUT TYPE | Coaxi al Type N male |
| I MPEDANCE | 50 ohm |
| MAXI MUM SWR | 10 M-Z - 14 GHz 1.4 |
|  | 14 GHz - 18 GHz 1.5 |
| OVERLOAD RATI NG | 2W ( +33 dBm ) |
| BASI C ACCURACY |  |
| Cal i brati on | 0. $25 \%$ or reading $0.1 \%$ ful l scale 0. $25 \%$ |
| RANGI NG | Aut oranging pl us hold on range |
| BASI C MEASUREMENT ACCURACY The total accuracy is the sum of the uncertainties noted in sections $A, B, C$ and D. These uncertainties may al so be added in an RSS fashi on which represents the nost probable total uncertai nt $y$.$\text { RSS }=\left(A^{2}+B^{2}+C^{2}+D^{2}\right)^{1 / 2}$ | A. Basic Uncertainty (incl udes all instrumentation, noi se, zero, and shaping errors and incl udes $0.7 \%$ power reference setting error). |
|  | I NPUT PONER <br> LEVEL UNCERTAI NTY |
|  | $>\mid \mu w$ $1.2 \%$ of reading $0.1 \%$ ful scal e  <br> $<\mid \mu \mathrm{w}$ $1.5 \%$ of reading $1.5 \%$ full scal e |
|  | B. Temperat ure Uncertainty ( at $1 \mathrm{M}-\mathrm{Z}$ ) |
|  | Temper at ure I nst rument Al I Sensor s <br> $21^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ $\mathrm{O} \%(\mathrm{O} \mathrm{dB})$ $\mathrm{O} \%(\mathrm{O} \mathrm{dB})$ <br> (r ef er ence)   |
|  | $\begin{array}{cccc} \left.18^{\circ} \mathrm{C} \text { to } 30^{\circ} \mathrm{C} \quad 0 \% 0 \mathrm{~dB}\right) & \pm 2.32 \% & 0.1 \mathrm{~dB}) \\ 10^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \pm 0.5 \% & 0.2 \mathrm{~dB}) & \pm 4.7 \% & 0.2 \mathrm{~dB}) \\ 0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \pm 0.6 \% & 0.6 \mathrm{~dB}) & & \end{array}$ |
|  | C. Calibration Factor Uncertainty |

Table 1-1. Perfornance Specifications (Cont'd)

*Ref erence frequency

Table 1-1. Performance Specifications (Cont'd)

| Par amet er | Specifications |
| :---: | :---: |
| MEASUREMENT TI ME | Di ode sensors, typi cally 0.2 to 0.5 s except 2-6 s bel ow - 20 dBm Refer to Table 1-2. |
| RECORDER OUTPUT. |  |
| Watt Mbde | 10 volts full-scale, proportional to indicated power over each range. |
| dB Mbde | 8 volts equi val ent to O dBm with a sensitivity of 1 volt per 10 dB change over the entire range ( O to 11 V ). |
| DI SPLAY | 4- di git LED, 3-1/2 di git display of power, 4 -digit of dB with 0.01 dB resol ution. Auxiliary anal og display, uncalibrated, proportional to recorder output. |
| dB LIM TS | Ent ered through front panel in dB onl y, operable in both dB and power modes. |
| ANNUNCI ATORS | LED display of mW $\mu \mathrm{W}$ dBm or rel ative dB ( dBr ); LED indication of use of channel 1 (CH1), out of dB limits; and condition of GPIB activity (LSN, ATN, REM AND TALK). |
| PONER CONSUMPTI ON | $24 \mathrm{VA} ; 100,120,220$, and 240 volts, 50 to 400 Hz . |
| WEI GHT | 4. 54 kg ( 10 l bs.) approxi matel y. |
| DI MENSI ONS | 17. 39 in. I ong $x 9.25$ in. wide $x 5.83$ in. hi gh ( 34.9 cm deep $\times 21.1 \mathrm{~cm}$ wi de $\times 14.9$ cm hi gh). |
| ACCESSORI ES FURNI SHED | a. AC power cord <br> b. Sensor cable <br> c. Spare fuses located inside front cover, one 250 VAC 0.3 ampere, MDL SIo-Blo; two 250 VAC 0.2 ampere, MDL SIo-Blo. <br> d. 20 dB 5 watt type N attenuat or |
| REMDTE OPERATI ON TO I EEE BUS STANDARD | All front panel controls except line switch and power reference switch. In addition indi vidual power and dB ranges may be sel ected and sel ectivel y zeroed. Li sten/ talk address set by rear-panel bit switch. |

Table 1-1. Performance Specifications (Cont'd)

| Par anet er | Specifications |
| :---: | :---: |
|  | The AN USM-491 i mpl ements these subsets of the GPIB function. <br> MA = My Listen Address <br> MTA $=$ My Talk Address <br> SH1 SOURCE HANDSHAKE, compl ete capability <br> AH1 ACCEPTOR HANDSHAKE, compl ete capability <br> T6 BASI C TALKER, SERI AL POLL, UNADDRESS IF MLA, NO TALKER ONLY capability <br> TEO NO EXTENDED TALKER capability <br> L4 BASI C LI STENER, UNADDRESS IF MTA, NO LISTENER ONLY capability <br> LEO NO EXTENDED LI STENER capability <br> SR1 SERVI CE REQUEST capability <br> RL1 REMDTE-LOCAL capability, LOCAL LOCKOT <br> PPO NO PARALLEL POLL capability <br> DC1 DEVICE CLEAR capability <br> DT1 DEVI CE TRI GGER capability <br> CO NO CONTROLER capability. |

Table 1-2. AN USM-49l Response Time

| Starting Level dBm | 10-dB Power Step |  | 20-dB Power Step |  | 30-dB Power Step |  | 50-dB Power Step |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I ncrease | Decrease | Increase | Decrease | Increase | Decrease | I ncrease | Decr ease |
| - 40 | 0.60 s | N. A | 0.65 s | N. A. | 0.45 s | N. A. | 0.50 s | N. A. |
| - 30 | 0.60 s | 5.4 s | 0.40 s | N. A. | 0.35 s | N. A. | 0.50 s | N. A. |
| - 20 | 0.40 s | 1. Os | 0.35 s | 5. 4 s | 0.40 s | N. A. | 0.35 s | N. A. |
| -10 | 0.35 s | 0.50 s | 0.35 s | 1. 0 s | 0.40 s | 5. 4 s | N. A. | N. A. |
| 0 | 0.35 s | 0. 30 s | 0.35 s | 0.55 s | 0.30 s | 1. 0 s | N. A. | N. A. |
| +10 | 0.20 s | 0.25 s | 0.15s | 0. 25 s | N. A. | 0.70 s | N. A. | 6.0 s |
| +20 | 0.15s | 0.35 s | N. A. | 0. 35 s | N. A. | 0.50 s | N. A. | 1. 7 s |
| +30 | N. A. | 0.35 s | N. A. | 0.35 s | N. A. | 0.60 s | N. A. | 1. 0 s |

## SECTION II

## PREPARATION FOR USE AND INSTALLATION INSTRUCTIONS

## 2-1. I NSTALLATI ON

For bench use, choose a clean, sturdy, uncl uttered surface.

## 2-2. PONER REQU REMENTS.

The instrument has a tapped power transformer which permits operation from 100, 120, 220, or $240 \mathrm{volt} \pm 0 \% 50$ to 400 Hz , single phase ac power sources. Power consumption is approxi matel y 24 volt-amperes at 60 Hz .

## 2-3. CABLE CONNECTI ONS.

Interconnecting cable connections required depend upon the system applications of the AN USM 491. A line cord and sensor cable are supplied with the test set. Cable connections that my be required are detailed in the following paragraphs.

## 2-4. SENSORS.

The sensor cable supplied with the basic instrument connects directly to the front-panel SENSOR connector, and the sensor connects directly to the other end of the sensor cable. Although the sensor is insulat agai nst extreme temperature variations, it is advi sable to locate the sensor away from heat sources when using the most sensitive ranges of the instrument. If the test set is to be used to measure the output of equi pment that generates heat significantly above the andoi ent temperature, a short length of coaxial cable or solid line having the same characteristic impedance ( 50 ohns) as the sensor may be used between the sensor and the equi pment undergoing test to allow heat to di ssi pate before reaching the sensor. If such a cable is used, the length must be kept as short as possible for operation at the high end of the frequency range; cable losses and an increase in SWR will tend to degrade measurement accuracy.

## 2-5. RECORDER OUTPUT.

Recorder connector J 20 (type BNC) on the rear panel provides an anal og dc voltage for application to a remote recorder. The output resistance is 9090 ohns, delivering 1.00 milliampere into a 1000 ohmload for full scale input in the power mode. When open circuited, the anal og dc voltage is proportional to the following:

In the power mode, it is proportional to displayed power, with 10 volts for full scale for each 10 dB range.
b. In the dB mode, it is proportional to di splayed dBm with the rel ationship shown bel ow.

## Recor der Out put

| $(\mathrm{dBm})$ | $(\mathrm{volts})$ |
| :---: | :---: |
| +30 | 11 |
| +20 | 10 |
| +10 | 9 |
| 0 | 8 |
| -10 | 7 |
| -20 | 6 |
| -30 | 5 |
| -40 | 4 |

## 2-6. STATUS OUTPUT.

Rear-panel connect or P3 provi des si gnal outputs for source disabling during zeroing operations, and provi des high and low dB limit signals during dB measurements. The dB Iimits al ways test agai nst the displayed val ue for oper ation. Wth the cal ibration factor and $d B$ reference level equal to zero, the dB limits as entered prevail. Wth a dB reference level other than zero, the di splayed val ue is checked agai nst the limits chosen. Pin connections are as follows:

## Connector Pi $\mathbf{n}$ Si gnal

1 Common
2 Not used
$3 \quad$ Logic hi gh i ndi cates zeroing operation
4 Logic I ow within dB Iimits; I ogic high above hi gh dB I imit
$5 \quad$ Logic I ow within dB Iimits; I ogic hi gh bel ow low dB I imit.

## SECTION III

## THEORY OF OPERATION

## 3-1. GENERAL THEORY.

The AN USM 491 is a complet et solid-state unit that employs a microprocessor for versatility in use. The microprocessor is controlled by a permanently stored, internal program pertinent operating parameters can be entered by means of a front-panel keyboard. Use of a microprocessor enables automation of numerous functions, such as zeroing, calibration, sensor compensation, range selection, unit conversion, dB limit testing, and relative dB measurements. Measured val ues are di splayed di rectly on a 4 digit LED di splay in terns of nW $\mu \mathrm{W} \mathrm{mW} \mathrm{dBm}$ or dBr (rel ative dB). Annunci at ors associated with the display indicate the unit of measurement. An anal og meter provides rel ative power measurements; this feature si mplifies such operations as nulling and peaking.

## 3-2. MA OR MDDULES DESCRI PTI ON

The overall block diagram for the maj or modul es of the AN USM 491 is illustrated by Figure 3-1. The main frame schematic is illustrated by Figure FO-1. The following paragraphs describe the operation of these modules.

## 3-3. SENSOR.

Power levels to be measured are applied to the sensor, which is connected to a front-panel connect or through a five-foot sensor cable. Input power appears across a precision resistor ( 50 ohns). Because the resistance val ue is constant, the voltage devel oped across the resistor is a function of input power ( $E^{2}=P R$ ). The RF voltage devel oped across the resistor is converted to a $D C$ voltage, and the resulting DC voltage is applied to the input module of the instrument.

## 3-4. I NPUT MDDULE A6.

The input module recei ves the DC voltage devel oped by the sensor. Operation under control of the control module, the input module converts the $D C$ signal to an AC si gnal at 94 Hz , amplifies the $A C$ si gnal to eliminate of fsets in the amplifiers, converts the amplified AC signal to an anal og DC signal, and converts the anal og $D C$ si gnal to a digital signal. If the autoranging function of the instrument is bei ng used, the gain of the amplifiers in the input module is adjusted automatically by the control nodule to accommdate any power level within the range of the instrument. The digital output si gnal of the input module is supplied to the control module for linearity correction and further processing. The control module sends the processed data back to the input module for conversion back to anal og. This si gnal is applied to the anal og meter on the display module for rel ative power measurements, and to a rear-panel connector for application to a peripheral recorder.

## 3-5. CONTRQ MDDULE A5.

The control module consists primarily of a pre-programmed microprocessor. The microprocessor accepts and stores measurement parameter commands entered through


Fi gure 3-1. Overall Block Di agram
the front-panel keyboard, and controls operation of the internal circuits of the instrument in accordance with its program and keyed-in commands. The microprocessor perforns measurement val ue corrections based on stored zero corrections and stored or keyed-in sensor calibration factors, unit conversions based on sel ected measurement modes, and dB limit determinatiorn. The microprocessor al so performs aut omatic instrument zeroing and calibration. The processed digital signal, which defines the final measurement value, is applied to a data bus and to the di spl ay modul e.

## 3-6. DI SPLAY MDDULE A2.

The di splay module contains the keyboard and LED display circuits. Parameters to be used for power measurements can be entered at any time through the keyboard. Keyed-in val ues are read and stored by the microprocessor, and sel ected numerical val ues are shown on the LED di splay during parameter sel ection. Computed power levels are processed by the microprocessor in accordance with the keyed-in parameters; the digital val ues representing the final computed measurement val ues are decoded by the display module circuits to produce a direct LED readout of measured val ues and to activate the appropriate annunciators.

## 3-7. CALI BRATOR ASSEMBLY.

The calibrator assentbly generates a precision, 1.00 mW 50 MHz signal that is used for calibration of the instrument. When this signal is applied to the sensor and the front-panel CAL key is pressed, fine sensitivity adjustments of the instrument are performed automatically under microprocessor control.

## 3-8. REAR PANEL ASSEMBLY.

The rear panel assembly controls the input line voltage of 100, 120, 220, or 240 volts, 50 to 400 Hz , AC and steps it down to 34 and 9.5 volts AC for use by the power supply module.

## 3-9. PONER SUPPLY MDDULE A7.

The power supply module provides all DC voltages required for operation of the internal circuits. It al so provides a reset signal to the control module when it is powered up, and an interrupt signal if an undervoltage condition is detected.

## 3-10. I NTERFACE MDDULE A23.

The interface module is a microprocessor driven data interface which converts IEEE 488 bus compatible signals into control codes that operate the internal control bus of the instrument. It al so converts instrument data into IEEE 488 compatible signals for use on the bus. All data transfers are handled by source and accept or handshake protocols as defined by IEEE-488-1978.

## 3-11. DETAI LED THEORY OF OPERATI ON

## 3-12. SENSOR Cl RCU T.

The sensor contai ns two parallel ed precision resistors across whi ch the input power is applied. Wth a constant load resistance, the RF voltage devel oped across the load resistance is a function of the RF power ( $E^{2}=P R$ ). The RF voltage is rectified by a rectifier that permits measurement of highly asymmetrical waveforns without substantial error. When the applied power level is within the square-Iaw regi on of the di odes the sensor has a true RMS response. Above this power level, the sensor response approaches peak-to-peak, calibrated in the instrument in terns of true average power.

## NOTE

The sensor has an input attenuat or whi ch permits measurements to $1000 \mathrm{~mW}(+30 \mathrm{~dB})$.
a. The body of the sensor has been designed and fabricated very carefully to eliminate any cavity resonance effects within the calibrated frequency range and to minimize noi se. The sensor di odes are specially sel ected for this application. The DC output voltage of the sensor is applied to the input connector of the i nstrument through a low-noi se sensor cable. Figure 3-2 depi cts the sensor's ci rcuitry.


CEOWB03

Fi gure 3-2. Sensor Circuit

## 3-13. I NPUT MDDULE A6.

The input printed circuit board recei ves from the sensor a $D C$ voltage that is a function of the power level being measured. Under control of the control board circuits, it provi des amplification and signal processing required to devel op an analog $D C$ voltage and a digital signal that are proportional to the input RF power level. The input $D C$ signal from the sensor is bal anced in form and may vary from microvolt to volts, depending upon the input power level. The input printed circuit board must provi de amplification with a wi de range of gain, low offset voltage, and low noise; therefore, the input $D C$ signal is converted to an $A C$ signal which is amplified, and the amplified AC signal is converted to a DC analog signal and to a di gital signal.
a. The input DC si gnal is converted to an AC si gnal by a chopper nodule, whi ch pl ugs into the input printed circuit board. The chopper is composed of solid-state switches $\mathrm{ICla}, \mathrm{IClb}, \mathrm{IClc}$, and ICld in a bal anced arrangement, operating at a frequency of approxi mately 94 Hz to minimize AC line and line-related component
interaction. The chopper drive signal is derived from the out put of an astable mul tivi brator, which is completely independent of line frequency. The use of a sol id-state chopper el im nates many of the problens, such as cont act wear and cont ami nation, associ ated with el ectromechanical choppers. The chopper supplies a bal anced $A C$ versi on of the input signal of approxi mately 94 Hz to the input amplifier.
b. The 94 Hz drive signal for the chopper is derived from the out put si gnal of astable multivi brator IC5. Multivibrator IC5 drives flip-flops IC7a and IC7b, and these flip-flops supply the drive si gnal to the chopper circuits. Flip-flop lC7a al so drives flip-flops IC8a and lC8b, which provide a 94 Hz , synchronized drive si gnal to the demodul at or circuits that convert the amplified AC signal back to a DC si gnal.
c. Amplification of the bal anced $A C$ si gnal from the chopper is accomplished in an i nput amplifier composed of low noise, operational amplifiers A5, A6, and A7. A bal anced arrangement with degener ative feedback for stabilization and gai $n$ control is empl oyed. The i nput $A C$ signal is amplified by $500,50,5$, or 0.5 , depending upon the instrument range. Demultiplexer IC6, under control of the control printed circuit board, adjusts the degener ative feedback in accordance with the range sel ected by the mi croprocessor to provi de the required gai $n$ switching. An attenuat or at the output of the input amplifier provides attenuation of two (2) for the hi ghest range onl $y$; on all ot her ranges its attenuator is zero. Thi s attenuat or is switched into the circuit on the hi ghest range through solid-state switches IC1Oa, IC9b, and IC9C. Demultiplexer IC13 decodes digital si gnal s that define the range from the microprocessor and activates the solid-state switches on the hi ghest instrument range.
d. The amplified 94 Hz si gnal is converted to a $D C$ anal og si gnal by means of a demodul at or circuit that operates in synchroni sm with the chopper. The demodul at or consists essentially of a sample and hold switch, composed of solidstate switches IC1Ob and IC1Oc and associ ated circuitry. Switches ICl Ob and IC1Oc are controlled by the 94 Hz drive signal s fromflip-flops lC8a and IC8b. The sampling point and period of the sample and hol d circuit has been chosen to min mize switching products and noi se, and to vary si gnal averaging in accordance with the si gnal level. Switch IC9a adjusts operating parameters automatically in accordance with instrument range; the switch is activated through gates 1 Cllb and I C11C and demiltipl exer IC13 on the four hi ghest ranges.
e. The DC output voltage of the sample and hold circuit is amplified by an amplifier circuit composed of integrated circuits A8, A9, and IC14, and associ ated circuitry. I ntegrated circuit lC14 is a demultiplexer which decodes micro-processor-supplied digital si gnals that define the sel ected range and adjusts an attenuat or circuit accordingly; the gai $n$ of the amplifier is $125,12.5$, or 1.25 , depending upon the sel ected range. The full-scale output voltage of the amplifier is 2.25 volts nominal on each range.
f. The $D C$ out put voltage of integrated circuit $A 9$ is usually uni pol ar and positive; however, during the automatic zeroing process of the instrument, the DC out put voltage may be positive or negative, depending upon small DC offsets. Because some of the following circuits operate only with uni pol ar signals, a pol arity switch is required. This pol arity switch, whi ch consists of solid-state switches IC3b and IC3c, operates under control of the microprocessor on the
control printed circuit board, which tests for polarity. The DC voltage is routed through the polarity switch to the appropriate input of operational amplifier A3 so that the out put $D C$ fromthis amplifier is al ways negative. This output voltage is applied to a comparator circuit.
g. Comparator A2 operates in conj unction with the microprocessor on the control printed circuit board and D/A converter IC2 to convert the DC out put signal of amplifier A3, which is proportional to the input power, to a digital signal that can be processed by the microprocessor circuits. D/A converter IC2 is supplied with successive half-level digital signals (full scale/2, full scale/4, etc.) by the microprocessor. D/A converter IC2 converts these digital signals to a $D C$ anal og voltage, and this anal og $D C$ voltage is applied through amplifier Al to comparator A2, where it is compared with the DC signal from amplifier A3. The difference signal from comparator A2 is supplied to the microprocessor through interface ICl so that the microprocessor can monitor the results of the comparison and adjust the microprocessor until the two input signals to comparator A2 are equal. The resulting digital signal then defines the input $D C$ level being measured. This digital signal is then processed (zero correction, calibration correction, unit conversion, etc.) by the microprocessor before application to the LED di splay circuits of the instrument.
h. After the digital signal has been fully processed by the microprocessor, the processed digital signal is again supplied by the microprocessor to $D / A$ converter IC2, whi ch converts the processed di gital signal to a corresponding DC anal og voltage that is used to drive the front-panel meter and the recorder output of the instrument. This DC anal og voltage from D/A converter IC2 is supplied through amplifier Al to sample and hold switch IC3a, which is closed at this time by a control signal from the microprocessor. The $D C$ anal og voltage at the out put of the sample and hold circuit is applied through amplifier A4 and the control printed circuit board to the display printed circuit board.
i. All interfacing between the input printed circuit board and the microprocessor is accomplished through interface IC1. Interface IC1 is an input/output device that operates under control of the microprocessor. When signal RD is activated by the microprocessor, data are transferred from the input printed circuit board to the microprocessor, provided that signal CS to interface IC1 is al so active; when signals $W$ and $C S$ are both activated by the microprocessor, data are transferred from the microprocessor to the input printed circuit board. Data flow between the input printed circuit board and the microprocessor over the ei ght-line hi-directional data bus. Routing of data through the interface is controlled by the address signals supplied to the interface by the microprocessor.

