*TB 9-6625-2171-35

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN
CALIBRATION PROCEDURE FOR RADIO TEST SET TS3951/PRM34, RECEIVER TEST SET AN/ARM-186, AND COLLINS, MODEL 972Q-4

Headquarters, Department of the Army, Washington, DC
24 February 2003

Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our email address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual. For the World Wide Web, use: https://amcom2028.redstone.army.mil.

Equipment setup	Paragraph 13	$\begin{gathered} \text { Page } \\ 10 \end{gathered}$
RF frequency accuracy	14	11
RF level output	15	14
VOR modulation	16	14
VOR 9960 FM deviation	17	16
VOR zero	18	17
LOC DDM	19	18
LOC modulation	20	18
Glide slope DDM	21	20
Glide slope modulation	22	21
MKR BCN	23	22
Final procedure	24	22

SECTION I
 IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This bulletin provides instructions for the calibration of Radio Test Set TS3951/PRM34, Receiver Test Set AN/ARM-186, and Collins Model 972Q-4. TM 11-6625-3015-14 and TM 6625-2976-40 were used as the prime data sources in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
a. Model Variations. None.
b. Time and Technique. The time required for this calibration is approximately 2 hours for TS3951/PRM34, using the dc and low frequency and microwave technique, and 4 hours for AN/ARM-186 and Collins, Model 972Q-4, using the dc and low frequency technique.

2. Forms, Records, and Reports

a. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
b. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument parameters	Performance specifications			
TS3951/PRM34				
RF output level	-97 dBm from 30 to 80 MHz Accuracy: $-4,+3 \mathrm{dBm}$			
Frequency measurement	Range: 30 to 80 MHz Accuracy: $\pm 2 \mathrm{kHz}$			
Power measurement				
AN/ARM-186 and Collins, Model 972Q-4				
RF frequencies: VOR LOC Glide slope MKR BCN	Frequency: 108.00 and 108.05 MHz Accuracy: $\pm 0.0025 \%$ Frequency: 108.10 and 108.15 MHz Accuracy: $\pm 0.0025 \%$ Frequency: 334.50 or 334.10 and 334.70 MHz Accuracy: $\pm 0.0025 \%$ Frequency: 75.00 MHz Accuracy: $\pm 0.005 \%$			
RF power output: VOR and LOC Glide slope MKR BCN	$\begin{aligned} & >-10 \mathrm{dBm} \\ & >-20 \mathrm{dBm} \\ & >-20 \mathrm{dBm} \end{aligned}$			
VOR	Frequency	Accuracy	AM	Distortion
	9960 Hz	$\pm 0.01 \%$	27 to 33\%	$<3 \%$
	1020 Hz	$\pm 2.5 \%$	5 to 15\%	<10\%
	30 Hz	$\pm 0.01 \%$	27 to 33\%	<5\%
FM deviation Bearing	Frequency: 9960 Hz Accuracy: $480 \pm 30 \mathrm{~Hz}$ peak Range: 000 to 315° Accuracy: $\pm 1^{\circ}$, except at 000 , accuracy is $\pm 0.7^{\circ}$			
LOC	Frequency	Accuracy	AM	Distortion
	90 Hz	$\pm 0.01 \%$	18 to 22\%	<5\%
	150 Hz	$\pm 0.01 \%$	18 to 22%	<5\%
	1020 Hz	$\pm 2.5 \%$	5 to 15\%	<10\%
DDM	0 DDM; ± 0.005 DDM0.155 DDM; ± 0.020 DDM			
RF frequencies: Glide slope DDM	Frequency	Accuracy	AM	Distortion
	90 Hz	$\pm 0.01 \%$	36 to 44\%	<5\%
	150 Hz	$\pm 0.01 \%$	36 to 44\%	$<5 \%$
	$\begin{aligned} & \hline 0 \text { DDM; } \pm 0.010 \text { DDM } \\ & 0.175 \text { DDM } ; \pm 0.025 \text { DDM } \end{aligned}$			
MKR BCN	Frequency	Accuracy	AM	Distortion
	400 Hz	$\pm 2 \%$	90 to 100\%	<15\%

TB 9-6625-2171-35

	1300 Hz	$\pm 2 \%$	90 to 100%	$<15 \%$
	3000 Hz	$\pm 2 \%$	90 to 100%	$<15 \%$

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287. Alternate items may be used by the calibrating activity when the equipment listed in table 2 is not available. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2 The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI
5. Accessories Required. The accessories required for this calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure. The following peculiar accessories are also required for this calibration: Termination, N Jack, dc to 5 GHz, 50 W, Sierra, Model 161A-50 (161A-50) and Low Pass Filter, Telonic, Models TLC125-6EF1 and TLC75-6EF1