## 3-14. CONTRO MDDULE A5.

The operation of the instrument is controlled by a microprocessor contained on the control printed circuit board. The control printed circuit board is organized around a central processing unit (CPU), associated memories, input/output ports, and a $40-1$ ine bus.
a. A stored program in conj unction with key-entered commands, enables the microprocessor to perform a variety of functions, including the following:
(1) Anal og to digital conversion
(2) Zero det er mination
(3) Zero correction
(4) Rangi ng
(5) Cal ibration
(6) Si gnal processing
(7) Bi nary to BCD conversion
(8) dB conversion
(9) dB ref erence conversion
(10) dB Iimit testing
(11) Di agnostics
b. Integrated circuit IC3 is the microprocessor CPU. It is an 8-bit unit that operates at a clock frequency of 2 MHz , generated by integrated circuits ICla through IClc and associated circuitry. The operating program for the microprocessor is stored in integrated circuits IC6 and IC7, which are programmable read- only memories (PROME). RAM IC8 provides temporary storage of data during operation of the instrument. It al so stores certain measurement parameters such as sensor data, calibration factors, some key-entered parameters, etc.
Lithi umtype battery BT1, which has an anticipated life of 10 years, supplies power to RAM IC8 during power-down of the instrument to enable retention of data in memory. During nornal operation, RAM IC8 is powered by transistor Q1. Integrated circuit IC16 is an I/O port which interfaces with the following:
(1) An 8-bit switch used to set the mode of operation, number of channel s, and number of sensors.
(2) A test socket (J 3) that is not used for the AN/ USM 491.
(3) A plug (P3) for out put of status information.
c. The CPU recei ves and transmits data over an ei ght-line data bus. A 15-line address bus is used for addressing, and a control bus is used for various control functions. When the instrument is turned off, signal RESET is activated by the power supply circuits and the microprocessor is reset to the start of the operating program when the instrument is next turned, on and DC voltages have reached the correct operating levels, the RESET signal is deactivated by the power supply circuits and the microprocessor begins to execute the stored program Instructions are retrieved from storage by the CPU in accordance with the address code devel oped at its output. Decoder IC4 enables the appropriate PROM (IC6 or IC7), and the instruction contai ned in the memory location defined by the address on address Iines AO through All is read and transmitted by the CPU over the data bus. The CPU then executes this instruction.
d. During the measurement process, the CPU must retrieve data from storage and from the input and display printed circuit boards, it must store temporary cal culation val ues, and it must output data to the input and display printed circuit boards. To retrieve data from memory, the storage device and data location are defined by the address supplied by the CPU, and si gnals MREQ and RD are activated. Integrated circuit IC4 decodes three of the address bits to activate si gnal CS at RAM IC8 through gates IC9a and IC9c. Si gnal OE at RAM IC8 is activated through gate IC15d, and data stored at the location specified by the remai ning address bits are transmitted over the data bus to the CPU or to other circuits connected to the data bus. To access data devel oped by circuits outside
the control printed circuit board, the CPU activates si gnals IORQ and RD al ong with the appropriate address lines. Decoder IC14 decodes three address bits to devel op enabling signal CS for interface IC16, Integrated circuit IC18, or interface IC1 on the input printed circuit board, as specified by the three address bits, and gate IC15b activates signal RD for the read function. If integrated circuit IC18 is enabled, keyed-in commands from the display printed circuit board, whi ch had been stored in integrated circuit lC18, are transmitted over the data bus. If integrated circuit lCl6 is enabled, input data from bit switch S1 or power supply connector P4, as determined by address bits AO and AI, are supplied through interface IC16 to the data bus. If interface IC1 on the input printed circuit board is enabled, data generated on the input printed circuit board are transmitted over the data bus through interface ICl .
e. To store data, the CPU activates si gnal $W$ R and the address lines that define the storage device and storage location. Decoder IC4 decodes three address bits to enable signal CS at RAM IC8, signal $W$ R enables the write function of RAM IC8 through inverter ICld and gate IC9b, and data on the data bus are written into memory at the location defined by the remaining address lines. To output data to circuits outside the control printed circuit board, signal IORQ is activated by the CPU in addition to the previ ously mentioned signals. Si gnals IORQ and WR activate the write enable signal to the device defined by the address bits. Decoder lC14 decodes three address bits to sel ect the appropriate device (interface IC16, interface IC18, or interface ICl on the input printed circuit board). Data on the data bus are then transferred to the sel ected device. If interface IC16 is sel ected, these data are transferred through interface lC16 to connector P3 or J3, as determined by address bits $A O$ and $A 1$. The output to connector P3 consists of $d B$ out-of-limit signals and an input disconnect signal which is active when the automatic zeroing function is sel ected. The out put data at connector J3 are used in si gnature anal ysis checks. If interface IC18 is selected, the data on the data bus are written into storage in interface lC18 for application to the display printed circuit board. These data are then clocked out of storage to activate the LED display and annunciat ors on the display printed circuit board. If interface ICl on the input printed circuit board is sel ected, data on the data bus are transferred through the interface to control various functions on the input printed circuit board.
f. Connector J1 is included in the data bus on the control printed circuit board to facilitate signature anal ysis maintenance of the microprocessor circuits. Wen connector Jl is pulled out, the data bus is disconnected from the CPU, and the CPU executes successive NOPS for free-runni ng si gnature anal ysi s checks.
g. The CPU receives two control signals directly from the power supply printed circuit board. If the power supply voltage should drop during operation, or on equi prent turn-off, si gnal $N M$ is activated by the power supply circuits; the CPU, upon recei pt of this signal, activates signal HALT, and halts further execution of the program Si gnal HALT is applied to the power supply printed circuit board, where it latches signal RESET to the active state. Si gnal RESET, in turn, causes the microprocessor to ret urn to the starting point of the program When the power supply rises to a level approximately 150 millivolts bel ow its nominal val ue, either as a result of correction of the undervoltage condition or of power turn-on, signal RESET is deactivated to permit execution of the stored program by the mícroprocessor.

## 3-15. DI SPLAY MDDULE AZ.

The di spl ay printed circuit board contains the instrument LED di splay, meter, annunci at ors, keyboard, and control circuits for these itens. It i nt erfaces di rectly with the control printed circuit board. When any keyboard key is pressed, the microprocessor on the control printed circuit board interrupts the normal measurement process and accepts and stores the key-entered commands; the mi croprocessor al so supplies digital data to the display printed circuit board to cause keyed-in numerical val ues to appear on the LED display. The microprocessor resumes the normal measurement process when any of the terminator keys (LIMTS dB, CAL FACTOR, SELECT, REF LEVEL $d B$ ) is pressed. Upon compl et i on of the measurement by the microprocessor, measurement val ues are supplied to the display printed circuit board.
a. Operation of the display printed circuit board is controlled by the microprocessor through integrated circuit IC18 on the control printed circuit board, which provi des the following functions:
(1) It provides a RAM for storage of mi croprocessor output data to the displ ay printed circuit board.
(2) It provides a first-in, first-out RAM which accepts and stores input inf ormation (up to 8 key commands) from the display printed circuit board.
(3) It provides scan signal $s$ for both the LED di splay and the keyboard.
b. The LED di spl ay consists of four 7-segment displays, whi ch provi de a display capacity of four digits with decimal points, and a fifth display which is capable of displaying a mi nus sign. Each display consists of individual anodes for each segment that makes up the displ ay and the deci mal point, and a common cathode. The character that appears on the display is determined by the activated anodes at the time that the common cathode is scanned. The individual di spl ays and the associ ated annunci at ors are scanned in sequence. The di splay duty cycle is $12.5 \%$ that is, each digit or annunciator of the instrument is on $12.5 \%$ of the time.
c. Digital information for the LED displ ay and annunciators is devel oped by the microprocessor, and is stored in the out put RAM contai ned in integrated circuit IC18 on the control printed circuit board. Digital information that defines display and annunciat or row sel ection is supplied to 8-channel demultiplexer IC2. The output lines of demiliplexer IC2 are activated in sequence, based on the input digital codes. The signal on the active output line of demiliplexer IC2 is applied through resi stive net work IC5 to di splay driver IC7, and the di spl ay driver supplies driving power for the corresponding display and the corresponding row of annunciators. At the same time, digital data that define the display segments and the annunci at ors that are to be activated are supplied to decoder IC1. The bi nary-coded input is decoded by decoder ICl , and the output lines of the decoder are activated in accordance with this decode. The outputs of the decoder activate the i ndi vidual anodes of the sel ected display and the individual annunci at ors in the active annunci at or row, thereby providing the appropriate instrument di spl ay. A decimal point signal is applied through transistor Q1, when appropriate, to cause a deci mal point to be displayed to the right of the character on the active display.
d. Demultipl exer IC2 al so provi des scanning signals to the keyboard. As each of its first five output lines is activated in sequence, a scan signal is applied to an indi vi dual row of the keyboard through an inverter. If any key in the row being scanned is pressed, a si gnal is supplied to one of the col umm output lines to the RAM in integrated circuit IC19 on the control printed circuit board, and the key command is stored by the RAM Key sel ection is defined by a contbi nation of the row scan si gnal and the col um output line. The RAM can store up to a maxi mum of ei ght key commands, and it delivers this stored information to the microprocessor when it is read. Actuation of more than ei ght key commands without a read causes the RAM to be cleared.
e. Anal og DC voltage, which is proportional to the measured power level, is supplied from the control printed circuit board to drive the front panel meter to provide a relative indication of measured power for peaking and nulling applications. This al so supplies a DC anal og voltage to rear-panel connector P1. This signal can be used to drive an external recorder.

## 3-16. CALI BRATOR ASSEMBLY.

The circuits on the calibrator printed circuit board are used to devel op a 1.00 nW reference power level with a 50 -ohm source resistance. This reference level can be used for automatic calibration of the instrument.
a. The reference signal is generated by transistor oscillator Q1, which operates at a frequency of approximately 50 MHz . An aut onatic leveling circuit is used to mai ntain a constant reference power level. Leveling is achi eved by rectifying the oscillator out put signal in the signal level detector circuit, and comparing the resulting $D C$ voltage with a stable $D C$ voltage devel oped by voltage reference ICl. The difference voltage is amplified by operational amplifier Al, and the output level from the operational amplifier controls a varactor in a capacitive divider that determines the drive to the oscillator. The output of the operational amplifier adjusts the varactor effective capacitance as required to adj ust the drive to the oscillator in the direction and amount required to mai ntain a constant output level. A second capacitive divider at the output of the oscillator divides the oscillator output signal and tends to provide some isolation from the load. Because the source impedance of this divider is low, a 50 - ohm series resistor is used to establish the desired 50 -ohm source resistance. The out put reference power level signal is available at the front-panel POWER REF connect or.

## 3-17. REAR PANEL ASSEMBLY.

Input ac line power is supplied to the primary of power transformer T1 through fuse F1, line switch S1, and a line voltage sel ector switch. Power transformer T1 steps down the ac line voltage to two secondary wi ndi ngs. The secondary wi ndi ngs supply 34 VAC and 9.5 VAC to the power supply printed circuit board. Refer to Fi qure FO-1.

## 3-18. PONER SUPPLY MDDULE A7.

The power supply printed circuit board performs the following functions:
a. Converts 34 VAC and 9.5 VAC from the power transformer T1 to -5, +5, +5.2, +15 , and -15 volts dc for system operation.
b. Generates a power-up si gnal for the microprocessor when supply voltages reach the proper val ues for system operation.
c. Activates an interrupt signal to the microprocessor when supply voltages drop to level s too low for reliable operation.
d. The T1 secondary wi ndi ngs voltages are rectified by bridge rectifiers CR1 and CR2. The dc voltage supplied by CR1 is filtered by C1 and C2 and drives regul at ors IC2 and IC3 which devel op +15 and -15 volts, respectively. The regulated -15 volt supply al so drives regulator IC5 to devel op the -5 volt supply.
e. The dc voltage devel oped from CR2 is filtered by C3 and drives regul at or IC4 to produce +5.2 volts. R5 provides adj ustment for the +5.2 volt supply.
f. The unregul ated +15 volt supply al so drives regul at or ICl to produce +5 volts to power A1, IC6, and generate a voltage reference at the junction of R7 and R8.
g. The out put voltage of the +5 . 2 -volt regul ated $D C$ supply is monitored by comparator Ala to devel op a power-up signal on turn-on and an interrupt si gnal at undervoltage or power-down conditions. When the instrument is turned on, comparator Ala devel ops a positive output pulse when the out put of the $+5.2-\mathrm{vol} t$ regul at ed supply rises to a val ue approxi matel y $150 \mathrm{~m} /$ bel ow the nominal out put voltage; the exact power-up signal point is adjustable by means of potentioneter R11. The positive output pulse of comparator Ala clocks flip-flop IC6 to deactivate si gnal RESET to the microprocessor on the control printed circuit board. If the out put voltage of the +5 . 2 - volt regul ated supply should drop bel ow the reliable usable level during operation of the instrument and during instrument shut-down, comparator Ala switches its output level to a logic low, thereby activating signal NM to the microprocessor. The microprocessor activates signal HALT, which resets flip-flop IC6, thereby latching signal RESET Iow to ensure resetting of the microprocessor to the start of the program

## 3-19. I NTERFACE MODULE A23.

All data mani pulation and IEEE- 488 bus management are controlled by CPU A51C3 on the control board in conj unction with a microprogram stored in PROM A23U1 on the interface board. All data transfer is handled in parallel-to-parallel mode by adapter A23U4. Latch A23U5 handles transfer of bit switch data that defines the instrument address and message termination characters to the instrument data bus. Bi-directional buffers A23U6 and A23U7 handle data and control signal transfers, respectivel $y$, between adapter A23U4 and the interface buses.

When the instrument is turned on, the RESET line to adapter A23U4 is set Iow while capacitor A23C1 charges through pull-up network A23U1, thereby clearing the adapter. To initiate an interface transaction, signal ROMIF is set low by CPU A51C3, thereby enabling the out put of PROM A23U1. I nterface microprogram instructions from the PROM menory location specified by the address bits from the CPU are written onto the instrument data bus. The CPU executes these instructions and activates the control signals required to perform the commanded interface transaction.
b. Instrument address and message termination character data manually preset into bit switch A23S1 is supplied to latch A23U5. To read the switch data, control si gnal s RD and CSIF and address bit A6 are activated, thereby enabling the lat ch out put through gates A23U2C and A23U2b and inverter A23U3C. The switch data is then transferred through the latch to the instrument data bus.
c. To read incoming interface control signals, the CPU activates si gnal s RD and CSIF and sets address bit A6 low. The interface control signal port of adapter A23U4 is sel ected through address bits A0, A1, and A5. Adapter A23U4 is enabled through gate A23U2a. Because signal RD is active, signal TE supplied by the adapter to buffer A23U7 is inactive, and this buffer is set up for data transfer from the interface control signal bus to the control signal port of adapter A23U4. I ncoming interface control si gnals are transferred through buffer A23U7 and adapter A23U4 to the instrument data bus. Clocking of adapter operations is controlled by the clock si gnal from the instrument control board. Interface control signal transfer in the opposite direction is achieved by reversing the states of signals RD and WR. An active $W$ R causes signal TE to buffer A23U7 to become active, thereby reversing the direction of data flow through the buffer. Interface control signals from the instrument data bus are then written onto the interface control bus through adapter A23U4 and buffer A23U7. Interface control signals are defined as fol I ows:

| DAV | DATA VALI D |
| :--- | :--- |
| NRFD | NOT READY FOR DATA |
| NDAC | NOT DATA ACCEPTED |
| ATN | ATTENTI ON |
| I FC | I NTERFACE CLEAR |
| REN | REMDTE ENABLE |
| SRQ | SERVI CE REQUEST |
| EO | END OR I DENTI FY. |

d. To handle data transfers between the instrument data bus and the interface data bus, adapter A23U4 is similarly enabled through gate A23U2a by control signal CSIF and a low address bit A6. Address bits AO, A1, and A5 are set to sel ect the data port of adapter A23U4, and signals $W$ and RD specify the write and read functions. If data is to be written onto the interface data bus, signal $W$ R is activated, thereby activating signal TE to buffer A23U6. Data on the instrument data bus is then transferred through adapter A23U4 and buffer A23U6 to the interface data bus. For data transfers from the interface data bus to the instrument data bus, signal WR is inactive and signal RD is active. Si gnal TE to buffer A23U6 is deactivated by adapter A23U4 to reverse the direction of data transfer through the buffer.

## SECTION IV

## OPERATING INSTRUCTIONS

## 4-1. OPERATI NG CONTROLS, I ND CATORS, AND CONNECTORS.

The controls, indicators, and connectors used during the operation of the test set are shown in figure 4-1 fand listed in Table 4-1. The keyboard section of the front panel (Fiqure 4-2) is arranged in functional groupings, or FUNCTI ONS. Within the functional groupings are the indi vi dual keys which establish the operating parameters of the instrument:

| FUNCTI ON | KEY( S) |  |
| :--- | :--- | :---: |
| MODE | PVR; dB |  |
| RANGE | AUTO; HOLD |  |
| dB LI M TS | LO; HI |  |
| CAL FAC | dB; GHZ |  |
| SELECT | $\frac{\text { SENS }}{\text { S/N CHNL }}$ |  |
| REF LVL | $\underline{\text { SET }}$ |  |
| NUMERI CAL | O-9: (. ); CHS |  |

## 4-2. SENSOR CALI BRATI ON DATA

Calibration correction information for the sensor is witten into microprocessor storage at the factory before shi pment of the test set. A copy of this inf ormation is stored under the top cover. When the CAL FAC GHz function of the Instrument is used during measurement, the microprocessor reads and interpol ates the stored data on the basis of the specified measurement frequency, and corrects all measurement val ues accordingly. Also, gain and linearity data for each range is stored for each sensor.

## 4-3. PONER APPLI CATI ON

The instrument is designed for operation froma 100, 120, 220, or 240 volt, 50 to 400 Hz , single phase, ac power source. To apply ac power, proceed as follows:
(continued on page 4-5


Fi gure 4-1. Oper ating Controls, I ndi cat ors, and Connect ors

Table 4-1. Operating Controls, Indicators and Connectors

| $\begin{array}{\|c} \text { Fi gure 4-1 } \\ \text { and I ndex } \\ \text { Number } \end{array}$ | Control, I ndi cat or or Connectors | Function |
| :---: | :---: | :---: |
| 1 | LSN, ATN, REM and TLK i ndi cators | I ndi cates which renote function(s) is in use when the meter is operated by remote control: $\begin{aligned} \text { LSN } & =\text { Li sten } \\ \text { ATN } & =\text { At tent } i \text { on } \\ \text { REM } & =\text { Renot e } \\ \text { TLK } & =\text { Tal } k . \end{aligned}$ |
| 2 | Met er | I ndi cates power and $d B$ levels for peaking and nulling operations. |
| 3 | Channel 1, 2 and 3 (CH1, 2, and 3) | Di splays channel 1 in use. (Channel s 2 and 3 not applicable.) |
| 4 | LED di spl ay | Four di git LED display with minus sign and decimal point. Displays the following: <br> a. measured power or dBm <br> b. data entered or recalled, <br> c. error message. |
| 5 | mW $\mu \mathrm{W}$ and nW i ndi cat ors | Shows units of power when meter is in power node. |
| 6 | dBm and dBr i ndi cat or s | Shows $d B$ mode in use when meter is in $d B$ mode. |
| 7 | LIM i ndi cat or | III uminates when power level in $d B$ is outside sel ected dB limits. |
| 8 | REF LVL, $\frac{d B}{\text {. SET }}$ key | Provi des means to set and recall the $d B$ reference level, and to set the reference level to the current dBm reading. (Press . first to do the latter.) |
| 9 | $\frac{\text { CLR }}{\text { LCL }} \text { key }$ | Used for the following: <br> a. To clear incorrect entry shown by LED di splay, <br> b. To reduce $d B$ calibration factor or dB reference level to zero, <br> c. To return to keyboard control. |
| 10 | NUMERI CAL 0-9 keys | Used to enter data. |

Table 4-1. Operating Controls, Indicators and Connectors (Continued)

| Fiqure 4-1 |  |  |
| :---: | :---: | :---: |
| and Index Number | Control, Indicator or Connectors | Function |
| 11 | $\begin{aligned} & \text { SELECT } \\ & \frac{\text { SENS }}{. S / N} \end{aligned}$ | Used to enter and recall sensor number, $(1,2)$ and the sensor serial number. (Press . first to recall serial number.) |
| 12 | CHNL key | Used to enter and recall channel number. Only Channel 1 is used. |
| 13 | LINE switch | Used to tum AC line power ON and OFF. |
| 14 | CAL FAC dB key GHz key | Used to enter and recall adjustment factors in dB. <br> Used to enter and recall adjustment factors in frequency ( GHz ). |
| 15 | dB LIMITS LO key HI key | Used to enter or recall low dB limits. Used to enter or recall high $d B$ limits. |
| 16 | RANGE AUTO key HOLD key | Used to select automatic range mode. Used to select hold range mode.* |
| 17 | Decimal (.) key | Used to enter decimal point, and as a precursor to some other keys. |
| 18 | CHS key | Used to enter negative sign. |
| 19 | MODE PWR key dB key | Selects power mode on LED display. Selects dB mode on LED display. |
| 20 | PWR REF (power reference) connector | Supplies 1 mW level at 50 MHz to 50 ohm load. |
| 21 | SENSOR connector | Used to connect sensor. |
| 22 | CAL key | Used to adjust meter when sensor is connected to 1 mW source. |
| 23 | ZFRO key | Used to generate and store zero corrections for all ranges with zero input to sensor. |

*The range referred to here is the "internal" or hardware range.

Table 4-1. Operating Controls, I ndi cators and Connectors (Continued)

| Fi gure 4-1 |  |  |
| :---: | :---: | :---: |
| and I ndex Number | Control, I ndi cator or Connectors | Function |
| 24 | Connect or | Connector to IEEE-488 bus operation. |
| 25 | S1 switch | Used to select instrument address. |
| 26 | RECORDER Connect or | Used to provide an anal og DC voltage to a renote recorder. |
| 27 | P3 Connect or | Provides logic level signal s for input di sconnect during zeroing operations and hi gh and low dB limit signals during dB measurements. |
| 28 | LI NE VOLTAGE sel ector switch | Used to sel ect line voltage. |
| 29 | Power connector | Connection for power cord. |
| 30 | Fuse hol der | Cont ai ns fuse. |



Fi gure 4-2. Front Panel Keyboard Section
(Cont i nued frompage 4-1)
a. Determine the line voltage at the ac power out put receptacle.
b. Set the two slide switches on the rear of the meter to conform to the available ac line voltage (see Fi qure 4-1, Item 28).

Check the rating of the fuse in the rear-panel fuse hol der (see Figure 4-1, Item 30). For 100/ 120 volt operations, the fuse should be a 0.3 ampere, MDL SI o- Blo type. For $220 / 240$ volt operations, the fuse should be a 0.2 ampere, MDL Slo- Blo type. If the rating of the installed fuse is incorrect, remove it, and install a fuse of the required rating in the fuse hol der.

## WARNING

The instrument is designed to operate from a 3-terminal (one ground) ac power receptacle.
d. Connect the power cord between the ac power connector on the rear panel of the instrument and the ac power receptacle.

## 4-4. OPERATOR CFECKOUT.

## NOTE

- Wen the instrument is in the store or recall mode, the LED display and indi cator lights blink on and off. This warns the oper at or that the val ue di splayed is not a measured value. It is a value that has been recalled from memory or is to be entered into menory.
- References in the text to the following keys will be as shown:


## $\frac{\text { SENS }}{\text { S/N }}=$ SELECT SENS

 $\frac{\mathrm{dB}}{\mathrm{SET}}=$ REFLVL dB$$
\frac{\mathrm{CLR}}{\mathrm{LCL}}=\mathrm{CLR} .
$$

a. In some of the following procedures the instructions will require the operator to be familiar with the functional arrangement of the keyboard. The following examples will be hel pful :
(1) Exampl e: "Key in 0.2, CAL FAC dB."

The operator will be requi red to take the following steps:
(1) Sel ect "O" in the numerical function.
(2) Sel ect "." in the numerical function.
(3) Sel ect "2" in the numerical function.
(4) Sel ect "dB" in the CAL FAC function.
(2) Example: "Key in 1, CHS, REF LVL dB. 1"
(1) Sel ect "1" in the numerical function.
(2) Sel ect "CHS" in the numerical function.
(3) Sel ect "dB" in the REF LVL function.
b. To perform the operator checkout, proceed as follows:
(1) Set the LINE switch to the ON position.
(2) Check operation of the LED display and the numerical keys by pressing the following keys in the sequence listed and noting the LED display:

| Press | Di splay |
| :---: | :---: |
| CLR | 0000 |
| 0 | 0000. |
| 0 | 000.0 |
| 1 | 00.01 |
| 2 | 0.012 |
| 3 | 0123 |
| CLR | 0000 |
| 4 | 0004 |
| 5 | 0045 |
| 6 | 0456 |
| 7 | 4567 |
| CLR | 0000 |
| 8 | 0008 |
| 9 | 0089 |
| CHS | -0089 |
| CLR | 0000 |

(3) Enter measurement parameters by pressing the following keys:

1, SELECT CHNL
MODE dB
RANGE AUTO
0 , CAL FAC dB
O, REF LVL dB
90, CHS, dB LIMTS LO
(4) Connect the sensor cable to the front-panel SENSOR connector, and connect the sensor to the free end of the sensor cable. Note the sensor number indi cated on the barrel of the sensor, and enter this number through the numerical keyboard by pressing the numerical key corresponding to the sensor number, and then pressing the SELECT SENS key.
(5) Check to see that $d B m$ and $C H 1$ indi cators are lighted. If not, repeat paragraph 4-5b. (3) above.
(6) With zero input to the sensor (di sconnected), press the ZERO key. The neter will begin the zeroing process. The instrument di splay will show "cccc" or " - cccc" during the zeroing period. Upon completion of zeroing, the display will show "cc03" or "-cc03."
(7) Connect the sensor to the PWR REF connector. The LED di spl ay should indi cate approxi matel y 00.00 dBm If it does not, press the CAL key.
(8) Key in 0.2, CAL FAC dB. Press the CAL FAC dB key a second time. The LED di splay should change to approxi mately 00.20 dBm and blink.
(9) Key in O, CAL FAC dB. Press the CAL FAC dB key a second time. The LED display should change to approxi mately 00.00 dBm and blink .
(10) Key in 1, CHS, REF LVL dB. Press the REF LVL db key a second time. The LED di splay should indi cate approxi mately -01.00 dBr , and blink.
(11) Key in 1, REF LVL dB. Press the REF LVL dB key a second time. The LED di splay should indi cate approxi mately 01.00 dBr , and blink .
(12) Key in 5, dB LIMTS HI. The LIM indicator should be off.
(13) Key in 5, CHS, dB LIMTS LO. The LIM indicator should be off.
(14) Key in.5, dB LIMTS HI. The LIM indicator should stay off.
(15) Key in. 5, CHS, dB LIMTS LO. The LIM indi cator should light.
(16) Key in O, REF LVL dB. Press REF LVL dB a second time. The LED di splay should indicate 00.00, the LIM indicator should be off, and the dBmindi cator should I ight.
(17) Press the MDDE PWR key. The LED di splay should indicate approxi mately 1. 000 nW
(18) Di sconnect the sensor fromthe PVR REF connector.

## 4-5. OPERATI NG I NSTRUCTI ONS.

## 4-6. MEASUREMENT PARAMETERS.

Measurement parameters are entered into the microprocessor through the frontpanel keyboard. In order to eliminate the need for repeated programming, parameters entered through the keyboard are stored in non-volatile memory, and the stored parameters are unaffected by instrument turn-off and turn-on. The last parameters entered will affect the next measurement taken.

## 4-7. USE OF NUMERI CAL KEYS.

The numerical keys are used to enter numerical val ues for dB LIMTS, CAL FAC, SELECT, and REF LVL dB functions. Whenever any numerical key is pressed, the microprocessor interrupts the measurement operation to accept new data. Numerical val ues are keyed in normal sequence, and keyed-in val ues enter the LED display from right to left. Up to four digits, pl us decimal point and minus sign, can be entered; entries exceeding four digits are ignored. Pressing the decimal point key places a decimal point after the right-most digit in the LED display. Pressing the CHS key changes the sign of the entry in the LED display; that is, pl us becomes minus, or minus becomes pl us (the pl us sign is not displayed). If an error is made
during entry of numerical val ues, press the CLR key and repeat the data entry process. When the LED di spl ay shows the desired numerical val ue, pressing the applicable dB LIMTS, CAL FAC, SELECT, or REF LVL dB key will cause the microprocessor to store the keyed-in parameter and return automatically to the measurement cycle. Recall of the last entered val ues is accomplished by depressing the dB LIMTS HI, dB LIMTS LO, CAL FAC dB, CAL FAC GHz, SELECT CHNL, SELECT SENS, or REF LVL dB keys, as applicable. Recalling of the sensor serial number is done by pressing., SELECT .S/N. The value stored for the sel ected parameter is displayed on the LED display. When a recall is performe, the instrument remains in the recall state until either a MODE key or a RANGE keyis depressed; the instrument then returns to the operating state

## 4-8. SELECT FUNCTI ON

The SELECT keys are used by the operator to specify the number of the sensor to be used for measurements, and the measurement channel.

## NOTE

For normal operation, the channel and sensor must be sel ected before any operation is performed; however, the channel must be sel ected bef ore the sensor is sel ected.

The AN/ USM- 491 cont ai ns onl y one measurement channel. This measurement channel is desi gnated channel 1, and the front-panel SENSOR connector provides the input to this channel. To select the sensor, press the 1 and SELECT CHNL keys, then press 1 and SELECT SENS.

## 4-9. MDDE SELECTI ON

The MODE keys enable the operator to sel ect the desired measurement mode. When the MODE PWR key is pressed, measured power levels are displayed in mW $\mu \mathrm{W}$ or nW the annunciators associated with the LED display light accordingly to distinguish the appropriate unit. When the MDDE $d B$ key is pressed, measurement val ues are displayed in terms of $d B$ with respect to an operator-entered dB reference level. If $\mathrm{O} d B$ had been chosen as the reference level, the di splayed numerical val ues represent dBm and the dBm annunciator is lighted; sel ection of any other dB reference level causes lighting of the dBr annunci ator, and displayed measurement val ues represent $d B$ with respect to the sel ected reference level. Resol ution of the instrument in the $d B$ mode is 0.01 dB .

## 4-10. RANGE SELECTI ON

The RANGE keys enable the operator to sel ect either automatic ranging or a range hold function. The automatic ranging function, which is nost effective when measuring unknown or wi de varying power levels, is activated by pressing the RANGE AUTO key, and the microprocessor then selects the appropriate measurement range aut omatically. If input power level s exceed the upper measurement limit of the i nstrument, an error indication (cc04) appears on the LED display; if input power level s are bel ow the low measurement limit of the instrument, the instrument di spl ays cc03. Ranging time is a function of a number of factors such as absol ute level, change in level, anal og response time, and direction of change. The range
hol d function is useful when a series of measurements of approxi matel y the same power level are to be made; sel ecting this mode eliminates del ays due to ranging time. The range hol d function is usef ul onl $y$ in the PWR mode. When the RANGE HOLD key is pressed, the instrument remains on the measurement range that was active at the time the key was pressed. Input power level s that exceed the upper limit of this range cause an error indi cation (cc04) on the LED display; input power levels bel ow the low limit of this range result in fewer significant digits in the LED display. If the minimum capability of the instrument is reached, the instrument di splays cc03.

## 4-11. dB LIM TS SELECTI ON

The dB LIMTS keys enable the operator to program high and Iow dB limits into the instrument. Input power levels outside these limits will cause lighting of the LIM annunciat or and activation of out-of-limit signals at rear-panel connector P3 for renote operation.
a. Limits are entered by keying in the numerical val ue in dB, using the num erical keys, and then pressing the dB LIMTS LO or dB LIMTS Hl key, as applicable.
(1) Example: To enter a low limit of -31.34 db , press the following keys:
31. 34

CHS (negative sign on LED)
dB LIMTS LO.
b. The dB limits al ways test against the val ue displayed. If the measurement is in dBm(O, REF LVL dB), the limit is in dBm If any val ue other than O dB is chosen for the reference level, the limits operate in dBr (rel ative dB ), which is the displayed val ue. If it is desired to have the limits operate on dBm when the reference level is other than O dBm the val ue entered as the reference level should be subtracted al gebrai cally from the desired dBmlimits (reverse the sign of the reference level $d B$ and add al gebrai cally to the desired limit in dBm.
(1) Exampl e: If a desired low dBmlimit is -31.34 and the reference level is -15.3 dB, subtracting the reference level fromthe low limit will result in a new low limit of -16.04 dB .
c. The dB limit function is al ways operative in the instrument. For all practical purposes, it can be cancelled, if desired, by entering a high limit of 90 dB and a low limit of -90 dB .

## 4-12. CALI BRATI ON FACTOR SELECTI ON

## NOTE

This calibration procedure should not be misconstrued with calibration in accordance with TB 43-180.

The sensor is frequency sensitive; that is, with a constant input power level applied, its out put signal level does not remain constant as the measurement frequency is changed. The CAL FAC keys provide means for introducing a calibration
factor in terms of one or two parameters, either the actual $d B$ calibration factor, or the measurement frequency.
a. A calibration chart is attached to the barrel of the sensor, and the calibration factor in $d B$ for the measurement frequency bei ng used can be obtained from this chart. This dB calibration factor can then be entered into the instrument, using the numerical keys and the CAL FAC dB key, and the microprocessor will correct all subsequent measurements, both $d B$ and power, automatically in accordance with the dB calibration factor entered.
(1) Exampl e: To enter a dB calibration factor of -0.3 dB ; press the following keys:

```
0. }
CHS (negati ve si gn on LED)
CAL FAC dB.
```

b. Wen the sensor number and the measurement frequency are entered through the keyboard, the microprocessor computes the required correction from the stored data and corrects subsequent dB and power measurements accordingly. The sensor number is entered using the SELECT function described in paragraph 4-7, and the measurement frequency is entered using the numerical keys and the CAL FAC GHz key. To recall the last entered frequency for display, press the CAL FAC GHz key; to determine the calibration factor value for this frequency, press the CAL FAC dB key. Press a MODE key or a RANGE key to return the instrument to the operating mode.
(1) Example: To specify a measurement frequency of 3.3 GHz , press the following keys:
3. 3

CAL FAC GHZ

## 4-13. REFERENCE LEVEL dB SELECTI ON

The instrument normally uses 1 mW 50 ohns as a reference for computing dBm measurement val ues; the dBm annunciator is lighted during such operation. The REF LVL dB key, used in conj unction with the numerical keys, enables the operator to sel ect any other desired $d B$ reference level; subsequent level indications are with respect to the sel ected reference, and this display mode is indicated by lighting of $t$ he dBr annunciator.
a. A dB reference level is entered by keying in the desired numerical val ue in dB , using the numerical keys, and then pressing the REF LVL dB key.
(1) Example: To enter a dB reference level of -15.3 dB ; press the following keys:
15. 3

CHS (negative si gn on LED)
REF LVL dB.

## NOTE

At this point, dBm annunciat or should be "OFF" and dBr annunci at or lighted.
b. To ret urn to the dBm measurement display mode, enter a O dB reference l evel, or press the CLR and REF LVL dB keys. At this poi nt, dBm annunci at or should be I ighted, and dBr annunci at or "OFF."

## NOTE

> The maxi mum di spl ay capability of the LED di spl ay is $\pm 99.99 \mathrm{~dB}$. When oper ating in the dBr mode, keep this fact in mind. Avoid choice of dB reference l evel s that will result in di spl ay val ues that exceed the LED displ ay capacity. Keyboard entri es beyond the capability of the instrument produce error i ndi cations (ccol or cc02 for entries too small or too large, respectively.)

The di spl ayed dBm nay al so be used as the reference level. This is accompl ished by first depressing the decimal point key and then the REF LVL dB key. The display will i ndi cate 00.00 showing that the previ ously di splayed dBm l evel has now become the reference level. Thi s reference may be recalled by pressing the REF LVL dB key; it can be cleared by depressing the CLR and the REF LVL dB keys.

## NOTE

- This entry method utilizes the current dBmlevel, and would repl ace any previ ousl y entered $d B$ ref er ence l evel.
- This procedure of entering the exi sting dBm level as the dB reference level is not operative in IEEE-488 bus interface operation.


## 4-14. ENTRY LI M T VALUES.

## NOTE

If entry limits are exceeded, an error may occur, or in some cases the unit defaults to a max/min.

Paramet er
Cal i bration Fact or (dB)
Cal i br at i on Fact or ( GHz) CAL FAC GHz
Ref er ence Level (dB) REF LVL dB

## Limits

3. 00 to -3.00
4. 1 GHz to 999 GHz (0.1 GHz increments)
+99. 99 to -99. 99 (. 01 dB i ncrements)

Par ameter
dB Limits (l ower) dB LIMTS LO
db Li mits (hi gher)

Key
dB LIMTS HI

## Limits

+99.99 to -99.99 (. 01 dB increments)
+99. 99 to -99.99 (. 01 dB increments)

## 4-15. RECALL OF ENTERED VALUES.

The last entered val ue for each of the corresponding functions may be recalled for display on the LED di splay by pressing the following keys:

| dB LIM TS LO | SELECT | SENS | CAL FAC dB |
| :--- | :--- | :--- | :--- | REF LVL dB

## NOTE

When the instrument is in the recall mode, the LED display and the annunciators will blink on and of $f$.

After any of the above keys are pressed, the instrument remai ns in the recall mode. To ret urn to the operating mode, press any of the MODE keys or RANGE keys.

## 4-16. ZERO NG THE I NSTRUMENT.

For greatest accuracy, especially on the most-sensitive ranges, the instrument must be zeroed. Zeroing is accomplished by depressing the ZERO key with zero power applied to the sensor.
a. The zeroing period is composed of two parts. When the ZERO key is depressed, a range-dependent "waiting period" occurs first; it is followed by the actual zero acqui sition for each range. The purpose of the waiting period is to permit the sensor, and the instrument's anal og and di gital circuits, to reach a clear (zero) state. The hi gher the level of the signal prior to zeroing, the I onger the waiting period required.

## NOTE

> Wen the instrument is first turned on, two successive zeroing operations should be performed.
b. A TTL-compatible signal (true high), marking the beginning of the zeroing oper ation, is available at Pin 3 of P3 on the rear panel. If this signal is utilized to remove incoming power to the sensor, the waiting period will aut omatically become range-dependent. If this TTL signal is not utilized, the same results can be achieved by depressing the ZERO key immediatel y before removing the incoming signal from the power sensor. If the incoming signal is removed prior to depressing the ZERO key, the instrument will i mmedi ately begin down-rangi ng -whi ch would result in a shorter waiting period than is desirable. In such an event, a second zeroing operation should be used.

## NOTE

If the rear-panel (Pi n 3, P3) power-removal signal is not utilized, si gnal power must be removed i mmedi ately following depression of the ZERO key. If si gnal power remai ns connected to the sensor during the zeroing operation, an erroneous set of zeroes will be generated.
c. During the warmup period, and whenever anbi ent conditions are changing, the instrument should be zeroed frequently if the lowest ranges (i.e., hi ghestsensitivity ranges) are being used.
d. The displ ay during the zer oing period will indi cate cccc. On compl et i on of zeroing, and if no si gnal is bei ng applied to the sensor, the di splay will indi cate cc03. If a signal is being applied, and if the rear-panel (Pin 3, P3) powerdi sconnect si gnal is being utilized, the display will indicate the power being supplied to the sensor.
e. The approxi mate zer oi ng times, incl uding the "waiting periods, " are listed bel ow.

| dBm | Zeroing Ti me |
| ---: | :---: |
| +30 | 22 |
| +20 | 20 |
| +10 | 18 |
| 0 | 16 |
| -10 | 14 |
| -20 | 12 |
| -30 | 10 |

## 4-17. COMPENSATI NG THE I NSTRUMENT.

The instrument incorporates a power reference and automatic adjust ment facilities for fine sensitivity corrections. Sensitivity corrections are limited to a maxi mum of approxi mately $\pm d B$ from the original, factory-set val ues as a precautionary measure. This feature protects agai nst gross miscal ibration whi ch might occur if compensation were attempted with a power level ot her than that supplied by the power reference applied to the sensor. If computed corrections, from the fact ory-set val ue, exceed approxi mately $\pm d B$, the instrument rejects the sensitivity correction and reverts to its previous sensitivity. To use the compensation function, proceed as follows:
a. Press the PWR MODE and RANGE AUTO keys.
b. Press numerical key that represents the measurement channel, and the SELECT CHNL key.
c. Press numerical key that represents the number of the sensor, and the SELECT SENS key.
d. Press " O " and CAL FAC dB keys.
e. Connect sensor to the PWR REF connector.
f. Press the CAL key. The LED di splay should indi cate $1.000 \pm \mathrm{W} \pm 0.1 \%$

## 4-18. ERROR MESSAGES.

Under certain conditions, the LED display returns error messages as follows:

| Di splay | Condition |
| :---: | :---: |
| cc01 | Illegal entry, too low |
| cc02 | lllegal entry, too high |
| cc03 | Si gnal level out of range (low) |
| cc04 | Si gnal l evel out of range (high) |
| cc05 | Zero acqui sition out of range-excessive negative offset (har dware mal function) |
| cc06 | Zero acqui sition out of range-excessive positive offset too $\operatorname{large).}$ |

## 4-19. MEASUREMENTS.

## 4-20. MAK NG POVER MEASUREMENTS.

Set measurement parameters described in paragraphs 4-5 through 4-17 as required before making power level measurements. Connect the sensor to the source whose power level is to be measured. The power level will be displayed directly on the LED display. Use the CAL FAC dB or CAL FAC GHz keys as required.

Example: To measure an unknown power level at 4.5 GHz , press the following keys:

1, SELECT CHNL
1, SELECT SENS
ZERO
MDDE PVR (or dB) RANGE AUTO
4. 5, CAL FAC GHz

## 4-21. WAVEFORM SENSI TI V TY.

The detection for di ode sensors is square-law (true RMS) over the bottom two thirds (roughly) of thei $r$ range and peak detecting at the top, however, the instrument is calibrated for sinewaves over the entire region. Therefore, measurements at the top are valid only for non-modulated (CW) signals. In the RMS regi on, the linearity error is extremely good and any signal type can be measured, i ncl udi ng AM FM and PM modul at ed si gnal s. (FM and PM si gnal s wave a constant envel ope and the RMS restriction doesn't apply.) The RMS regi on for the sensor is up to OdBm
a. Pul sed RF can al so be measured for either rectangular or compl ex envel opes, as Iong as the peak instantaneous RF power averaged over 1 cycle of RF does not exceed the RMS wi ndow limits specified above. The meter responds to average power,
so for rectangul ar envel opes, the peak power can be cal culated by di vi di $n g$ the meter reading by the duty cycle, where duty cycle is expressed as a fraction from O tel.

## 4-22. H GH LEVEL MEASUREMENTS.

Zeroing of the instrument is not critical when making high-level measurements ( $100 \mu \mathrm{~W}$ to 1 W . CW and FM power measurements can be obtai ned within the specified accuracy up to 1W

## 4-23. H G+ FREQUENCY MEASUREMENTS.

At frequencies above 1 GHz , the appropriate sensor calibration factor must be entered through the keyboard if the specified accuracy of the instrument is to be realized. (Ref er t paragraph 4-11.)

## NOTE

The sensor is adjusted for use with a 50 -ohm source. I mpedance mismatches will increase SWR and affect measurement accuracy. This effect can be reduced by inserting a low SWR attenuator (SWR Iess than 1.10) or a I ow Ioss tuner between the source and the sensor.

## 4-24. TEMPERATURE EFFECTS.

Specified instrument accuracies apply over an anbient temperature range of $21^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Operation outside this temperature range causes some additional error. Refer to Table 1-1 for accuracy versus temperat ure. Fi qure 4-3 shows typi cal temperat ure characteristics of the sensor, and Figure 4-4 shows typi cal temper at ure characteristics of the instrument and sensor conbi ned. Handling the sensor may cause its temperature to rise a few degrees.

## NOTE

For best zero stability of the instrument, allow the instrument and sensor to reach a stable temperature.

## 4-25. STANDI NG MAVE RATI O MEASUREMENTS.

The Standing Vave Ratio (SWR) is found by measuring the dB difference between a maxi mum and a mi ni mum power poi nt on a slotted line, and cal culating SWR. An adapter is required to couple the sensor to the slotted line. To make slotted line SWR measurements, proceed as follows:

Connect the sensor to the sliding carriage, using a suitable adapter (usually available from the slotted line manufacturer).
b. Zero the meter with the signal source turned off.


Fi gure 4-3. Typical Temperat ure Characteristics of the Sensor


Fi gure 4-4. Typi cal Conbi ned Temper at ure Characteristics of I nstrument and the Sensor
c. Turn on the si gnal source and slide the carriage al ong the slot ed line until a maxi mum power is indicated. Adjust the source signal level and the probe setting for the least coupling that yi el ds a -41 dBm reading at the maximmpoint (the incident power should be at least O dBn ).
d. Slide the carriage al ong the sl otted line until mi mim power is i ndi cated. Read the level at this point. Subtract the measured level at the mi ni mum poi nt for the level at the maximum point. I gnore the signs. Use the SWR Conversi on Chart to convert the result into SWR (See Figure 4-5). The change in dB may be converted into SWR by computation. SWR is the antilog, base 10, of change dB/ 20.

$$
\operatorname{SWR}=\log _{10}^{-1} \frac{\mathrm{~dB}}{20}
$$



CEOWB08
Fi gure 4-5. dB- SWR Conversi on Chart

## 4-26. SH ELDI NG RECOMMENDATI ONS.

If the test set is subjected to strong noi se fields, accurate zeroing may be difficult unl ess the sensor is shi el ded during the zeroing operation. The si mpl est method of shi el ding is to connect the sensor to the device whose power level is to be measured, first making sure that the device is turned off; however, in some instances, the devi ce may act as an antenna and introduce additional noi se voltage into the sensor. If this happens, di sconnect the sensor from the device, stand the
sensor, end down, on a copper plate, and hold it down firmy so that the rim of the sensor connect or makes good contact with the copper plate at all points. Alternatively, wrap a piece of thin copper foil around the threaded portion of the connector body, and crimp the foil around the open end of a female bul khead type N connector, making certain that the center pin of the connector is not shorted. If frequent zeroing in strong noi se fields is necessary, construct an adapter, using a Type N connector permenently fitted with a copper foil shield.

## 4-27. ANALOG OUTPUT.

A dc voltage proportional to either power or dBmis available at rear panel recorder connector J 20 for recorder or other applications. This out put voltage will be affected in both power and dB modes by calibration factor entries. The source resistance of the recorder output is 9.09 K ohns, permitting a current of 1. 00 mA into a load of 1000 ohns at full scale power. The open circuit output levels for various measurement modes are as follows:
a. In the power mode, the dc output level is proportional to the displayed power, with 10 volts at full scale for each range. The range referred to here is the di spl ayed, or "external " range.
b. In the $d B$ mode, the dc output level is proportional to dBm according to the for mul a

$$
\mathrm{V} \text { OT }=\frac{\left(8 \frac{+\mathrm{dBm})}{10} \text { vol ts } .\right.}{}
$$

(1) Exampl e: The voltage output at -20 dBm woul d be:

$$
\left(8+\frac{-20)}{10} \text { volts }=6\right. \text { volts. }
$$

This output is a function of dBm onl y, but is affected by CAL FAC entries. (The recorder out put mimics the di splayed power, without includi ng dBr ).

## 4-28. I EEE-488 BUS I NTERFACE.

a. The test set contai ns an IEEE-488 (GPIB) bus interface to permit external control of the test set, as well as data capture by a wide variety of compatible controllers.
b. It is assumed that the user is acquai nted with GPIB principles and terminol ogy. Refer to the controller instruction manual for the syntax needed to create specific bus commands and addressing sequences.
c. The renote programming syntax mirrors the front-panel keystroke sequence closely. Each key has been assigned an al phanumeric character, and sendi ng that character is equivalent to pressing that front-panel key. The resulting operation is indistingui shable from local control. Numerical val ues are translated by the GPIB interface so that commonly observed fornats may be used.

## 4-29. REMDTE ADDRESS ASSI GNMENT.

Before using a remote control device with the AN USM 491, the device must be assigned a uni que address. Refer to Table 4-2 and set the five right-nost sections of switch S1 (see figure 4-1,_litem 25) to assign the address.

Table 4-2. Address Assi gnment

| *Decimal Address | Talk Code | Listen Code | Switch Setting |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 5 | 4 | 3 | 2 | 1 |
| 0 |  | SP | 0 | 0 | 0 | 0 | 0 |
| 1 | A | ! | 0 | 0 | 0 | 0 | 1 |
| 2 | B | " | 0 | 0 | 0 | 1 | 0 |
| 3 | C | \# | 0 | 0 | 0 | 1 | 1 |
| 4 | D | \$ | 0 | 0 | 1 | 0 | 0 |
| 5 | E | \% | 0 | 0 | 1 | 0 | 1 |
| 6 | F | \& | 0 | 0 | 1 | 1 | 0 |
| 7 | G | 1 | 0 | 0 | 1 | 1 | 1 |
| 8 | H | ( | 0 | 1 | 0 | 0 | 0 |
| 9 | I | ) | 0 | 1 | 0 | 0 | 1 |
| 10 | J | * | 0 | 1 | 0 | 1 | 0 |
| 11 | K | + | 0 | 1 | 0 | 1 | 1 |
| 12 | L | , | 0 | 1 | 1 | 0 | 0 |
| 13 | M | - | 0 | 1 | 1 | 0 | 1 |
| 14 | N |  | 0 | 1 | 1 | 1 | 0 |
| 15 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 16 | P | 0 | 1 | 0 | 0 | 0 | 0 |
| 17 | Q | 1 | 1 | 0 | 0 | 0 | 1 |
| 18 | R | 2 | 1 | 0 | 0 | 1 | 0 |
| 19 | S | 3 | 1 | 0 | 0 | 1 | 1 |
| 20 | T | 4 | 1 | 0 | 1 | 0 | 0 |
| 21 | U | 5 | 1 | 0 | 1 | 0 | 1 |
| 22 | V | 6 | 1 | 0 | 1 | 1 | 0 |
| 23 | W | 7 | 1 | 0 | 1 | 1 | 1 |
| 24 | $X$ | 8 | 1 | 1 | 0 | 0 | 0 |
| 25 | Y | 9 | 1 | 1 | 0 | 0 | 1 |
| 26 | Z | : | 1 | 1 | 0 | 1 | 0 |
| 27 | [ | ; | 1 | 1 | 0 | 1 | 1 |
| 28 | $\backslash$ | $<$ | 1 | 1 | 1 | 0 | 0 |
| 29 | ] | $=$ | 1 | 1 | 1 | 0 | 1 |
| 30 | $\Lambda$ | > | 1 | 1 | 1 | 1 | 0 |

*Address 31 (11111) will not be recogni zed and should not be used.

## 4-30. REMOTE MESSAGE TERM NATOR.

After setting the address assi gnment, refer tb Table 4-3 and set the two I eft-most sections of switch S 1 ( see Fiqure 4-1, Item 25) to sel ect message termi nat ors.

Tabl e 4-3. Message-Ter min nat or Sel ect i on

| SWITCH |  | MESSAGE |
| :---: | :---: | :---: |
| 7 | 6 | TERMINATOR |
| 0 | 0 | EOI |
| 0 | 1 | CR $^{\star}$ |
| 1 | 0 | LF* |
| 1 | 1 | CR LF* |

*W th or without EOI

## 4-31. REMDTE COMMAND RESPONSE.

In addition to Talk and Listen Address commands, the instrument responds to the foll owing commands:
a. Addressed Commands (Responses if Li sten Addressed).

Mnemoni c Nare
GTL Go to Local Enables panel control
GET Group Execute Trigger Trigger a measurement
SDC Sel ective Device Clear Clears, J, U, Q, and V commands
b. Li sten Address Group

UNL Unl isten De-address as Iistener
c. Tal k Address Group
UNT Untal k
De-address as tal ker
d. Unencoded Commands

IFC Interface Cl ear Initialize interface
REN Remote Enable Permits remote operation

## 4-32. REMDTE OPERATI NG STATES.

The instrument oper ates in two separate states, whether in local or remote control. One state is the measurement state, during whi ch the instrument per-
forns and displays measurements; the other state is the data entry/recall state, which is operative during number entry or after recall of stored information. When remotel y operated, the instrument can send only the Information which appears on the LED display. When the instrument is in the store or recall node, the LED display and indicators will blink, indicating the displayed val ue is not a measured val ue.

## 4-33. REMOTE MEASUREMENT MDDE FUNCTI ONS.

Table 4-4 Iists and describes the functions that change the measurement mode when operating the instrument by remote control.

Table 4-4. Measurement Mbde Functions

| Keyname/ Functi on <br> PVR MODE <br> dB MDDE <br> AUTO <br> Command | Descripti on |
| :--- | :---: | :--- |

Table 4-4. Measurement Mbde Functions (Conti nued)

| Keyname/ Funct i on | Renote Command | Description |
| :---: | :---: | :---: |
| Hol d I ndi cation | 1 Q ( enabl ed) 0 Q ( di sabl ed) | This command, when enabled, aut omatically invokes an initial T command (i.e., following its recei pt, one measurement is made and the indication is held). The instrument continues the measurement process, but does not update the display until receipt of a T, 1Q or OQ command. Thi s provi des a faster measurement cycle because di splay-update time is el iminated until an update is commanded with the $\mathrm{T}, 1 \mathrm{Q}$ or OQ commands. |
| Servi ce Request ( SRQ ) |  | Thi s command, when enabl ed, provides for the issuance of an SRQ (Service Request) at the completion of a measurement. The commend must be reenabled, if desired, following each issuance of the SRQ. |
| Limit Service Request | $1 U$ ( enabl ed) $0 U$ ( di sabl ed) | This command, when enabled results in the issuance of a Service Request (SRQ) whenever a limit is exceeded. The limit exceeded can be determined from the service request byte. |
| CLR |  | When operating with the remote i ndi cator on, pressing this key ret urns the instrument to local operation. |

## 4-34. REMDTE DATA ENTRY/ RECALL FUNCTI ONS.

Table 4-5 ists and describes those functions that enable entry or retrieval of data in the instrument. Operation reverts to the measuring state after data storage.

## 4-35. REMDTE SPECI AL FUNCTI ONS.

Special functions include the automatic zeroing, automatic calibration, and clear functions, as listed bel ow.

| Key <br> Name | Remote <br> Command | Function |
| :--- | :--- | :--- |
| ZERO | Initiates an aut omatic zeroing cycle that takes 8 <br> to 20 seconds. |  |


| Key | Renote |  |
| :---: | :---: | :---: |
| Name | Command | Function |
| CAL | K | Performs 1 nW automatic calibration. |
| CLEAR | C | Clears numeric entry to zero. |

Table 4-5. Renote Data/Entry Recall Functions

| Keyname/ <br> Function | Renot e Command | Description |
| :---: | :---: | :---: |
| LO LIMT | L | Low limit val ue, in dB. |
| Hi LIMT | H | High limit value, in dB. |
| dB CAL FAC | D | Cal ibration factor constant, in dB. |
| GHz | F | Interpol ate frequency/calibration factor table. |
| SENS | S | Sel ect sensor data tables. |
| CHNL | N | Sel ect channel number. |
| dB REF | R | dB reference level for dB mode. |
| Unsoothed Data | J | Sending this command recalls its state on the front panel di splay ( $1=$ enabl ed; $O=$ di sabled). |
| Li mit Service Request | U | Sending this command with no argument recalls its state on the front panel di splay ( $1=$ enabl ed; $O=$ di sabl ed. ) |
| Service Request | V | Sending this command with no argument recalls its state on the front panel display ( $1=$ enabl ed; $\mathrm{O}=$ di sabled). |

## 4-36. REMDTE COMMADD EXTENSI ONS.

The following functions are added to bus operation:

Name
ADR. ZERO
SET RANGE

Remote Command

Y
G

## Function

Zero sel ected ranges ( $0-6$ ).
Set to sel ected range ( $0-6$ ).

These commands must be preceded by an appropriate argument. The argument for y is the span of ranges to be zeroed; for example, 26 specifies zeroing ranges 2 through 6. If only one range is to be zeroed, the argument must begin and end with the
same code (e.g., 11Y to zero only range 1). The argument for $G$ is the range number to be set. From execution of the $Y$ command to measurement mode, the maximum time is as follows:

Command

00Y
01Y
02Y
03Y

Ti me
2. 3 seconds
2. 9 seconds
3. 3 seconds
3. 5 seconds

Command

04Y
05Y
06Y

Time
3. 8 seconds
4. 0 seconds
4. 3 seconds.

The "Y" command allows no wait time for a sensor to reach a stable zero bef ore actual offset storage occurs.

## NOTE

The G command sets the instrument to an internal range whi ch may not correspond to the range code out put in the data string in paragraph 4-40.

The internal range is the range that the amplifiers are set to and is shown in the Table 4-6. The external, or displayed range, reflects the position of the deci mal point and the instrument annunci ators.

Table 4-6. I nternal Range for Various Sensor Levels

| SENSOR LEVEL | I NTERNAL HARDWARE <br> AN/ USM 491 RANGE |
| :---: | :---: |
| +30 to +24 dBm | 6 |
| +24 to +8 dBm | 5 |
| +8 to -3 dBm | 4 |
| -3 to -13 dBm | 3 |
| -13 to -23 dBm | 2 |
| -23 to -33 dBm | 1 |
| -33 to $-\nexists$ | 0 |

## 4- 37. REMDTE AVAI LABI LI TY.

When the instrument is sent a string, it does not normally tie up the bus while responding to the string; other bus communi cations are possible during the interval. The instrument can inform the controller when it is fini shed by use of the Service Request (see Table 4-4), if this is desired.
a. The i nstrument can, however, be made to lock up the bus while it is responding to a string - if such action is desired - by sending it two strings in succession (even if the second string is only a Null command).
(1) Exampl e: A "zero" command: WRT 716, "Z"

Foll owed by a "talk" command: RED 716, A, B, C.

## 4-38. PROGRAMM NG EXAMPLES.

## 4- 39. REMDTE PROGRAMM NG SYNTAX.

Fi xed formats and floating point formats may both be used. These representations are converted to their equivalent fixed point val ues, and the sign inf ormati on is post-fixed aut omatically, thereby ensuring that nat ural not ations for numbers will be accepted by the instrument. Suppose that it is desired to set the instrument to the PWR mode. The examples given apply to the HP 9825 cal cul at or (or equi val ent). The cal cul at or could be programmed:

```
wrt 716, "P"
```

The "wrt" i nstructs the calculator to send data on the bus to one or more i isteners. The number following is the address information; 7 is the calcul at or address, and 16 is the instrument address. (All examples herein will use 16 as the instrument address, although any val id address can be assi gned to the instrument.) When the cal cul at or interprets the first part of the line, it will assert the ATN line to si gni fy that commands or addresses will be sent on the bus. Following that, it will send three bytes or characters: Unlisten, the cal cul at or Talk Address, and the instrument Listen Address. This information will configure both the cal cul at or and the instrument for the data transfer. After the last command byte has been accepted, ATN will be rel eased to the fal se state by the cal cul at or. All inf ormation on the bus is interpreted as data in this mode. Wile in the data mode, the cal cul at or will send the character "P" to the instrument. At the i nstrument, this will be interpreted as equi val ent to pressing the MDDE PWR key, and that function will be executed. Because there is no more data to be sent, the cal cul at or will send a delimiter (the preselected ASCll code for the termination character). The instrument recognizes the termination character as an end-ofmessage si gnal, and returns to the bus idle condition.
a. The preceding di scussi on of the sending of a single programming byte serves to illustrate two important points: every data transfer is preceded by a command/ address preamble, and each transfer is term nated by a termination character. In the preceding example, six characters were sent on the bus; only one was a programming byte.
b. The measurement mode functions ( $P, B, A, O$ ) and the special functions ( $Z, K$ ) do not expect any numeric value. These functions all execute as recei ved. For example: the following will program dB and autorange mode:

```
wrt 716, "BA"
            or
wrt 716, "AB"
```

Note that the sequence is uni mortant, except that each function executes in the order it is recei ved on the bus.
c. Suppose that the instrument is to be zeroed automatically, and then asked to send the readi ng in the PWR and RANGE AUTO mode. The HP 9825 cal cul at or could be instructed as follows:

```
wrt 716, "APZ"
```

red 716, V, S

The aut omatic zeroing cycle time is approximately 8 to 20 seconds, depending on range. Until zeroing is completed, the instrument will be unable to respond with new data. The first line of the preceding instructions sets the operating mode and initiates the zeroing cycle. The last line reads the response from the instrument. The instrument response consists of two numeric val ues: the first val ue is the front panel reading, and the second is a stat us val ue (normally zero). These two numbers will be stored in the calculator variables (storage locations) V and S . Note that each data transmission fromthe instrument consists of two val ues. When the status val ue is non-zero, indicating an error condition, the data value will be set to zero. The program will normally test the status value to assure valid operating conditions.

## 4-40. STORE/ RECALL FUNCTI ONS SYNTAX.

The general syntax for store/recall functions is the same as the front panel sequence; if a numeric val ue immediately precedes the function, that value will be stored; otherwise, the existing stored val ue will be recalled to the front panel. These functions ( $\mathrm{L}, \mathrm{H}, \mathrm{D}, \mathrm{F}, \mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{J}, \mathrm{U}, \mathrm{V}$ ) thus operate in a dual mode. When the instrument is in the store or recall mode the display will blink to indi cate that the instrument is not in the measurement mode. The instrument is returned to the measurement node by sending any of the following: P, B, A, O, T, IJ, OJ, IQ, OQ, IV, OV, I U, or OU.
a. Suppose that it is desired to store the current power level in dBminto the dBm reference so that all future readings will be referenced to the current val ue. Allowance mist be made for the possibility that the current value is a dB relative val ue. To do this, the current $d B$ val ue must be read, the existing $d B$ reference must be recalled, the true dBm val ue must be computed, and this val ue must be stored into dB reference. The calculator could be instructed as follows:

```
red 716, V,S
wrt 716, "R"
red 716, X, S
V+X Y
wrt 716, Y, "R"
```

Note that $R$ is used twice in the program the first time to obtain the existing val ue for the dB reference, and the second time to store the computed val ue. Al so, note that the two read statements (red) each fetch a different val ue, the first val ue is the power val ue in dB, and the second is the dB reference.

## 4-41. OUTPUT DATA FORMAT.

The data output of the instrument consists of $t$ wo numeric val ues. The first is the numeric data in the display, and the second is the status information. The normal data output will have the following format:

```
abcsddddEsd, S, R(tc)
```

Where:

```
    ab = mode (power in millimatts = PW dB = DM dBr = DR)
    c = channel (A=1)
    = sign (+ or -)
dddd = data (four di gits, each digit O- 9)
    Esd = exponent, sign, digit
    , = data delimiter
    S = status digit:
        0 = no error
        1 = entry too small
        2 = entry too l arge
        3 = neasurement under range
        4 = measurement over range
        5 = zero acqui sition out of range - excessive negative offset
        6 = zero acquisition out of range - excessive positive offset
    R = Range Code (See Table 4-6)
    tc = termination character
```


## 4-42. HOLD I ND CATI ON FUNCTI ON SYNTAX.

The Hold Indication function, when enabled (1Q), automatically does a measurement cycle following its receipt and then hol ds the indication until recei pt of a $\mathrm{T}, \mathrm{O}$, or another 1 Q command. It is intended primarily for use with the Trigger or Group Execute Trigger commands. Following its recei pt, the instrument continues to measure but does not update the display. This can be useful where response time is important since display-update time is elimnated until called for with a Trigger ( $T$ ) command; another 1Q command will al so update the display and maintain the old indi cation function; a $O Q$ command will update the di splay and negate the old indi cation function.

## 4-43. SRQ FUNCTI ON SYNTAX.

The controller can command the instrument to pull the SRQ Iine true after each measurement. The syntax for this command is 1 V ; to command the instrument not to pull the SRQ line true after each measurement, the syntax is $0 V$.

## 4-44. MEASUREMENT TRI GGER SYNTAX.

The Trigger ( $T$ ) commands an addressed command (wrt 716, "T"), used to trigger a measurement, and is generally used in conj unction with the Hold Indication function (Q). (Refer to paragraph 4-41.) The instrument is al so responsive to the unaddressed Group Execute Trigger (GET) command. This command is asynchronous and may result in a slightly faster response time than the T command, which is executed onl y once each measurement cycle.

## 4-45. LIMT SERM CE REQUEST.

This command, when enabled, will result in a service request by the instrument when either dB limit (high or low) of the channel is exceeded. The limit exceeded can be determined from the service request byte as shown bel ow.

NOTE
Bit 6 when set, is the service request.

Bit
76543210
X I X X X X 01
X 1 X X X X 10

Limit Exceeded

Channel 1 low limit
Channel 1 high limit.


CEOMBO9

Fi gure 5-1. Board and Assentbly Locations

## SECTION V MAINTENANCE INSTRUCTIONS

## 5-1. SAFETY REQUIREMENTS.

Failure to comply with the precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout this manual could result in serious injury or death. Maintenance and repair should be performed only by qualified personnel.

## 5-2. TEST EQUIPMENT REQUIRED.

Tools and test equipment required for maintenance of the AN/USM-491 are listed in Appendix C (Maintenance Allocation Chart). Illustrations are provided in this section for test equipment hook-up together with step-by-step procedures to perform the performance tests, instrument adjustments and troubleshooting requirements.

## 5-3. PREVENTIVE MAINTENANCE AND CLEANING.

a. Before and after use ensure that the external components of the instrument, sensor, cabling, and associated hardware are clean and free of contaminants.
b. Before, during, and after use ensure that the instrument, sensor, cabling, and associated hardware are not exposed to mishandling which could result in damage to the equipment.
c. Clean with a mild liquid or detergent (Appendix D, Item 1) and water. With a clean, damp (not soaked) cloth Appendix $\Phi$, Item 2), wipe the front panel, switches, meter glass, top and bottom covers, and rear panel.

## CAUTION

Do not attempt cleaning of any plugs and connectors in this manner as soap residue could effect equipment performance.
d. Oil and grease stains may be removed from plugs and connectors by:

WARNING
HFE-71DE is toxic to eyes, skin, and respiratory tract, and decomposes into other hazardous products when exposed to extreme heat. Wear chemical protective gloves and goggles/face shield. Avoid repeated or prolonged contact. Use only in well-ventilated areas. If ventilation is not adequate, use approved respirator as determined by local safety/industrial hygiene personnel. Keep away from open flames, welding, or other sources of extreme heat.
(1) Applying cleaning compound, solvent HFE-71DE, (Appendix D, Item 3), with a soft brush (Appendix D, Item 4).

## CAUTION

Thorough drying of solvent is necessary to prevent the production of corrosive byproducts.
(2) Wi pe with a lint free cloth, (Appendix D Item 2). Pl ugs and connectors nay be allowed to air dry.
(3) Apply a light film of water displacing preservative compound (Appendix D, Item 5). Avoi d excessive application of preservative; wi pe off excess with a I int free cl oth (Appendix D, Item 2).
e. To ensure proper operation of all circuits the instrument adjustments in paragraphs 5-13 through 5-19 and the performance tests in paragraphs 5-4 through 5-12 should be performed every 12 months.

## 5-4. PERFORMANCE TESTS.

## 5- 5. PRELI M NARY SETUP.

Connect the test equi prent to the AN/ USM 491 as shown in Figure 5-2.


Fi gure 5-2. Prel i minary Set up
a. Turn on the i nstrument and the synthesizer I evel gener at or and allow sufficient warmup time.
b. Set the generator to 30 MHz with the output to zero power and zero modul at i on
c. Key in the following measurement parameter data through the keyboard:

1, SELECT CHNL
1, SELECT SENS
MODE dB
RANGE AUTO
99, dB LI M TS HI
99, CHS, dB LIM TS LO
O, CAL FAC dB
O, REF LVL dB.

## NOTE

Mai ntain the same measurement parameters for each of the following tests unl ess specifically di rected ot herwi se.

## 5-6. AUTOMATI C ZERO FUNCTI ON TEST.

a. Ascertain that the signal input to the sensor is zero.

## NOTE

Do not conf use $\mathrm{O} d B$ with zero input. For zero input to the sensor, turn of $f$ the generator.
b. Press the ZERO key. During zeroing (approxi mately 20 seconds), the frontpanel LED di splay should show the following:

| Di splay | Comment |
| :--- | :--- |
| cccc | Zeroing |
| cc03 | Zeroing compl et e. |

## 5-7. RANGE HOLD FUNCTI ON TEST.

a. Set the out put level of the generator to OdBm
b. Press the RANGE HOLD key and the MODE PWR key.
c. Ascertain that the LED display readout is $1.000 \mathrm{~mW} \pm 1.2 \%$
d. Set the generator output to each of the following levels in succession, and ascertain that the corresponding listed LED indications are obtai ned on the i nst rument:

e. Press the RANGE AUTO key.

## 5-8. BASI C I NSTRUMENT ACCURACY TEST.

a. Turn the gener at or off, wait approxi mately 30 seconds, then zero the instrument by pressing the ZERO key.
b. Disconnect the sensor from the generator and connect it to the instrument PWR REF connector. Press the CAL key.
c. Note the indi cation of the LED display. If the indication is not 1.000 mW press the CAL key, and ascertain that the indication is now $1.000 \mathrm{~mW} \pm 2$ counts.
d. Di sconnect the sensor from the PWR REF connector and connect the frequency counter to the PWR REF out put.
e. The frequency should be $50 \mathrm{MHz}( \pm 0.5 \mathrm{MHz})$.
f. Di sconnect the frequency counter.
g. Connect the sensor to the generator and press the MODE dB key.
h. Turn on the generat or and set to 30 MHz .
i. Set the output level of the gener at or to each of the following dBm val ues in successi on, and ascertain that the LED display readout agrees with the output level of the generator within the specified dB limits:

| Power Source Level | LED Di spl ay Tol er ance |
| :---: | :---: |
| +10 dBm | $\pm$ O. 15 dB |
| $+9 \mathrm{dBm}$ | $\pm 0.15 \mathrm{~dB}$ |
| $+8 \mathrm{dBm}$ | $\pm 0.15 \mathrm{~dB}$ |
| $+7 \mathrm{dBm}$ | $\pm$ O. 15 dB |
| $+6 \mathrm{dBm}$ | $\pm$ O. 14 dB |
| $+5 \mathrm{dBm}$ | $\pm 0.13 \mathrm{~dB}$ |
| $+4 \mathrm{dBm}$ | $\pm$ O. 12 dB |
| $+3 \mathrm{dBm}$ | $\pm$ O. 11 dB |
| $+2 \mathrm{dBm}$ | $\pm$ O. 10 dB |
| $+1 \mathrm{dBm}$ | $\pm 0.09 \mathrm{~dB}$ |
| O dBm | $\pm 0.08 \mathrm{~dB}$ |
| - 10 dBm | $\pm$ O. 15 dB |
| - 20 dBm | $\pm 0.15 \mathrm{~dB}$ |
| - 30 dBm | $\pm$ O. 21 dB |

NOTE

If the dBm indi cations are within limits, it nay be assumed that power mode indi cations are al so within limits; dBm indications are com puted from power measurements within the i nstr ument.

## 5-9. H GH PONER LEVEL ( 15 dBm AND 25 dBn) ACCURACY TEST.

## NOTE

- Hi gh power level verification requires a special techni que si nce the power levels gener ated by the source cannot go to +30 dBm An uncal ibrated amplifier is used as shown bel ow.
- Ensure the test equi pment has been operating for at least one hour. The RF amplifier in particular must be fully stable for the following steps.
- Cables should not be used between the generator, attenuator, or sensor.
a. Connect the equi prent as shown in Fi qure 5-3.


Figure 5-3. Test Set up for Attenuat or Measurement Reference
b. Measure the exact val ue of the 20 dB attenuator with the following steps:

## NOTE

Steps 1 through 4 may be skipped if the attenua-
tion val ue is known to within. 02 dB . If the attenuator has been calibrated at $D C$, this figure may be used at 30 MHz .
(1) Set the level generator for O dBmat 30 MHz .
(2) Press the CAL key.
(3) Connect the equi pment as shown in Fiqure 5-4.
(4) Record the attenuat or val ue on the LED di splay, ignoring the minus sign, and call it "A".


Figure 5-4. Test Set up for Attenuator Measurement "A"

## CAUTI ON

The RF amplifier has enough power to burn out the sensor if driven hard enough. The equi $p$ ment should al ways be connected with the level generator in standby or with the level set very I ow (bel ow - 40 dBn ). Never apply power to the amplifier when there is no load connected to it.
c. Connect the equi prent as shown in Figure 5-5.
d. Set the generat or for -40 dBm at 30 MHz . Tune the amplifier to 30 MHz .
e. Bring the generat or power level up slow y until the LED di splay reads as close to - 5 dBm as possible (-4.5 to -5.5 dBmis acceptable). Record the LED di spl ay and call it "B".


Figure 5-5. Test Set up for 15 dBm Measurement "B" and 25 dBm Measurement "C"
f. Turn off the level generator output and connect the equi pment as shown in Fi qure 5-6.
g. Turn on the gener ator to the same level it was before. The LED displ ay shoul d be equal to: LED di splay $=\mathrm{B}+$ Attenuation ( A$) \pm 0.13 \mathrm{~dB}$.
(1) Example, if B is -5.21 dBm Attenuation is 20.32, the LED di splay should be equal to 15.11 dBm within 0.13 dB .
h. Connect the equi prent as shown in Figure 5-5.
i. Set the generator for -40 dBm at 30 MHz . Tune the amplifier to 30 MHz .
j. Bring the generat or power level up slow y until the LED display reads as cl ose to +5 dBm as possible ( +4.5 to +5.5 dBm is acceptable). Record the LED di splay and call it "C".
k. Turn of $f$ the generator output and connect the equi pment as shown in Figure 5-6.


Fi gure 5-6. 15 dBm and 25 dBm Accuracy Check

1. Turn on the level generat or to the same power level it was before. The LED di splay should be equal to: Display = C + Attenuation (A) $\pm 0.13 \mathrm{~dB}$.
(1) Example, if c is 4.60 dBm Atten is 20.32, the reading should be equal to 24.92 dBm within 0.13 dB .

## 5-10. dB REFERENCE LEVEL FUNCTI ON TEST.

a. Connect the equi pment as shown in Figure 5-3.
b. Set the output power level of the generator to OdBm
c. Press the MDDE dB key and ascertain that the LED display indi cates O dBm $\pm 0.05 \mathrm{~dB}$.
d. Enter a - 10 dB reference level by pressing the following keys:

1
0
CHS (negati ve si gn on LED)
REF LVL dB.
e. See if the LED di splay now indicates $+10 \mathrm{dBr} \pm 0.05 \mathrm{~dB}$. The dBm annunci at or should be off, and the dBr annunci at or should be lighted.
f. Reset the instrument to indi cate dBm by pressing the following keys:

0
REF LVL dB.
g. See if the LED di splay agai n indi cates $\mathrm{O} \mathrm{dBm} \pm 0.05 \mathrm{~dB}$. The dBm annunci at or should be lighted, and the dBr annunci at or should be off.
h. Set the input level to - 7 dBm
i. Press the CLR and the REF LVL dB keys; the indi cation should be approxi mately -7.00 dB.
j. Press the deci mal-point and the REF LVL dB keys; the display should now indi cate 00.00 dBr .
k. Recall the $d B$ reference level by pressing the REF LVL dB key; the indication should be -7.00, showing that the original dBm level is now stored as the $d B$ reference level.
I. Press the CLR and the REF LVL dB keys; the indi cation now should be -7.00 dBm showing that the dB reference level is now OdBm

## NOTE

This method of entering the current dBm level as the dB reference level is operative only in the Iocal mode--not in IEEE-488 interface mode, as di scussed in paragraph 4-13.

## 5-11. dB LIMT TEST.

a. Connect the equi prent as shown in Fi qure 5-7.
b. Set the output level of the generator to O dBm

## NOTE

Limits can be entered only in terms of dB, not power; however, the limit function operates in both the dB mode and the PWR mode.
c. Enter a +1 dB high limit by pressing the following keys:

1
dB LIMTS HI.


Fi gure 5-7. Test Setup for dB Limit Test
d. LIM annunci at or shoul d be off.
e. Enter a -1 dB Iow limit by pressing the following keys:

1
CHS (negative si gn on LED) dB LIMTS LO.
f. LIM annunci at or should be off.
g. Set the output level of the synthesizer level generator to-2.0 dBm The LIM annunci at or should be Iighted. The logic level at pin 5 of rear-panel connector P3 should be high; the logic level at pin 4 of connector P3 should be low.
h. Set the output level of the synthesizer level generator to +2.0 dBm The LIM annunci at or should be lighted. The logic level at pin 4 of rear-panel connector P3 should be hi gh; the logic level at pin 5 of the connector P3 should be I ow.

## 5-12. CALI BRATI ON FACTOR TEST.

## NOTE

This calibration procedure should not be misconstrued with calibration in accordance with TB 43-180.
a. Connect the test equi pment as shown in Figure 5-3.
b. Set the output level of the level generator to OdBm
c. Press the MDDE dB key and note the indi cation on the LED di splay.
d. Enter a 0.2 dB calibration factor by pressing the following keys:

0
2
CAL FAC dB.
e. See if the indi cation on the LED display is equal to the val ue noted in step c pl us 0.2 dB .
f. Enter a 2 GHz calibration factor by pressing the following keys:

2
CAL FAC GHz.
g. Determine the calibration correction for 2 GHz from the chart on the barrel of the sensor. See if the LED display indicates the val ue noted on the chart on the sensor barrel.

## NOTE

> For proper calibration factor correction and instrument accuracy, it is essential that the sensor number entered into the instrument prior to measurement agrees with the number indi cated on the barrel of the sensor used for the measurement. (Refer to paragraph 4-8. Cal ibration fact ors that are invoked are oper ative in both the dB mode and the PWR mode.

## 5-13. I NSTRUMENT ADJ USTMENTS.

## 5-14. GENERAL.

Adj ustment procedures are provided for the power supply, input board, chopper assembly, cal ibrator assembly, and sensor. When multiple adjustments are required, they should be made in sequence.
a. Ren®ve power by di sconnecting the AN USM 491 from the power source.

## CAUTI ON

This instrument contains el ectrostatic di scharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equi pment damage. Refer to el ectrostatic di scharge sensitive devi ce procedures, pages $C$ and $D$ of this manual, bef ore performing mai nt enance on the equi prent.
b. Remove Covers
(1) Remove the two screws at the rear of the bottom cover.
(2) SI ide the bottom cover off.
(3) Renove the two screws at the rear of the top cover.
(4) SI i de the top cover of f.

## 5-15. POVER SUPPLY ADJ USTMENTS.

## WARNING

Hi gh voltage is used in the operation of this equi prent. Death on contact may result if personnel fail to observe saf ety precautions.
a. Appl y ac power to the AN/ USM 491.
b. Connect a di gital multimer bet ween TP3 and ground (see Figure 5-8). The reading should be $5.20 \mathrm{Vdc} \pm 0.002 \mathrm{Vdc}$. If necessary, adjust R5 until voltage is correct.
c. Connect the multimeter Hl lead to TP2 and LO lead to TP4. The reading should be $150 \mathrm{~m} / \pm 10 \mathrm{~m}$. If necessary, adjust R11 until voltage is correct.

## NOTE

The pol arity of the reading will depend on the test probe connections.
d. Connect the multimeter between TP1 and ground. The voltage should be +15 Vdc $\pm 0.6$ Vdc.


CEOWB16

Fi gure 5-8. Power Supply Test Points and Adj ustments
e. Connect the multimeter between TP5 and ground. The reading should be - 15 $\mathrm{Vdc} \pm 0.6 \mathrm{Vdc}$.
f. Connect the multimeter bet ween TP6 and ground. The reading should be - 5 $\mathrm{Vdc} \pm 0.2 \mathrm{Vdc}$.

## 5-16. I NPUT BOARD AND CHOPPER ASSEMBLY ADJ USTMENTS.

a. Connect the equi prent as indi cated in Fi qure 5-9.


Fi gure 5-9. Test Set up for Input Board

## NOTE

- The adapter assentbly provides a differential si gnal to the AN/ USM-491 at a controlled impedance.
- Observe pol arity when connecting the power meter adapter assentbly to the voltage calibrator.
b. Appl y ac power to the AN USM 491 and test equi prent. Let the equi prent warm up for at least 30 minutes.
c. Set the control board bit switch for Calibrate Mbde 1 (see Figure 5-10).
d. Press 1, SELECT CHNL, O, and RANGE HOLD.
e. Set the voltage calibrator to O volts.


## NOTE

Refer to Figure 5-11 for the input board and chopper assembly test points and adj ustments.
f. Connect a clip lead from TP8 to chassis or ground.
g. Connect a clip lead from TP7 to chassis or ground.
h. Connect a digital multimeter between TP9 and ground. The reading should be between +10 millivolts and -10 millivolts. If necessary, adjust R45 until the voltage is between +10 millivolts and -10 millivolts.
i. Remove the clip lead from TP8. The reading at TP9 should be between +10 millivolts and - 10 millivolts. If necessary, adjust R36 until the reading is between +10 millivolts and -10 millivolts.
j. Remove the clip lead from TP7.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& ch \& \& ttin \& \& \& Comment <br>
\hline 8 \& 7 \& 6 \& 5 \& 4 \& 3 \& 2 \& 1 \& <br>
\hline \multirow[t]{11}{*}{A
L
W
A
Y
S

C
L
L
O
S
E
D} \& \multirow[t]{3}{*}{N
O
T} \& \& \& \& \& \& \& \multirow[b]{2}{*}{Operate Mode} <br>
\hline \& \& \& \& \& \& C \& C \& <br>
\hline \& \& \& \& \& \& C \& 0 \& Calibrate Mode 1 (DC Cal.) <br>
\hline \& U \& \& \& \& \& 0 \& C \& Calibrate Mode 2 (AC Cal.) <br>
\hline \& S \& \& \& C \& 0 \& \& \& One Channel Operation <br>
\hline \& D \& \& \& 0 \& 0 \& \& \& Two Channel Operation <br>
\hline \& C \& C \& C \& \& \& \& \& One Sensor Capability <br>
\hline \& C \& C \& 0 \& \& \& \& \& Two Sensor Capability <br>
\hline \& C \& 0 \& C \& \& \& \& \& Three Sensor Capability <br>
\hline \& C \& 0 \& 0 \& \& \& \& \& Four Sensor Capability <br>
\hline \& 0 \& C \& C \& \& \& \& \& Five Sensor Capability <br>
\hline \& 0 \& C \& 0 \& \& \& \& \& Six Sensor Capability <br>
\hline \& 0 \& 0 \& C \& \& \& \& \& Seven Sensor Capability <br>
\hline \& 0 \& 0 \& 0 \& \& \& \& \& Eight Sensor Capability <br>
\hline
\end{tabular}

CEOWB18

Fi gure 5-10. Control Board BI T Switch


Fi gure 5-11. I nput Board and Chopper Assentloly Test Points and Adj ust ments
k. Using the digital multimer, measure the voltage at TP5. The voltage should be between +100 millivolts and -100 millivolts .

NOTE
The multimeter reading will fluctuate during the foll owing step. Average the readi ngs.
I. Using a digital multimeter, measure the voltage at TP9 on the input board. The DVM readi ng should be bet ween +100 milli volts and -100 millivolts . If necessary, adjust R4 and R5 on the chopper module equally and opposite until the reading is bet ween +100 millivolts and -100 millivolts. The reading should be as close to O as possi ble.
$m$ Press the ZERO key on the AN/ USM 491. Wait for zeroing to end.
n. Press 5 and RANGE HOLD.
0. Set the voltage cal ibrator to 900 mv .
P. The LED di spl ay should show 3685. If necessary, adjust R1 until the AN/ USM 491 shows 3685 . If 3685 cannot be set performstep .
q. Set the voltage cal ibrator to 90 mv .
r. Adjust R11 until the LED displays 368 or 369 . If $368 / 369$ cannot be set performstep s.

## NOTE

Steps s through w are onl y requi red if step (p) or (r) is unsatisfactory.
s. If either step por $r$ display the incorrect reading center R1 and R11.
t. Set the voltage cal ibrator to 900 mV .
u. Adj ust R44 until the LED di spl ays 3685 .
v. Set the voltage calibrator to 90 mV .
w. Adj ust R11 until the LED di splays 368 or 369.

## 5-17 . ANALOG TO DI G TAL CONVERTER ADJ USTMENT.

## NOTE

Steps a through $k$ are not normally requi red over the life of the i nput module, but nay be done at the user's discretion, for example if the operati on of the AN/ USM 491 is suspect.
a. Connect the equi prent as shown in Fi qure 5-9.
b. Ensure the control board bit switch to the Oper ate Mbde (see Fi qure 5-10).
c. Set the voltage calibrator to O volts.
d. Press 1, SELECT CHNL, Press MDDE PWR, O, CAL FAC dB, O, and REF LVL.
e. Press ZERO. Wait for zeroing to end.
f. Set the control board bit switch to calibrate mode 1 (see Fi qure 5-10).
g. Enter 1000 and press RANGE AUTO.
h. Set the voltage calibrator to 9 microvolt.
i. Li ne-by-line, set the voltage calibrator and AN/ USM 491 as listed in Table 5-1. later date without recal i bration.

## NOTE

To enter $D C$ cal ibration data that has previ ousl y been gener ated and recorded, repl ace the cal operation in the table with the number to be ent ered for a gi ven range, for example: 0 , Range Hol d, 3, 6, ., 8, 5, mode dB, 1, 0, 2, 6, REF LVL dB.

Table 5-1. DC Cal i bration Test
NOTE
Thi s cal i bration procedure should not be misconstrued with calibration in accordance with TB 43-180.

| DC <br> Cal i br at or | Press | Al I ow Settling | Press | Record <br> Di spl ay |
| :---: | :---: | :---: | :---: | :---: |
| $9 \mu \mathrm{v}$ | $\begin{array}{lllll} \mathrm{O}, & \text { RANGE } & \text { HOLD } & \\ 3, & 6, & ., & 8, & 5, \\ \mathrm{~dB} & & & & \end{array}$ | --- | CAL, REF LVL dB | Approx. 1000 |
| $90 \mu \mathrm{~V}$ | 1, RANGE HOLD | --- | CAL, REF LVL dB | Appr ox. 1000 |
| $900 \mu \mathrm{v}$ | 2, RANGE HOLD | --- | CAL, REF LVL dB | Appr ox. 1000 |
| 9 mv | 3, RANGE HOLD | --- | CAL, REF LVL dB | Approx. 1000 |
| 90 mv | 4, RANGE HOLD | --- | CAL, REF LVL dB | Approx. 1000 |
| 900 mv | 5, RANGE HOLD | --- | CAL, REF LVL dB | Approx. 1000 |
| 4. 5 V | 6, RANGE HOLD | -- - | CAL, REF LVL dB | Appr ox. 1000 |

j. Di sconnect the voltage calibrator.
k. Set the control board bit switch to Oper ate Mbde (see Figure 5-10).

## 5-18. RECORDER OUTPUT ADJ USTMENT.

a. Connect the equi pment as shown in Figure 5-12.
b. Press MDDE PWR, RANGE AUTO, $\mathrm{O}, \mathrm{CAL}$ FAC dB, O , and REF LVL dB.
c. Set the level generator output until the LED di splays 1.000 nW (not 1.00 miv.
d. Wth 1.000 nW showi ng on the AN USM- 491, note the di gital multimeter reading. The reading should be 9.98 to 10.02 volts. If the reading is incorrect, compl ete steps 1. through 7.
(1) Set the control board bit switch to Calibrate Mbde 1 (see Figure 5-10).
(2) Press dB LIMTS LO. The AN USM 491 should show a gain modifier of about 3600.

## NOTE

Di gital Multimeter connects to the AN USM 491 recorder output connector on the rear panel

| Synthesizer <br> Level <br> Generator <br> $50 \Omega$ <br> OUTPUT |
| :---: | :---: |
| Sensor |$\quad$| DIGITAL |
| :---: |
| MULTI - |
| METER |
| AN/USM-491 |
| Sensor |

Fi gure 5-12. Test Set up for Recorder Output Adjustment
(3) For every 3 millivolt error adj ust the gain modifier 1 number in the opposite direction.

Example: If the digital multimeter indication were 9.80 volts and the $d B$ LIMTS LO key recalled a gain modifier of 3500, the revised gain modifier val ue would be $3500+(200 / 3)=3566$.
(4) Enter the revised gai $n$ modifier and press dB LIM TS LO.
(5) Press dB LIMTS LO again. The AN USM 491 shoul $d$ show the new gain modifier.
(6) Set the control board bit switch to Operate Mbde (see Fi gure 5-10).
(7) Press Range AUTO.
(8) Note the reading on the di gital multimeter. The reading should be 9.80 to 10. 2 volts. If necessary, repeat steps 1 through 7 until the correct reading is obt ai ned.
e. Set the level generator out put to -9.0 dBm
f. Note the reading of the AN USM 491 and the digital multimeter. The millivolt readi ng of the multimer should be ten times greater than the AN USM 491 reading 2 counts. If necessary, adj ust R55 (se Fiqure 5-11) until the multimer shows the correct readi ng.
g. Repeat steps d. through f. until further adj ustment is not required.
h. Set the control board bit switch to Operate Mbde (See Figure 5-10).

5-19. CALI BRATOR ASSEMBLY ADJ USTMENT.

## NOTE

This calibration procedure should not be misconstrued with calibration in accordance with TB 43-180.
a. Connect the test equi prent as shown in Fi gure 5-13.
b. Di sconnect the power head from the thermistor mount cable.
c. Set up the digital multimeter to measure resistance.

## NOTE

Power should not be applied to the power meter when measuring the internal bridge resi stance.
(1) Round of $f$ the digital multimeter indication to two decimal places and record this val ue as the internal bridge resistance (R) of the test power meter (approxi mately 200 ohns).


Fi gure 5-13. Test Setup to Measure the Internal Bridge Resi stance of the Power Meter
d. Connect the equi pment as shown in Fiqure 5-14.
e. Set the power meter mount resistance switch to 200 ohns.


Fi gure 5-14. Test Set up for Power Reference Measurement "A"
(1) Appl y AC power to the AN/ USM- 491 and the power meter and let the equi prent stabilize for at least 30 mintes.
(2) Set the multimeter to read $D C$ volts.

## NOTE

The negative lead of the digital multimeter is not connected to ground.
(3) With no RF power applied to the thermistor mount, adj ust the coarse zero control on the power meter so that the digital multimer reading is as close to zero as possible. I gnore the anal og meter reading and do not press the fine zero control.
(4) Connect the thermistor mount to the power reference output of the AN USM 491, taking care to handle only the plastic portions, to reduce the heat ef fects.
(5) Take a digital multimeter reading and call it "A".
f. Connect the test equi prent as shown in Fi gure 5-15.


Figure 5-15. Test Setup for Power Reference Measurement "B"
(1) Take a digital multimeter reading and call it "B".
(2) Calculate the power from
$P=A(2 B-A) / 4 R \times$ Efficiency where $A, B$, and $R$ are previ ously recorded val ues, and the efficiency is supplied with the thermistor mount, at 50 MHz .
g. The power should be between 0.993 and 1.007 mW If not, complete steps 1 through 4.
(1) Remove the two screws at the rear of the bottom cover.
(2) SI ide the bottom cover off.
(3) Remove the 2 bottomtrimstrip screws.
(4) Lift off bottomtrip strip.
(5) Adj ust R4 on the cal i brat or assembly module up or down as requi red (see Fiqure 5-16]. The anal og meter on the power meter may be used as a direction i ndi cat or .


Fi gure 5-16. Cal i brator Assenbly Adj ustment
h. Repeat steps $d(2)$ through $f$, and adj ust the AN USM 491 until the readi ng is accept able.
i. Connect the


Fi gure 5-17.
j. The frequency should be $50 \mathrm{MHz}(0.5 \mathrm{MHz})$.
k. Disconnect the test equi prent.
I. If removed, reinstall the trimstrip and bottom cover. Ensure that the si des and front of the cover are engaged in the slots.

## 5-20. SENSOR ADJ USTMENTS.

These adj ust ments are for when the sensor appears to be malfunctioning or sensor data is not available or is suspect. The procedures detailed i paragraphs 5-21 and 5-22 will verify or devel op the sensor adj ustment and correction data required to match the sensor to the Instrument.

## 5-21. ADJ USTMENT OF RANGES O THROUGH 4.

NOTE
The numbers that appear on the display in steps 1 and q may be recorded and recentered at a later date for a particular sensor rather than re-doing this procedure. See paragraph 5-23 for the entry procedures (Sensor Repl acement).
a. Appl y ac power to the AN USM 491 and test equi pment. Set test equi prent to no output.
b. Connect the AN USM 491 to the test equi pment as shown in Figure 5-18.
c. Ensure the control board bit switch is set to Operate Mbde (see Fiqure 5-10).
d. Press the ZERO key twi ce.
e. Press 1, SELECT CHNL, SENSOR NUMBER (1, 2, ETC), SELECT SENS, O, CAL FAC dB, O, REF LVL dB.


Fi gure 5-18. Test Set up for Adj ustment of Ranges 1 through 4
f. Set the control board bit switch to Calibrate Mbde 1 (see Figure 5-10).
g. Press 2, CAL FAC GHz, 1000, CAL FAC dB.
h. Enter the last four digits of the sensor serial number and press dB LIM TS HI, 1000, RANGE AUTO.
i. Set the control board bit switch to Cal ibrate Mbde 2 (see Figure 5-10).
j. Press O and RANGE HOLD.
k. Press the ZERO key. WAit for zeroing to end.
I. Li ne-by-I ine, set the level gener at or and AN USM 491 as shown in Table 5-2.

Table 5-2. Full Scal e Sensor Adjustment Dat a

| synt hesi zer Level Gener at or Set to 30 MHz | Press | Al I ow Settling | Press | Record <br> Di spl ay |
| :---: | :---: | :---: | :---: | :---: |
| - 34 dBm | $\begin{array}{lllll} \mathrm{O} & \text { HOLD, } & 3, & 9, & ., \\ 0, & \text { MDDE } & \mathrm{dB} \end{array}$ | --- | $0, \mathrm{~dB}$ LIM TS HI, CAL, REF LVL dB | Appr ox. 5000 |
| - 24 dBm | $\begin{aligned} & \text { 1, HOLD, 3, 9, . , } 8 \\ & 0, \text { MODE dB } \end{aligned}$ | --- | 0 , dB LIMTS HI, CAL, REF LVL dB | Approx. 5000 |
| $-14 \mathrm{dBm}$ | $\begin{array}{lllll} \text { 2, } & \text { HOLD, } 3, & 9, & ., & 8 \\ 0, & \text { MDDE } d B \end{array}$ | --- | 0 , dB LIMTS HI, CAL, REF LVL dB | Approx. 5000 |
| -4 dBm | $\begin{array}{lllll} 3, & \text { HOLD, } 3, & 9, & ., & 8 \\ 0, & \text { MODE dB } \end{array}$ | --- | $0, \mathrm{~dB}$ LIMTS HI, CAL, REF LVL dB | Approx. 5000 |
| +6 dBm | $\begin{array}{llll} \text { 4, } & \text { HOLD, } 3, & 9, & ., \\ 0, & \text { MDDE dB } \end{array}$ | --- | 0, dB LIMTS HI, CAL, REF LVL dB | Appr ox. 5000 |
|  | $\begin{array}{lllll} \text { 5, HOLD, } & \text { 5, } & 0 \\ \text { O, } & \text { REF LVL } & \text { dB, } & \text { O, } \\ \text { H } \end{array}$ | --- | THI S LOADS UNUSED STORAGE REG STERS |  |
|  | $\begin{array}{lllll} \text { 6, HOLD, } & \text { 5, } & 0 \\ \text { O, } & \text { REF LVL } & \text { dB, } & 0 \\ \text { HI } \end{array}$ | --- | THI S LOADS UNUSED STORAGE REG STERS |  |

NOTE
The numbers that appear on the display when the REF dB level is pressed are the upscale adjustment numbers. They may be recorded for later use.
$m$ Set the level gener at or to No Output, and allow the sensor to settle for 30 seconds.
n. Set the control board bit switch to Oper ate Mbde (see Figure 5-10).
0. Press RANGE AUTO and MDDE PVR.
p. Press ZERO. Wait for zeroing to end.
q. Set the level generat or according to Table 5-3. This is the dounscal e adj ustment. Record the LED display readi ngs and compute a correction factor for each range. Note the following examples:

Table 5-3. Dounscale Sensor Adj ustment Level s

| Range | Synt hesi zer <br> Level Gener at or | Record Di spl ay <br> Readi ng | Readi ng shoul d <br> be: | Downscal e <br> Correction |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -30 dBm |  | $1.000 \mu \mathrm{~W}$ |  |
| 2 | -20 dBm |  | $10.00 \mu \mathrm{w}$ |  |
| 3 | -10 dBm |  | $100.0 \mu \mathrm{w}$ |  |
| 4 | 0 dBm |  | 1.00 mW |  |

(1) Exampl e: True readi $n g=100.0 \mu \mathrm{~W}$ LED di splay reading $=100.6 \mu \mathrm{~W}$ Downscale correction $=-6$
(2) Exampl e: True readi ng $=10.00 \mu \mathrm{~W}$ LED display reading $=9.95 \mu \mathrm{~W}$ Downscale correction $=5$

Al ways use whole numbers when calculating the downscale correction.

## NOTE

There is a one-to-one rel ationship between the counts entered for downscale correction and the resulting correction.
r. Set the control board bit switch to Calibrate Mbde 2 (se Figure 5-1Q)
s. Refer to Table 5-4 and line-by-Iine enter the dounscale correction.
t. Set the control board bit switch to Operate Mbde (see Figure 5-10, and press mode dB.
u. Check the AN USM 491 accuracy for out-of-tol erance conditions at the ful scale power levels shown in Table 5-2. Note the following example:
(1) Example: Present upscale gai n factor $=5020$, Operate Mbde input $=-24.00$ dBm LED di splay readi $n g=-24.03 \mathrm{dBm}$ Difference $=0.03$

In the above example the difference is . 03 dB Iow. In dBm Mbde, a change of every 12 counts in the upscale gain factor causes a . 01 dB change. Thus the gain factor for this example would be $5020+(.03 / .01 \times 12)=5056$.

Table 5-4. Downscale Correctlon Data Entry

v. If necessary, compl ete steps (1) through (4) to enter the new gai $n$ fact ors for each range:
(1) Set the control board bit switch to Cal ibrate Mbde 2 (see Figure 5-10).
(2) Press RANGE HOLD.
(3) Press REF LVL dB. The LED display should show a gai $n$ factor of 4000 to 6000.
(4) Enter the correction determined in step $u$. and press REF LVL dB.

## 5-22. AD USTMENT OF RANGES 5 AND 6.

a. Set the control board bit switch to Cal ibrate Mbde 2 (see Fi gure 5-10).
b. Enter 5000 as the upscal e gai $n$ factors for range 6 as follows: Press 6, RANGE HOLD, 5, 0, 0, 0, REF LVL dB.
c. Enter 5000 as the upscal e gai $n$ factor on range 5 as follows: Press 5, RANGE HOLD, $5,0,0,0$, REF LVL dB.
d. Enter zero as the downscale adjustment factor in range 6 as follows: Press 6, Range Hol d, O, dB Limits HI.
e. Enter zero as the downscale adjustment factor on range 5 as follows: Press 5, RANGE HOLD, O, dB Li mits HI.
f. Set the control board bit switch to Oper ate Mbde (See Fiqure 5-10).

## NOTE

- Ensure the test equi pment has been operating for at least one hour. The RF amplifier in particular must be fully stable for the following steps.
- Cabl es shoul d not be used between the generator, attenuator, or sensor.
g. Measure the exact val ue of the 20 dB attenuator.


## NOTE

Steps (1) through (5) may be ski pped if the attenuation val ue is known to within. 02 dB . If the attenuator has been measured at DC , this figure may be used at 30 MHz .
(1) Connect the test equi prent as shown in igure 5-19. Set the I evel generator for OdBm at 30 MHz .
(2) Press the CAL key.
(3) Connect the equi prent as shown in Figure 5-20.


Fi gure 5-19. Test Set up for Attenuator Measurement Reference


Figure 5-20. Test Set up for Attenuat or Measurement "A"
(4) Record the attenuat or val ue on the LED display and cal it "A".
h. Upscale range 5 adj ust ment.

## CAUTI ON

The RF amplifier has enough power to burn out the sensor if driven hard enough. The equi pment should al ways be connected with the level generat or in standby or with the level set very low (bel ow -40 dBm). Never apply power to the RF amplifier when there is no load connected to it.
(1) Set the control board bit switch to operate mode (see Fi qure 5-10).
(2) Connect the equi pment as shown in figure S-21. Set the level generator for -40 dBm at 30 MHz . Tune the RF amplifier to 30 MHz .

NOTE
The RF amplifier must be fully stable. Allow at least one hour warm up time.


Figure 5-21. Test Set up for Upscal e Range 5 Measurement "B" and Upscal e Range 6 Measurement "C"
(3) Bring the generator power level up slow y until the LED display reads as cl ose to O dBm as possible ( -0.5 to +0.5 dBm is acceptable). Record the LED di splay and call it "B".
(4) Turn off the level gener at or out put and renove the attenuat or so the equi prent is connected as shown in Figure 5-22. Turn on the level gener at or to the same power level it was before. The LED di spl ay should be equal to: Display $=\mathrm{B}+$ Attenuat $i$ on $(A) \pm 0.18 \mathrm{~dB}$.

Example: if B is - 0.21 dBm Attenuation (A) is 20.32, the display should be equal to 20.11 dBm within fo. 18 dB .

## NOTE

If the LED display is not correct perform steps 5 through 12. If it is correct go to paragraph i.


Fi gure 5-22. Upscal e Range 5 and 6 Adj ustment
(5) Leavi ng the level generator on, set the control board bit switch to calibrate mode 2 (See Figure 5-10).
(6) Press 5, Range Hol d, REF LVL dB.
(7) The number on the display is the upscal e gai $n$ factor for this range.
(8) To correct the power readi ng obtai ned in step 4, the gain factor should be adj usted up or down approxi mately 12 counts for every. 01 dB that the power reading was off.
(9) Press 5, Range Hol d, New \# (upscal e gain factor $+(1200 \times$ error in dB), REF LVL dB.
(10) Set the control board bit switch to the operate mode. (See Figure 5-10.)
(11) Repeat step (4) above.
(12) Repeat steps (5) through (11) until the upscale power reading is within .02 dB of the correct reading.
i. Dounscal e range 5 adj ust ment.
(1) Set the control board bit switch to operate mode (See Figure 5-10).
(2) Connect the equi prent as shown in Figure 5-22 and set the I evel generat or to +10 dBm Take a power reading in dBm mode. The LED display shoul d be $+10 \mathrm{dBm} \pm 0.08 \mathrm{dBm}$

## NOTE

If the LED di splay is not correct perform steps (3) through (8) bel ow. If it is correct go to par agraph j .
(3) Set the control board bit switch to calibrate Mbde 2 (See Fi qure 5-10).
(4) Press 5, Range Hold, dB limits HI.
(5) Note the LED display. Increase or decrease this val ue in increments of 5 or 10 counts, in a direction to increase or decrease the downscale reading obtained in step $H 2$. Enter the number.
(6) Press 5, dB Limits HI.
(7) Ret urn the bit switch to the operate mode (See Fiqure 5-10) to see the effect on the power readi ng.
(8) Repeat the adj ustment as necessary.

## NOTE

If the downscale adj ust ment was changed by more than 20 counts repeat step g.
j. Upscale range 6 adj ustment.
(1) Set the control board bit switch to the operate mode (see Figure 5-10).
(2) Connect the equi prent as shown in Figure 5-21 using the 20 dB at tenuat or and set the level generator for -40 dBm at 30 MHz . Tune the RF amplifier to 30 MHz for a maxi mumindication on the AN USM-491 anal og meter.
(3) Bring the generator power level up slow y until the LED display reads +9.00 dBm Record the LED di splay and call it "C".
(4) Turn of $f$ the generator output and renove the attenuat or so the equi pment is connected as shown in Figure 5-22. Turn on the level generator to the same power level it was before. The LED display should be equal to: Display $=\mathrm{C}+$ Attenuation (A) $\pm 0.18 \mathrm{~dB}$.

Example: If C is 8. 60 dBm Attenuation (A) is 20.32, the reading should be equal to 28.92 dBm within $\pm 0.18 \mathrm{~dB}$.

## NOTE

If the LED display is not correct performsteps 5 through 12. If it is correct go to paragraph j.
(5) Set the control board bit switch to Cal i brate Mbde 2 (See Fi gure 5-10).
(6) Press 6, Range Hol d, REF LVL dB.
(7) The number on the display is the upscale gai $n$ factor for this range.
(8) To adj ust the power reading obtai ned in step 4, the gain factor should be adj usted up or down approxi mately 12 counts for every. 01 dB that the Power readi ng was off. New \# = old \# $\pm$ ( $1200 \times \mathrm{dB}$ off).
(9) Press 6, Range Hol d, New \#, REF LVL dB.
(10) Set the control board bit switch to the operate mode. (See Fiqure 5-10.)
(11) Repeat step (4) above.
(12) Repeat steps (5) through (11) until the power reading is within. 08 dB .
k. Downscal e range 6 adj ustment.
(1) Set the control board bit switch to the operate mode (See Figure 5-10).
(2) Connect the equi pment as shown in Figure 5-21.
(3) Bring the gener at or level up slow y until the LED display reads +3 dBm Ret une the RF amplifier as necessary for a maximmindi cation on the AN/ USM 491 anal og meter. Record the LED display and call it "D".
(4) Turn off the gener at or out put and remove the attenuat or so the equi prent is connected as shown in Figure 5-22. Turn on the gener at or to the same level it was bef ore. The LED di splay should be equal to $D+$ Attenuation (A). The steps bel ow will correct this if it is not.
(5) Set the control board bit switch to Cal i brate Mbde 2 (See Fi gure 5-10).
(6) Press 6, Range Hol d, dB Limits HI.
(7) Note the reading on the LED display. I ncrease or decrease this val ue in i ncrements of 5 or 10 counts, in a direction to increase or decrease the downscale reading obtai ned in step j (4). Enter the number.
(8) Press 6, dB Li mits Hi.
(9) Ret urn to oper ate mode (See Fi qure 5-10) to see the effect on the power readi ng.
(10) Repeat the adj ustrent as necessary.

## NOTE

If the downscale adjustment was changed by more than 20 counts repeat step $j$.
(11) Ret urn the bit switch to oper ate mode. (See Fi qure 5-10.)

## 5-23. SENSOR REPLACEMENT ADJ USTMENTS.

## NOTE

This calibration procedure should not be misconstrued with calibration in accordance with TB 43-180.
a. When a sensor is repl aced, the calibration data for the new sensor must be l oaded into the instrument. The data is in two forms:
(1) Sensor low frequency gai $n$ data (upscale and downscale data for each range, total of 14 points).
(2) Sensor hi gh frequency CAL FAC, for up to 20 frequency points.
b. Enter the calibration data with the following procedure.

## NOTE

No test equi pment is required to load this data in.
(1) Remove the two screws at the rear of the top cover.
(2) SI ide the top cover off.
(3) Apply AC power to the AN/ USM- 491.
(4) Set the control board bit switch to calibrate node 1 (see Figure 5-10).
(5) Press 1, SELECT SENS, Iast four digits of the serial number of the sensor, dB limits HI, 1000, CAL FAC dB, 2, CAL FAC GHz.
(6) Set the control board bit suitch to Calibrate Mbde 2 (see Fiqure 5-10).

## NOTE

The upscale and downscale data points are on the sensor data sheet as supplied by the vendor, or have been stored as a result of a previ ous calibration. There are 7 upscale and 7 downscale points (one each for each range).
(7) Enter the Iow frequency gain data by setting the AN USM 491 as listed in Table 5-5. The data may be entered by doing the left col umm first (upscale data) and then the right col um, or by doing each range as a set (left to right).

## NOTE

NNNN is the upscal e number NN is the downscale number
(8) Enter the hi gh frequency calibration factors by setting the AN USM 491 as listed in Table 5-6 working left to right.

## NOTE

The Sensor High Frequency calibration factors are on the sensor decal.
(9) When all hi gh frequency calibration factors have been entered press O and RANGE AUTO.

Table 5-5. Sensor Low Frequency Gai n Dat a

| Range | Upscal e |  |  |  |  |  | Dounscal e |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | O, | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative number), dB limits HI |
| 1 | 1, | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative number), dB limits HI |
| 2 | 2 | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative number), dB limits HI |
| 3 | 3, | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative nuntoer), dB Iimits HI |
| 4 | 4, | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative number), dB Iimits HI |
| 5 | 5 | Range | HOLD, | NNNN, |  | LVL dB | NN, CHS (if a negative nuntber), dB Iimits HI |
| 6 | 6, | Range | HOLD, | NNNN, | Ref | LVL dB | NN, CHS (if a negative number), dB Iimits HI |

Table 5-6. Sensor High Frequency Calibration Factors

| Entry Number |  | GHz <br> Fr equency |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | RANGE AUTO | 0 | CAL FAC GHz | 0 | CAL FAC dB |
| 1 | RANGE AUTO | 1 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 2 | RANGE AUTO | 2 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 3 | RANGE AUTO | 3 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 4 | RANGE AUTO | 4 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 5 | RANGE AUTO | 5 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 6 | RANGE AUTO | 6 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 7 | RANGE AUTO | 7 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 8 | RANGE AUTO | 8 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 9 | RANGE AUTO | 9 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 10 | RANGE AUTO | 10 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 11 | RANGE AUTO | 11 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 12 | RANGE AUTO | 12 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 13 | RANGE AUTO | 13 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 14 | RANGE AUTO | 14 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 15 | RANGE AUTO | 15 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 16 | RANGE AUTO | 16 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 17 | RANGE AUTO | 17 | CAL FAC GHz | N. NN (CHS) | CAL FAC dB |
| 18 | RANGE AUTO | 18 | CAL FAC GHz | N. NN ( CHS) | CAL FAC dB |
| 0 | RANGE AUTO |  |  |  |  |

(10) Set the control board bit switch to Operate Mbde (see Fi gure 5-10).
(11) Slide the top cover into its slots. Ensure the sides and front of the cover are engaged in its slots.
(12) Install two screws at the rear of the top cover.

## 5-24. TROBLESHOOTI NG PROCEDURES.

a. The following troubl eshooting procedure chart, Table 5-7, identifies malfunctions that may occur to the AN USM 491. The troubl eshooting chart states:
(1) The indi cation or sympt om of the trouble.
(2) The instructions necessary, including test hookups with illustrations, to determine the cause.
(3) The action necessary to restore the AN/ USM-491 to operating condition.
b. Indi cations for tests number 1, and 3 through 8 are normally found while performing the operator checkout and do not require external test equipment.
c. Tests 9 through 25 requi re external test equipment to perform
(1) Corrective/repai $r$ actions are limited to the repl acement of boards, modules, and the rear panel assembly.

## 5-25. D SASSEMBLY/ ASSEMBLY.

The following paragraphs provide step-by-step procedural instructions for removal and installation of the AN USM-491 maj or assentolies.

5-26. REMOVAL OF IEEE-488 INTERFACE BOARD A23. (Figure 5-29 qn page 5-51))
WARNING
Ensure el ectrical power is disconnected to prevent el ectrical shock to personnel or damage to equi prent.
a. Di sconnect the ac power line from the ac power source.

## CAUTI ON

This instrument contains el ectrostatic di scharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equi pment damage. Ref er to el ectrostatic di scharge sensitive device procedures, pages $C$ and $D$ of this manual, before performing mai ntenance on the equi pment.

## note

Go to page 5-50 for paragraph 5-26b.

Table 5-7. Troubleshooting Procedures

| Test No. | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 1 | No LED display, no analog meter movement when the line switch is placed to the $O N$ position. <br> All malfunctions | WARNING <br> High voltage is present in this instrument if electrical power is connected. Death on contact may result if personnel fail to observe safety precautions. <br> CAUTION <br> This instrument contains electrostatic discharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equipment damage. Refer to electrostatic discharge sensitive device procedures, pages $C$ and $D$ of this manual, before performing maintenance on the equipment. <br> (a) Verify $A C$ power source. <br> (b) Verify the LINE VOLTAGE selector switch is selected to the correct setting. <br> Remove the top and bottom covers and inspect all assemblies for the following: <br> (a) foreign material <br> (b) unseated integrated circuits <br> (c) unseated transistors <br> (d) unseated connectors <br> (e) broken leads <br> (f) scorched components <br> (g) loose hardware | Test lb <br> Tests 2 and 11 <br> Test 9 | Connect to a valid AC power source. <br> Select correct setting. <br> Remove, reseat, repair or replace as necessary. |

Table 5-7. Troubleshooting Procedures

| Test No. | Indication | Test Procedure | If correct, Perform | Repair Action, of Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 3 | LED display incorrect. | Perform Test 9. | $N / A$ |  |
| 4 | dBm and/or CHI <br> indicators do not light. | Perform Test 9. | $N / A$ |  |
| 5 | Instrument does not zero | Perform Test 9. | N/A |  |
| 6 | With the sensor connected to the PWR REF connector the LED display is incorrect | Press the CAL key and perform operator checkout paragraph $4-4 b(8)$ and $4-4 b(16)$. | Perform paragraph 4-4b(17) | Perform Test 7. |
| 7 | MODE PWR check incorrect | Connect a known good sensor. | $N / A$ | Replace sensor, perform paragraph 5-23. |
| 8 | Sensor replacement does not correct MODE PWR check | Perform Test 9. | N/A | Perform Test 8. |

Table 5-7. Troubleshooting Procedures

| $\begin{gathered} \text { Test } \\ \text { No. } \\ \hline \end{gathered}$ | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 9 |  | Verify test set adjustments. Perform the adjustment procedures. Refer to paragraph 5-13 through 5-23. Some of the software correction data that is stored in nonvolatile RAM can affect the readings to a degree where the instrument will not work. | Proceed to step 20. | Remove and replace defective component as identified in steps 10 through 19. |
| 10 | Test \#10 functions <br> The power supply test points are of the improper value and cannot be adjusted to the correct value | NOTE <br> hrough Test \#19 are a troubleshooting guide to cor encountered while performing the adjustment proc <br> (a) Disconnect power supply plugs $\mathrm{P}-4, \mathrm{P}-5$, $\mathrm{P}-6, \mathrm{P}-7$ and $\mathrm{P}-10$. Recheck voltage test points. Refer to paragraph 5-15. <br> (b) Connect P-4. Recheck voltage test points. | rrect maldures. <br> Test 10b <br> Test 10c | Perform Test 11. <br> Replace control board A5. Refer to paragraph 5-28 and 5-29. |
|  |  | (c) Connect P-5. Recheck voltage test points. | Test 10d | Replace display board A2. Refer to paragraph 5-38 and 5-39. |
|  |  | (d) Connect $P-6$. Recheck voltage test points. | Test 10e | Repair short in wire or clean recorder connection. |
|  |  | (e) Connect P-7. Recheck voltage test points. | Test lof | Replace input board A6. Refer to paragraph 5-34 and 5-35. |

Table 5-7. Troubleshooting Procedures

| Test No. | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
|  | High volta connected. safety pre | (f) Connect $\mathrm{P}-10$. Recheck voltage test points. <br> WARNING <br> is present in this instrument if electrical po Death on contact may result if personnel fail t cautions. | Test lla and 11d <br> ower is to observe | Replace IEEE board A-23. Refer to paragraph 5-26 and 5-27. |
| 11 | No voltage indication at the power supply test points | (a) Turn the line switch to OFF and unplug the AN/USM-491 from the power source. <br> (b) Measure the rear panel fuse for continuity with the digital multimeter. <br> (c) Measure the power cord for continuity with the digital multimeter. <br> (d) Measure continuity of line switch SI, voltage selector switch S2, and interconnecting wiring by connecting the ohmmeter to the input pins of PI. <br> (e) Disconnect the transformer plug Pl from the power supply board. <br> (1) Set the digital multimeter to read $A C$ volts and connect it to pins 1 and 2 of the plug. <br> (2) Connect the power cord to the $A C$ voltage source and turn the AN/USM-491 line switch on. The AC voltage reading should be 9.5 VAC ( 1.4 V ). | Test 11c <br> Test lld <br> Test lle <br> Test lle <br> (3) | Replace fuse. <br> Replace power cord. <br> Replace rear panel assembly. Refer to paragraph 5-40 and 5-41. <br> Replace the rear panel assembly. Refer to paragraph 5-40 and 5-41. |



NOTES:

1. $\square$ DENOTES EXTERNAL MARKINGS

Table 5-7. Troubleshooting Procedures


Table 5-7. Troubleshooting Procedures

| $\begin{array}{\|c\|c} \text { Test } \\ \text { No. } \end{array}$ | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 14 | The voltage reading at input board TP9 (with the grounding clips removed from TP7 and TP8) cannot be adjusted to the correct level with R4 and R5 on the chopper assembly <br> Voltage Calibrator Output $Q$ | (a) Remove the input shield. <br> (b) Connect the test equipment as shown in Figure 5-24. <br> (c) Set the voltage calibrator to 1 VDC. <br> (d) Set the oscilloscope to 0.2 V per division and 5 msec per division. <br> (e) Connect the oscilloscope probe to the end of R18 and then R19 away from the chopper assembly. See Figure 5-25. <br> (f) On both R18 and R19 the oscilloscope should display a square wave of $+/-0.45 \mathrm{~V}$ ( 0.9 V peak to peak). <br> Figure 5-24. Test Setup for Chopper Assembly and |  | Perform Test 14f <br> cilloscope <br> RT <br> CEOWB32 <br> Troubleshooting |



Figure 5-25. Chopper Assembly and Input Boards Test Points

Table 5-7. Troubleshooting Procedures

| Test <br> No. | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 14 \\ \text { cont'd } \end{gathered}$ |  | (g) Set the oscilloscope to 2.0 V per division and 5 msec per division. <br> (h) Connect the oscilloscope probe to TP3 and then TP4 of the input board (See Figure 5-25). Both test points should display a $+/-5 V$ square wave ( 10 V peak to peak). <br> (a) Connect the test equipment as shown in Figure 5-26. <br> (b) Set the level generator to 30 MHz with an output of between 0 to 10 dBm . | Replace the chopper module A4. Refer to paragraph 5-32 and 5-33. | Replace the input board A6. Refer to paragraph 5-34 and 5-35. |
|  | LED displays invalid characters or is locked up | Figure 5-26. Test Setup for when the LED Display Character or is Locked Up <br> (c) Set the oscilloscope to 2 volts per division and 0.2 msec per division. <br> (d) Remove the input shield (if installed). | ys Invalid | illoscope <br> t <br> CEOWB34 |


| $\begin{aligned} & \text { Test } \\ & \text { No. } \end{aligned}$ | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (e) With the oscilloscope, look at the signal on the input board at pin 6 of A1 (TP14) or at the rear side of $R 5$ (see Figure 5-25). <br> (f) There should be repetitive staircase waveforms with each staircase alternating up and down every few steps. | Perform test 24. | Replace control board A5. Refer to paragraph 5-28 and 5-29. |
| 16 | When performing Table 5-1, DC calibration test, some (not all) ranges fail. Display is okay. | None | $N / A$ | Replace input board A6. Refer to paragraph 5-34 and 5-35. |
| 17 | Recorder output voltage incorrect after adjustment. | None | $N / A$ | Replace input board A6. Refer to paragraph 5-34 and 5-35. |
| 18 | Cannot obtain a power reference output of between 0.993 and 1.007 mW by adjusting R-4 on the calibrator assembly. | None | $N / A$ | Replace the calibrator assembly. Refer to paragraph 5-36 and 5-37. |

Table 5-7. Troubleshooting Procedures


Table 5-7. Troubleshooting Procedures

| Test No. | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 21 |  | Display Test <br> (a) Turn the AN/USM-491 line switch to "OFF". <br> (b) Remove the IEEE board to gain access to the control board. <br> (c) Remove IC6 and IC7 from the control board. (See Figure 5-27.) <br> (d) Install the diagnostic ROM Part No. 53433200A from kit 96101001A into the IC6 socket, observing pin 1 orientation. <br> (e) Set the control board BIT switch as follows: $\begin{array}{llllllll} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 0 & C & 0 & 0 & C & C & 0 \end{array}$ <br> (f) Turn the AN/USM-491 line switch to "ON". <br> (g) The LED should display in succession: <br> All zeros <br> All ones through all nines <br> All decimal points <br> All left LEDs <br> All middle LEDS <br> All right LEDs and minus sign Repeat of above. <br> Keyboard test <br> (a) The diagnostic ROM is still installed as in test 21. <br> (b) Set the control board BIT switch to the following: $\begin{array}{llllllll} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ C & C & 0 & C & C & C & C & 0 \end{array}$ | Perform <br> Test 22. | Perform Test 24. |



Figure 5-27. Location of IC6, IC7, IC18, and PI on the Control Board
tI -t9โع-sz99-tI W

Table 5-7. Troubleshooting Procedures

| $\begin{gathered} \text { Test } \\ \text { No. } \end{gathered}$ | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 22 \\ \text { cont } \end{gathered}$ $23$ |  | (c) Press any key and note the LED display. <br> (d) A different number should appear for each key pressed. <br> Data writes into input board test. (This test checks the data and address lines going from the control board to the input board.) <br> (a) The diagnostic ROM is still installed as in tests 21 and 22. <br> (b) The oscilloscope is required for this test. <br> (c) The best access to these signals is on Pl of the control board. (See Figure 5-27.) <br> (d) Look for pulse width of any duration, 0 ( 0 to .45 VDC max) or +5 VDC ( 2.5 min to 5.2 VDC max) on pins 1 through 19 and on pin 32. A line with no pulse activity indicates something is wrong with the control board. <br> (e) If this test 23 is correct and tests 20,21, and 22 were correct there is a problem in the input board. | Perform Test 23. <br> Replace the input board A6. Refer to paragraph 5-34 and 5-35. | Perform Test 24. <br> Replace the control board A5. Refer to paragraph 5-28 and 5-29. |

Table 5-7. Troubleshooting Procedures

| Test No. | Indication | Test Procedure | If correct, Perform | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 24 |  | Control Board Test <br> (a) This test may be performed with either the diagnostic or the normal operating ROMs in place on the control board. <br> (b) The oscilloscope is required for this test. <br> (c) Remove the IEEE interface board if installed. <br> (d) Check the signals at IC18 on the control board (see Figure 5-27) for the signals described below (frequencies shown should match to $\pm 15 \%$ ). <br> (e) If any of the signals are incorrect the control board is bad. <br> (f) If all signals are correct the display board is bad. |  | Replace the control board A5. Refer to paragraph 5-28 and 5-29. <br> Replace the display board A2. Refer to paragraph 5-38 and 5-39. |

Table 5-7. Troubleshooting Procedures

| $\begin{gathered} \text { Test } \\ \text { No. } \\ \hline \end{gathered}$ | Indication | Test Procedure | $\begin{gathered} \text { If correct, } \\ \text { Perform } \end{gathered}$ | Repair Action, if Test Fails |
| :---: | :---: | :---: | :---: | :---: |
| 25 | Remote (IEEE) operation fails, local operation okay. | (a) The oscilloscope is required for this test. <br> (b) Check for input signals to U3 pin 1 and U4 pin 4 (see Figure 5-28). There should be activity on these pins at all times. <br> (c) Check for random input signals to $U 7$ pins 1 through 8, 19, 22 and 23. There may not be activity on all pins at all times but there should be some. | Replace <br> the IEEE <br> interface <br> board A23. <br> Refer to <br> paragraph <br> 5-26 and <br> 5-27. | Perform Test 20. |



Figure 5-28. IEEE Interface Board Test Points
TM 11-6625-3164-14
b. Remove the two screws at the rear of the top cover.
c. Slide the top cover off to expose the IEEE interface board.
d. Di sconnect the edge card connector P1 (1) from the interface board.
e. Di sconnect the four pin connector P2 (2).
f. Remove the six screws (3) from the board.
g. Renove the interface board.

5-27. I NSTALLATI ON OF I EEE- 488 I NTERFACE BOARD A23. ( F gure 5- 29)
a. Connect the edge card connect or to the board at P1 (1).
b. I nstall the interface board with six screws (3).
c. Connect the four pin connect or to the board at P2 (2).
d. Slide the top cover into its slots. Ensure the sides and front of the cover are in the slots.
e. Install two screws at the rear of the top cover.

NOTE

There are no adj ustments requi red for the interface board.
f. Perform the performance tests as di rected by the remote controller equi prent.

## 5-28. REMDVAL OF CONTROL BOARD A5. Fi gure 5-30

## WARNING

Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi prent.
a. Di sconnect the ac power line from the ac power source.

## CAUTI ON

Thi s i nstrument contai ns el ectrostatic di scharge sensitive (ESDS) devices. Speci al handling methods and materials must be used to prevent equi pment damage. Ref er to el ectrostatic di scharge sensitive devi ce procedures, pages $C$ and $D$ of $t h i s$ manual, bef ore performing mai nt enance on the equi prent.
b. Remove the two screws from the rear of the top cover.


Fi gure 5-29. IEEE-488 Interface Board


Figure 5-30. Control Board
c. Slide the top cover off.
d. Following the procedures of paragraph 5-25 remove the IEEE-488 interface board.
e. Di sconnect the ribbon cable connect or at J2(1) from the control board.
f. Di sconnect the four pin connector P2 (2).
g. Di sconnect the five pin connector P4 (3).
h. Di sconnect the edge card connector P1 (4).
i. Remove the six standoffs (5) and lock washers (6),
j. Remove the control board (7).

5-29. I NSTALLATI ON OF CONTROL BOARD A5. ( flig gure 5-30)
a. Connect the edge card connector to the board at P1 (4).
b. Install the board with six standoffs (5) and lock washers (6).
c. Connect the five pin connect or to the board at P4 (3).
d. Connect the four pin connector to the board at P2 (2).
e. Connect the ribbon cable connector to the board at J2 (I).
f. Perform adj ustments following the procedures of paragraphs 5-17 5-18 and 5-23.
g. Install the IEEE-488 interface board (see paragraph 5-27).
h. Slide the top cover into its slots., Ensure the sides and front of the cover are in the slots.
i. Install two screws at the rear of the top cover.
j. Perform the performance tests following the procedures of paragraphs 5-4 through 5-12.

5-30. REMDVAL OF PONER SUPPLY BOARD A7. (F gure 5-31)
WARNING
Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi prent.
a. Di sconnect the ac power line fromthe ac power source.

## CAUTI ON

Thi s instrument contains el ectrostatic di scharge sensitive (ESDS) devices. Speci al handling methods and materials must be used to prevent equi pment danage. Refer to el ectrostatic di scharge sensitive device procedures, pages $C$ and $D$ of this manual, before performing maintenance on the equi pment.


View A


Fi gure 5-31. Power Supply Board
b. Remove the two screws at the rear of the bottom cover.
c. Slide the bottom cover of f.
d. Remove the two screws (1) from the rear panel.
e. Di sconnect connectors P4 (2), P5 (3), P7 (4), P9 (5) and P1O (6).
f. Di sconnect the single wire push- pi $n$ connect or (7).
g. Di sconnect the transformer connector P1 (8).
h. Renove the four screws (9) from the power supply board.
i. Remove the power supply board.

5- 31. I NSTALLATI ON OF PONER SUPPLY BOARD A7. (F gure 5-31)
a. Install two screws (1) at the rear panel.
b. Install the power supply board with four screws (9).
c. Connect the transformer connector to the board at P1 (8).
d. Connect the single wi re push- pi $n$ connector to the board at pi $n$ P6 (7).
e. Connect P4 (2), P5 (3), P7 (4), P9 (5), and P1O (6) to the board. A label on the chassis frame indi cates the correct positioning of the connectors.
f. Perform adjust ments following the procedures of paragraphs 5-13 through 5-19.
g. Slide the bottom cover into its slots. Ensure the sides and front of the cover are engaged in the slots.
h. Install two screws at the rear of the bottom cover.
i. Perform the performance tests following the procedures of paragraphs 5-4 through 5-12.

## 5- 32. REMDVAL OF CHOPPER MDDULE A. $\quad$ Fi gure 5-32, It em 3)

## WARNING

Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi prent.
a. Remove the two screws from the rear of the bottom cover.

## CAUTI ON

This instrument contains el ectrostatic di scharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equi prent damage. Refer to el ectrostatic di scharge sensitive devi ce procedures, pages C and D of this manual, bef ore performing maintenance on the equi pment.


Fi gure 5-32. Chopper Mbdul e and Input Board (Vi ew A)
b. SIide the bottom cover off.
c. Renove the four screws (1) from the input shi eld (2).
d. Renove the input shi eld (2).


Figure 5-32. Chopper Mbdul e and Input Board (Vi ew B)
e. Renove two screws (4) from the chopper nodule cover.
f. Lift the cover from the chopper module.
g. Slide the clear insulation back on the red wire and the black wire. Unsol der the red wire from P2-1 and the black wire from P2-2.
h. Lift out the chopper module from the input module board.

## 5-33. I NSTALLATI ON OF CHOPPER MDDULE A4. (Fi qure 5-32, I tem 3)

a. Install chopper module on the input board. Ensure the pins mate properly with connectors.
b. Sol der red wire to P2-1 and the bl ack wire to P2-2.
c. Slide insulation over sol der connections.
d. Install the chopper module cover with two screws (4).

Perform the adj ustments following the procedures of paragraphs 5-13 through
f. I nstall the i nput shield (2) with four screws (I).
g. Slide the bottom cover into its slots.
h. Install two screws at the rear of the bottom cover.
i. Perform the performance tests following the procedures of paragraphs 5-4 through 5-12.

## 5- 34. REMDVAL OF I NPUT BOARD A6. Figure 5-32)

WARNING
Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi pment.
a. Di sconnect the ac power line from the ac power source.

## CAUTI ON

Thi s i nstrument contai ns el ectrostatic di scharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equi prent damage. Ref er to el ectrostatic di scharge sensitive devi ce procedures, pages $C$ and $D$ of this manual, bef ore performing mai nt enance on the equi prent.
b. Renove the two screws at the rear of the bottom cover.
c. Slide the bottom cover of $f$.
d. Remove the four screws (1) from the i nput shi el d (2).
e. Renrove the i nput shi eld (2).
f. Disconnect the five pin connector P2 (5).
g. Di sconnect the edge card connect or P1 (6).
h. Remove the two screws (4) from the chopper module (3).
i. Lift the cover from the chopper nodule.
j. Lift chopper module (3) to the side being caref ul not to damage connections.
k. Remove the four standoffs (7) and lock washers (8).
I. Renove the i nput board.

\section*{5- 35. I NSTALLATI ON OF I NPUT BOARD A6. | Fi gure 5-32 |
| :--- |}

a. Install the i nput module board with four standoff (7) and lock washers (8).
b. Install the chopper assembly (3) on the input board. Ensure the pi ns mate properly with connectors.
c. Install the chopper nodule cover with two screws (4).
d. Connect the edge card connect or to the board at P1 (6).
e. Connect the five pi $n$ connector to the board at P2 (5).
f. Perform adj ustments following the procedures of paragraphs 5-13 through 5-19.
g. Install the input shi el d with four screws (I). Ensure the hol es in the shi eld are correctly al igned with the adjusting screws and pins on the input module board.
h. Slide the bottom cover into its slots. Ensure the sides and front of the cover are in the slots.
i. Install the two screws at the rear of the bottom cover.
$j=$ Perform the performance tests following the procedures of paragraphs 5-4 through 5-12.

## 5-36. REMDVAL OF CALI BRATOR ASSEMBLY. (figure 5-33)

## WARNING

Ensure el ectrical power is disconnected to prevent el ectrical shock to personnel or damage to equi prent.

## CAUTI ON

Thi s instrument contai ns el ectrostatic di scharge sensitive (ESDS) devices. Special handling methods and materials must be used to prevent equi prent damage. Ref er to el ectrostatic di scharge sensitive device procedures, pages $C$ and $D$ of this manual, bef ore performing nai ntenance on the equi pment.
a. Renove two screws from bottom cover.


View A


View B


CEOWB42

Fi gure 5-33. Cali brat or Assenbly
b. SIide bottom cover off.
c. Renove two screws (1) from the bottomtrimstrip.
d. Remove bottomtrimstrip (2).
e. Remove the front panel (3).
f. Di sconnect connector P2 (4) from the di splay board.
g. Renove the four screws (Figure 5-32 tem (1)) from the input shield.
h. Renove the input shi el d (Figure 5-32 Item (2)).
i. Renove two screws (5) that secure the calibrator assentloly.
j. Remove the calibrator assentbly (6).

## 5-37. I NSTALLATI ON OF CALI BRATOR ASSEMBLY. ( Fil gure 5-33)

a. Install the calibrator assentoly (6) with two screws (5).
b. Install the input shi el (Figure 5-32 Item (2)) with four screws (Figure 5-32 Item (I) ).
c. Connect connector P2 (4) to the di splay board.
d. Install the front panel (3).
e. Perform adj ustment following the procedures of paragraph 5-19.
f. Install the bottomtrimstrip (2) with two screws (I).
g. Slide the bottom cover into its slots on the bottom of the meter. Ensure the si des and front of the cover are in the slots.
h. Install two screws at the rear of the bottom cover.
i. Perform the performance test following the procedures of $\square$ paragraph 5-8.

## 5-38. REMDVAL OF DI SPLAY BOARD A2. ( fi qure 5-34)

## WARNING

Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi prent.
a. Di sconnect the ac power line fromthe ac power source.

## CAUTI ON

Thi s instrument contains el ectrostatic di scharge sensitive (ESDS) devices. Speci al handling methods and materials must be used to prevent equi prent damage. Ref er to el ectrostatic di scharge sensitive devi ce procedures, pages $C$ and $D$ of this manual, bef ore performing mai nt enance on the equi pment.
b. Remove the two screws at the rear of the top cover.
c. Slide the top cover of $f$.
d. Remove the two screws from the rear of the bottom cover.
e. Slide the bottom cover of $f$.
f. Remove the two screws (1) from the top trimstrip (2).
g. Renove the top trimstrip (2).
h. Renove the di spl ay panel (3).
i. Turn the meter on its side.
j. Remove two screws (4) from the side trim
k. Remove si de trim(5).
I. Remove panel support (6).
$m$ Remove the two screws (figure 5-331tem (l)) from the bottom trim strip.
n. Renove the bottom trim strip Figure 5-33Item (2)).
0. Remove front panel (7).
p. Remove the 26 push buttons (8).
q. Di sconnect two pi $n$ connector P2 (9).
r. Remove two screws (10) from rocker (ON/ OFF) switch (11).
s. Remove five screws (12) from di spl ay board (15).
t. Di sconnect five pin connector P1 (13) on rear si de of di splay board (15).
u. Di sconnect the ribbon cable connect or fromJ1 (14) on the rear of the di spl ay board (15).
v. Renove di spl ay board (15) from chassi s.


Fi gure 5- 34. Di spl ay Board

## 5-39. I NSTALLATI ON OF DI SPLAY BOARD A2. ( fi gure 5-34)

a. Connect the ribbon cable connector to Jl (14) on the rear of the display boar (15).
b. Connect the five pin connector P1 (13) to the rear of the display board (15).
c. Install the di splay board (15) with five screws (12).
d. Install the Rocker (ON OFF) switch (11) with two screws (10).
e. Install two pin connector P2 (9).
f. Repl ace 26 push-buttons (8) on the switches.
g. Install the front panel (7).
h. Install the bottom trimstrip (Figure 5-33 Item(2)) with two screws Fi qure 5-33I tem (1)).
i. Install the panel support (6). Ensure the bracket on the side trimstip (5) engages the panel support.
j. Install the di splay panel (3).
k. Install the side trimstrip (5) with two screws (4). Ensure the bracket on the side trim engages the support bracket.
I. Install the top trimstrip (2) with two screws (1).
m Perform adj ustments following the procedures of paragraphs 5-13 through 5-19.
n. Slide the top cover into its slots on the top of the meter. Ensure the sides and front of the cover are in the slots.
0. Install two screws at the rear of the top cover.
p. Slide the bottom cover into its slots on the bottom of the meter. Ensure the sides and front of the cover are in the slots.
q. Install two screws at the rear of the bottom cover.
r. Perform the performance tests following the procedures of $\square$ paragraphs 5-4 through 5-12.

## 5-40. REMDVAL OF REAR PANEL ASSEMBLY. Fi gure 5-35)

## WARNING

Ensure el ectrical power is di sconnected to prevent el ectrical shock to personnel or damage to equi prent.


View A


View B
CEOWB44

Fi gure 5-35. Renoval/Installation of the Rear Panel Assently
a. Renove the two screws at the rear of the bottom cover.
b. Slide the bottom cover of $f$.
c. Di sconnect connector P1 (Figure 5-31 Item(8)) from the power supply board.
d. Di sconnect the single wire push-pin connector (Fiqure 5-31. Item(7)) from the power supply board.
e. Renove the IEEE-488 interface board A23. Refer to paragraph 5-26.
f. Remove the control board A5. Ref er t paragraph 5-28.
g. Renove the two screws (Figure 5-33 tem (4)) from the bottom trimstrip Fi gure 5-33I tem (5)).
h. Renove the front panel Fiqure 5-33Item(6)).
i. Renrove the two screws (Fi gure 5-34 tem (10)) from the rocker (on/off) switch Fiqure 5-34Item (11)).
j. Remove the switch cable from under the clip on the back side of the panel and work it through the chassis opening.
k. Remove the cable from under the two clips on the panel and lift it away fromthe chassis.
I. Cut the two tie wraps and work the wire di sconnected in step d through the opening in the chassis.
$m$ Renove the four screws (1) from the two line cord brackets (2).
n. Renove five screws (3) from the rear panel assentbly (4).
0. Renove two nuts (5) and Iockwashers (6) from the studs on the insi de that secure the rear panel to the chassis.
p. Remove the rear panel assentbly (4).

## 5-41. I NSTALLATI ON OF REAR PANEL ASSEMBLY. (ffigure 5-35)

a. Align the two studs on the rear panel assembly (4) through the hol es in the chassis. Ensure the switch cable passes through the opening to the top side. Install two lockwashers (6) and nuts (5).
b. Install five screws (3) in the rear panel assembly.
c. Install the two line cord brackets (2) with four screws (I).
d. Run the single wire push- pin connector through the opening in the chassis and connect it to the power supply board. Figure 5-31] Item(7)).
e. Install connect or P1 (Figure 5-31 Item (8)) to the power supply board.
f. Lay the switch cable down the side of the chassis and install it under the two clips on the back side of the front.
g. Run the switch cable through the opening in the chassis and under the clip.
h. I nstall the rocker (on/ off) switch (Fiqure 5-34 Item (11)) with the t wo screws Figure 5-34 Item (10)).
i. Slide the front panel (Fiqure 5-33 Item (6)) in place.
i. Install the bottom trip strip (Figure 5-3B Item (5)) with two screws Figure 5-331 tem (4)).
k. Install the control board A5. Ref er to paragraph 5-29.
I. Install the I EEE- 488 interface board A23. Ref er to paragraph 5-27.
m Perform adjustments following the procedures of paragraphs 5-13 through 5-19.
n. Slide the top and bottom covers into their slots. Ensure the sides and front of the cover are engaged in the slots.
0. Install the screws at the rear of the top and bottom covers.
p. Perform the mi num performance standards following the procedures of par agraphs 5-4 thr ough 5-12.

## SECTION VI <br> PREPARATION FOR RESHIPMENT

## 6-1. PACKAG NG

The AN/ USM 491 shoul d be repackaged using the materials and met hodol ogy shown
in Figure 6-1.


CEOWB44
Fi gure 6-1. Packaging Di agram

## SECTION VII

## STORAGE

## 7-1. PREPARATI ON FOR STORAGE

Bef ore storing the AN USM 491, perform routine cleaning, dusting and check for loose nuts, bolts, handles, connectors, etc.

## 7-2. PACKI NG FOR STORAGE

Packing the AN USM 491 for administrative storage should be accomplished in accordance with Figure 6-1.

## 7-3. STORAGE

There are no special storage requirements for the AN USM 491 Test Set, however, as with all electronics, the instrument should not be stored in extreme ambient temperatures or in areas of high humidity.

## APPENDIX A REFERENCES

## A-1. SCOPE.

This appendix lists all forms, technical bulletins, technical manuals, and miscellaneous publications referenced in this manual.

## A-2. FORMS .

## Recommended Changes to Publications and Blank Form ............DA Form 2028

Report of Discrepancy ............................................................................Form SF 364
Quality Deficiency Report ...................................................................Form SF 368

## A-3. TECHNICAL MANUALS.

The Army Maintenance Management System (TAMMS) .................DA Pam 750-8 Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command) $\qquad$ .TM 750-244-2
Unit, Intermediate Direct Support, and General Support Maintenance Repair Parts and Special Tools List for Test Set, Radio Frequency Power, AN/ USM-491

TM 11-6625-3164-24P

## A-4. MISCELLANEOUS.

Common Table of Allowances ..... CTA 50-970
Consolidated Index of Army Publications and Blank Forms ..... DA Pam 25-30FM 4-25.11
Abbreviations and Acronyms ASME-Y14/38M
Preservation, Packaging, Packing and Marking Materials,Supplies and Equipment Used By the ArmySBA 38-100

## APPENDIX B

## COMPONENTS OF END ITEM AND BASIC ISSUE ITEMS LIST

## B- 1. SCOPE.

Thi s appendi $x$ lists components of end item and basic issue itens for the Test Set, Radi o Frequency Power AN USM 491 to hel p you i nventory itens requi red for safe and efficient operation.

## B- 2. GENERAL.

The Components of End Item and Basic Issue Itens Lists are di vided into the following sections:
a. Section 1. Components of End Item This listing is for informational purposes only, and is not authority to requisition repl acements. These itens are part of the end item but are removed and separately packaged for transpiration or shi prent. As part of the end item these itens must be with the end item whenever it is issued or transferred between property accounts. Illustrations are furni shed to assist you in identifying the itens.
b. Section III. Basic Issue Itens (BII). These are the mimmessential itens requi red to pl ace the AN/ USM 491 Radio Frequency Power Test Set in oper ation, to operate it, and to performemergency repairs. The Bll are shi pped separately packaged. Si nce all essential itens required for operation of the AN/ USM 491 are incl uded in Section 11, no BII are identified for the AN/ USM 491.

## B- 3. EXPLANATI ON OF COLUMNS.

The following is an explanation of col umms found in the tabular listings:
a. Col umm (1) - III ustration Number (III us. No.). Thi s col umm i ndi cat es the number of the illustration in whi ch the itemis shown.
b. Col um (2) - Nati onal St ock Number. I ndi cates the National Stock Nunber assigned to the item and will be used for requisitioning purposes.
c. Col um (3) - Description. I ndi cates the Federal item name and, if requi red, a mi num description to identify and locate the item The last line for each item indi cates the Federal Supply Code for Manuf acturer (FSCM) (in parentheses) followed by the part number. If item needed differs for different model s of this equi prent, the model is shown under the Usable On heading in this col um.
d. Col umm (4) - Unit of Measure ( $U / \mathrm{M}$ ). I ndi cates the measure used in performing the actual oper ati onal/mai ntenance function. This measure is expressed by a two-character al phabetical abbreviation (e. g., ea, in, pr).

e. Col um (5) - Quantity Requi red (Qty Rqr). Indi cates the quantity of the item authorized to be used with the Test Set.

| (1) <br> IIIus. No. | (2) <br> Nat i onal St ock Number | (3) <br> Description FSCM and Part Number | Usabl e On Code | (4) <br> $\mathrm{U} / \mathrm{M}$ | (5) <br> Qty <br> Rqr |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | $\begin{array}{ll} \hline 4200 & \text { RF } \\ \text { (049 cr owat t net er } \\ \text { 04901) } & 04233400 \mathrm{~A} \end{array}$ |  | ea | 1 |
| 2 |  | 20 dB Attenuat or (04901) 95105401A |  | ea | 1 |
| 3 |  | Fuse, 0.2 AMp, 230 VAC, ML SLO BLO (04901) 545508000 |  | ea | 2 |
| 4 |  | Fuse, 0. 3 Amp. 115 VAC, M L SLO 8LO (04901) 54550700 |  | ea | 1 |
| 5 |  | Power Sensor Cabl e Assentoly (04901) 09170501A |  | ea | 1 |
| 6 |  | Cover Assy Accessory (04901) 04240000A |  | ea | 1 |
| 7 |  | $\begin{aligned} & \text { Li ne Cord } \\ & (70903) \quad \text { CH9461 } \end{aligned}$ |  | ea | 1 |
| 8 |  | 6E Power Sensor (04901) O4105658A |  | ea | 1 |

## APPENDIX C MAINTENANCE ALLOCATION CHART

## Section I. INTRODUCTION

## C-1. General.

a. This appendix provides a general explanation of all maintenance and repair function authorized at the two maintenance levels under the Two-Level Maintenance System concept for the Test Set, Radio Frequency Power AN/USM-491.
b. The Maintenance Allocation Chart (MAC) designates overall authority and responsibility for the performance of maintenance functions on the identified end item or component. The application of the maintenance functions to the end item or component levels, which are shown on the MAC in column (4) as:

1. Field - includes two columns, Unit maintenance and Direct Support maintenance. The Unit maintenance column is divided again into two more subcolumns, C for Operator or Crew and O for Unit maintenance.
2. Sustainment - includes two subcolumns, general support (H) and depot (D).
c. Section III ists the tools and test equipment requirements (both special tools and common tool sets) required for each maintenance function as referenced from the Section II.
d. Section IV contains supplemental instructions and explanatory notes for a particular maintenance function.

## C-2. Maintenance Functions

Maintenance functions are limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination (e.g. by sight, sound, or feel). This includes scheduled inspection and gagings and evaluation of cannon tubes.
b. Test. To verify serviceability by measuring the mechanical, pneumatic, hydraulic, or electrical characteristics of an item and comparing those characteristics with prescribed standards on a scheduled basis, i.e., load testing of lift devices and hydrostatic testing of pressure hoses.
c. Service. Operations required periodically to keep an item in proper operating condition; e.g., to clean (includes decontaminate, when required), to preserve, to drain, to paint, or to replenish fuel, lubricants, chemical fluids, or gases. This includes scheduled exercising and purging of recoil mechanisms.

The following are examples of service functions:

1. Unpack. To remove from packing box for service or when required for the performance of maintenance operations.
2. Repack. To return item to packing box after service and other maintenance operations.
3. Clean. To rid the item of contamination.
4. Touch up. To spot paint scratched or blistered surfaces.
5. Mark. To restore obliterated identification.
d. Adjust. To maintain or regulate, within prescribed limits, by bringing into proper position, or by setting the operating characteristics to specified parameters.
e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments of test, measuring, and diagnostic equipment used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Remove/install. To remove and install the same item when required to perform service or other maintenance functions. Install may be the act of emplacing, seating, or fixing into position a spare, repair part, or module (component or assembly) in a manner to allow the proper functioning of an equipment or system.
h. Paint. To prepare and spray color coats of paint so that the ammunition can be identified and protected. The color indicating primary use is applied, preferably, to the entire exterior surface as the background color of the item. Other markings are to be repainted as original so as to retain proper ammunition identification.
i. Replace. To remove an unserviceable item and install a serviceable counterpart in its place "Repair" is authorized by the MAC and assigned maintenance level is shown as the third position code of the Source, Maintenance and Recoverability (SMR) code.
j. Repair. The application of maintenance services, including fault location/troubleshooting, removal/installation, disassembly/assembly procedures and maintenance actions to identify troubles and restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item or system.

## NOTE

The following definitions are applicable to the "repair" maintenance function:

1. Services. Inspect, test, service adjust, align, calibrate, and/or replace.
2. Fault location/troubleshooting. The process of investigating and detecting the case of equipment malfunctioning; the act of isolating a fault within a system or Unit Under Test (UUT).
3. Disassembly/assembly. The step-by-step breakdown (taking apart) of a spare/functional group coded item to the level of its least component, that is assigned an SMR code for the level of maintenance under consideration (i.e., identified as maintenance significant).
4. Actions. Welding, grinding, riveting, straightening, facing, machining, and/or resurfacing.
k. Overhaul. That maintenance effort (service/action) prescribed to restore an item to a completely serviceable/operational condition as required by maintenance standards in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
l. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (e.g., hours/miles) considered in classifying army equipment/components.

## C-3. Explanation of Columns in the MAC, SECTION II.

a. Column (1) Group Number. Column (1) lists FGC numbers, the purpose of which is to identify maintenance significant components, assemblies, subassemblies, and modules with the Next Higher Assembly (NHA).
b. Column (2) Component/Assembly. Column (2) contains the item names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column (3) Maintenance Function. Column (3) lists the functions to be performed on the item listed in column (2). (For a detailed explanation of these functions, refer to "Maintenance Functions" outlined above.)
d. Column (4) Maintenance Level. Column (4) specifies each level of maintenance authorized to perform each function listed in column (3), by indicating work time required (expressed as man hours in whole hours or decimals) in the appropriate subcolumn. The work time figure represents the active time required to perform that maintenance function at the indicated level of maintenance. If the number or complexity of the tasks within the listed maintenance function varies at different maintenance levels, appropriate work time figures are to be shown for each level. The work time figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time (including any necessary disassembly/assembly time), troubleshooting/fault location time, and quality assurance time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the MAC. The symbol designations for the various maintenance levels are as follows:

1. Field:

C Operator or Crew maintenance
O Unit maintenance
F Direct Support maintenance
2. Sustainment:

L Specialized Repair Activity
H General Support maintenance
D Depot maintenance

## NOTE

The "L" maintenance level is not included in column (4) of the MAC. Functions to this level of maintenance are identified by work time figure in the " H " column of column (4), and an associated reference code is used in the REMARKS column (6). This code is keyed to the remarks and the SRA complete repair application is explained there.
e. Column (5) Tools and Equipment Reference Code. Column (5) specifies, by code, those common tool sets (not individual tools), common Test, Measurement and Diagnostic Equipment (TMDE), and special tools, special TMDE and special support equipment required to perform the designated function. Codes are keyed to the entries in the tools and test equipment table.
f. Column (6) Remarks Code. When applicable, this column contains a letter code, in alphabetical order, which is keyed to the remarks table entries.

C-4. Explanation of Columns in the Tools and Test Equipment Requirements, SECTION III.
a. Column (1) Tool or Test Equipment Reference Code. The tool or test equipment reference code correlates with a code used in column (5) of the MAC.
b. Column (2) Maintenance Level. The lowest level of maintenance authorized to use the tool or test equipment.
c. Column (3) Nomenclature. Name or identification of the tool or test equipment.
d. Column (4) National Stock Number (NSN). The NSN of the tool or test equipment.
e. Column (5) Tool Number. The manufacturer's part number, model number, or type number.

## B-5. Explanation of Columns in the Remarks, SECTION IV.

a. Column (1) Remarks Code. The code recorded in column (6) of the MAC.
b. Column (2) Remarks. This column lists information pertinent to the maintenance function being performed as indicated in the MAC."

## Section II. MAINTENANCE ALLOCATION CHART FOR <br> TEST SET, RADIO FREQUENCY POWER AN/USM-491

| (1) <br> GROUP NUMBER | (2) | (3) <br> MAINTENANCE FUNCTION | (4) <br> MAINTENANCE LEVEL |  |  |  |  | (5) <br> TOOLS AND EQUIPMENT REFENENCE CODE | (6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FIELD |  |  | SUSTAINMENT |  |  |  |
|  | COMPONENT/ASSEMBLY |  | UNIT |  | DS | GS | DEPOT |  | REMARKS |
|  |  |  | C | 0 | F | H | D |  |  |
| 8 | Test Set, Radio Frequency Power | INSPECT INSPECT |  | $\begin{array}{\|c\|} \hline 0.1 \\ \\ 0.1 \\ 0.1 \\ \\ 0.1 \end{array}$ |  |  |  |  | $\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$ |
|  |  | INSPECT <br> SERVICE |  |  | 0.1 |  |  |  |  |
|  |  | TEST |  |  |  |  |  | 1 | B |
|  |  | TEST |  |  | 0.1 |  |  | 4, 8.9 | C |
|  |  | CALIBRATE |  |  | 1.0 |  |  | 2-5,8, 9,11,13 | D |
|  |  | REPAIR |  |  |  |  |  |  | E |
|  |  | REPAIR |  |  | 1.0 |  |  |  | K |
| 01 | RF Micro-Wattmeter | INSPECT |  | 0.1 |  |  |  |  | A |
|  |  | INSPECT |  |  | 0.1 |  |  |  | A |
|  |  | TEST |  |  | 1.0 |  |  | 1-3,5-7,10-13 |  |
|  |  | CALIBRATE |  |  | 1.5 |  |  | 2-5,8,9,11,13 | D |
|  |  | REPAIR |  |  | 1.7 |  |  | 1-13 | F |
|  |  |  |  |  | 5 |  |  |  |  |
| 02 | Power Sensor | INSPECT |  | 0.1 | 0.1 |  |  |  | A |
|  |  | CALIBRATE |  |  | 1.0 |  |  | 4, 6-9 | D, J |
|  |  | REPAIR |  |  | 0.1 |  |  |  | G |
|  |  | REPLACE |  |  | 0.1 |  |  |  | H |

## Section III. TOOL AND TEST EQUIPMENT REQUIREMENTS FOR

TEST SET, RADIO FREQUENCY POWER AN/USM-491

| (1) TOOLS OR TEST EQUIPMENT REF CODE | (2) <br> MAINTENANCE LEVEL | (3) <br> NOMENCLATURE | (4) <br> NATIONAL STOCK NUMBER | (5) <br> TOOL NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| 1 | O | Tool Kit, Electrical | 5180-01-195-0855 | JTK-17 |
| 2 | F | Multimeter, Digital | 6625-01-298-9045 | DM511 Opt 02 |
| 3 | F | Oscilloscope | 6695-01-074-7954 | MIS-30526/2 |
| 4 | F | Synthesizer Level Generator | 6625-01-089-6304 | 3335A |
| 5 | F | Voltage Calibrator | 6625-00-150-6994 | 332B |
| 6 | F | Power Meter | 6625-00-436-4883 | 432A |
| 7 | F | Thermistor Mount or Thermistor Mount | $\begin{gathered} 5985-01-094-7840 \\ 5985-01-2579470 \end{gathered}$ | $\begin{aligned} & \text { 478A-H55 } \\ & \text { 478A-H75 } \end{aligned}$ |
| 8 | F | Amplifier, RF | 4931-00-128-1444 | RF815 |
| 9 | F | Attenuator, 20db, 50 ohm Weinschel | 5985-00-454-6924 | 2-20 |
| 10 | F | Counter, Frequency | 6625-00-531-4752 | 5345A |
| 11 | F | Power Module Tektronix | 6625-01-048-8920 | RTM506 |
| 12 | F | Diagnostic ROM Kit |  | 96101001A |
| 13 | F | Power Meter Adapter Assembly (AN/USM-491) | $\begin{gathered} \text { 6625-01-2663- } \\ 8766 \end{gathered}$ | 7917058 |

## Section IV. REMARKS FOR <br> TEST SET, RADIO FREQUENCY POWER AN/USM-491

| REMARKS <br> CODE | REMARKS |
| :---: | :--- |
| A | VISUAL INSPECTION, INSURE THAT THE TEST SET AND POWER SENSOR ARE A <br> MATCHED PAIR. |
| B | OPERATIONAL TEST. |
| C | PERFORMANCE TEST. |
| D | IN ACCORDANCE WITH TECHNICAL BULLETIN LISTED IN TB 43-180. |
| E | REPAIR BY REPLACEMENT OF FUSE, LINE CORD, AND COVER ASSEMBLY. |
| F | REPAIR BY REPLACING CIRCUIT CARD ASSEMBLIES (A2, A4, A5, A6, A7, A23), <br> REAR PANEL ASSEMBLY AND POWER CALIBRATOR ASSEMBLY. |
| G | REPAIR IS LIMITED TO CALIBRATION ONLY. |
| H | CODE 'NON-REPAIRABLE' AND RETURN TO OWNER/USER. |
| J | POWER SENSOR MUST BE CALIBRATED WITH THE END ITEM AND USED AS A |
| K MATCHED SET. |  |

## APPENDIX D <br> EXPENDABLE SUPPLIES AND MATERIALS

## Section I. INTRODUCTION

## D. 1. SCOPE

This appendix lists expendable supplies and materials you will need to oper ate and mai nt ai $n$ the AN USM 491. These itens are authorized to you by CTA 50-70, Expendable Itens (Except Medical, Class V, Repair parts, and Heraldic Itens).

## D. 2. EXPLANATI ON OF COLUMNS

a. Col um (1) - Item Number. Thi s number is assi gned to the entry in the listing and is referenced to the entry in the listing and is referenced in the narrative instructions to identify the naterial (e.g., "Use cleani ng compound, item 1, App. EI).
b. Col umn (2) - Level. This col umn identifies the lowest level of mai ntenance that requires the listed item

C - Oper at or/Crew
O - Organi zati onal Mai nt enance
F - Di rect Support Mai nt enance
H - General Support Mai nt enance
c. Col um (3) - National Stock Number. Thi s is the National stock number assigned the item use it to request or requi sition the item
d. Col um (4) - Description. I ndi cates the Federal item name and, if requi red, a description to identify the item The last line for each item i ndi cates the Federal Supply Code for Manufacturer (FSCM) in parentheses followed by the part number.
e. Col umm (5) - Unit of Measure ( $\mathrm{U} / \mathrm{M}$ ). I ndi cates the measure used in performing the actual mai ntenance function. This measure is expressed by a two- char acter al phabetical abbrevi ation (e.g., ea, in, pr). If the unit of measure differs from the unit of issue, requi sition the lowest unit of issue that will satisfy your requi rements.

| (1) | (2) | (3) | (4) | (5) |
| :---: | :---: | :---: | :---: | :---: |
| ITEM <br> NUMBER | LEVEL | NATIONAL STOCK NUMBER | DESCRIPTION | U/M |
| 1 | 0 |  | DETERGENT, MILD LIQUID | OZ |
| 2 | 0 | 8305-00-267-3015 | CLOTH, CHEESECLOTH, COTTON, LINTLESS, CCC-C-440, TYPE II, CLASS 2 (81348) | YD |
| 3 | H | 6850-01-459-0069 | CLEANING COMPOUND, SOLVENT, HFE71DE, (28112) | GL |
| 4 | H | 3530-00-290-2920 | BRUSH, (TOOTHBRUSH) H-T - 560 | EA |
| 5 | H | 8030-00-546-8637 | CORROSION PREVENTIVE COMPOUND, WATER DISPLACING, ULTRA-THIN FILM. MIL-C-81309E(3) TYPE III CLASS 2 | OZ |

## APPENDIX E

## ADDITIONAL AUTHORIZATION LIST

## Section 1. INTRODUCTION

E- 1. SCOPE.
This appendix lists additional itens you are authorized for the support of the AN/ USM- 491.

## E-2. GENERAL.

This list identifies itens that do not have to accompany the AN USM 491 and that do not have to be turned in with it. These itens are all authorized to you by CTA, MTOE, TDA, or JTA.

## E-3. EXPLANATI ON OF LISTI NG

National stock number, description, and quanties are provided to hel p you identify and request the additional item you require to support this equi pment. The itens are listed in al phabetical sequence by item name under the type document (i.e., CTA, MTOE, TDA, or JTA) whi ch authorizes the item(s) to you.

| (1) | (2) |  |  | (3) | (4) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NATI ONAL | DESCRI PTI ON |  |  |  |  |
| NUMBER | FSCM \& | PART NUMBER | USABLE ON CODE | U/ M | $\begin{aligned} & \text { QTY } \\ & \text { AUTH } \end{aligned}$ |
|  |  | MTOE AU | EMS |  |  |
| $\begin{aligned} & \text { 6625-01-247- } \\ & 5786 \end{aligned}$ | ( 0490 | 95105201A | Sensor, Power MX- 18291/ USM 491 | 1 | 1 |



By Order of the Secretary of the Army:

# CARL E. VUONO <br> General, United States Army <br> Chief of Staff 

R.L. DILWORTH

Brigadier General, United States Army
The Adjutant General

## DI STRI BUTI ON:

To be di stributed in accordance with DA Form 12-36 literature requi rements for AN USM- 491.

## These are the instructions for sending an electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however only the following fields are mandatory: $1,3,4,5,6,7,8,9,10,13,15,16,17$, and 27.

From: "Whomever" [whomever@wherever.army.mil](mailto:whomever@wherever.army.mil)
To: 2028@redstone.army.mil
Subject: DA Form 2028

1. From: Joe Smith
2. Unit:home
3. Address: 4300 Park
4. City: Hometown
5. St: MO
6. Zip: 77777
7. Date Sent: 19-OCT-93
8. Pub no: 55-2840-229-23
9. Pub Title: TM
10. Publication Date: 04-JUL-85
11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T
15. Submitter LName: Smith
16. Submitter Phone: 123-123-1234
17. Problem: 1
18. Page: 2
19. Paragraph: 3
20. Line: 4
21. NSN: 5
22. Reference: 6
23. Figure: 7
24. Table: 8
25. Item: 9
26. Total: 123
27. Text:

This is the text for the problem below line 27.