Table 2. Minimum Specifications of Equipment Required

Common name	Minimum use specifications	Manufacturer and model (part number)
AUDIO ANALYZER	Distortion capability: 3 to 15\%	$\begin{aligned} & \text { Boonton, Model 1120-S/10 } \\ & \text { (MIS-35954/2) } \end{aligned}$
DIGITAL MULTIMETER	Range: 2 mV to 10 V ac at 30 to $1020 \mathrm{~Hz} ;$ 5.5 V dc Accuracy: $\pm 1 \%$	Hewlett-Packard, Model 3458A/E02 (MIS35947/1)
DUAL VOLT POWER SUPPLY	Range: -8 to +8 V dc Accuracy: $\pm 1 \%$	Tektronix, Type PS503A (MIS-30526/6)
FREQUENCY COUNTER	Range: 29 Hz to 334.7 MHz Accuracy: $\pm 0.000625 \%$	Fluke, Model PM6681
MEASURING RECEIVER	Range: 5 to 44% modulation Accuracy: 2.5\%	Hewlett-Packard, Model 8902A with power sensor Hewlett-Packard, Model 11722A (7917002 or 7911261)
OSCILLOSCOPE	Sweep range: 0.1 ms to 10 $\mu \mathrm{~s}$ Vertical range: $0.5 \mathrm{~V} /$ div Accuracy: $\pm 3 \%$	Tektronix, Model 2465B (OS288/G)
POWER METER	Range: -10 to -20 dBm Accuracy: $\pm .5 \%$ Range: 1 to 10 mW Accuracy: $\pm 3 \%$	Hewlett-Packard, Model E12-432A (MIS-30525) w/thermistor mount, Hewlett-Packard, Model 478A-H75
POWER STANDARD ASSEMBLY	Range: 50 MHz at 10 to 40 W	Directional Coupler, Maury, Model 4098A (7916259)
RF POWER AMPLIFIER	Range: $\begin{aligned} & 30 \text { to } 80 \mathrm{MHz} \text { at } \\ & \\ & 3 \text { to } 40 \mathrm{~W}\end{aligned}$	Antenna Research, Model 757LC (MIS45845)
SIGNAL GENERATOR	Range: 30 to 80 MHz Accuracy: $\quad \pm 2 \mathrm{kHz}$	Wiltron, Model 68347M
SPECTRUM ANALYZER	Range: 30 to 80 MHz Sensitivity: -101 dBm	(AN/USM-489A)

TB 9-6625-2171-35

ZIFOR	Range: 0 to 360° Accuracy: $\pm 0.02^{\circ}$	Collins, Model 478A-3 (478A-3)

SECTION III

CALIBRATION PROCESS FOR RADIO TEST SET TS3951/PRM34

6. Preliminary instructions

a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
b. Items of equipment and accessories used in this procedure are referenced within the text by common name as listed in table 2 and 3.
c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 11-6625-3015-14 for this TI.
d. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. This unit uses a lithium-sulfur dioxide battery. Special handling may be necessary IAW TM 11-6625-3015-14.
a. Remove bottom cover from TI.
b. Disconnect battery from battery connector and connect dual volt power supply output to battery connector while observing polarity.
c. Connect digital multimeter to dual volt power supply output and adjust until digital multimeter indicates +5.5 V dc.
8. RP Output Level

a. Performance Check

(1) Connect spectrum analyzer RF input to TI RADIO connector.
(2) Set MODE switch to SENS SQ and press PUSH-TO-TEST button.
(3) For SN 1 through 634, adjust spectrum analyzer to observe frequencies from 30 to 75 MHz . If output levels do not indicate between -94 and -100 dBm from 30 to 75 MHz , perform b below. For SN 635 and above, adjust spectrum analyzer to observe frequencies from 30 to 80 MHz . If output levels do not indicate between -95 and -101 dBm from 30 to 80 MHz , perform \mathbf{b} below.
b. Adjustments. Adjust R41 (fig. 1) for overall output levels and C29 (fig 1) for higher frequency output levels for spectrum analyzer indications between -94 and -100 dBm for SN 1 through 364 and between -95 and -101 dBm for SN 635 and above (R).

Figure 1. Test instrument-bottom view.

9. Power Measurement

a. Performance Check

(1) Connect equipment as shown in figure 2

Figure 2. Power and frequency check - equipment setup.
(2) Set MODE switch to FWD PWR position.
(3) Energize all equipment and allow at least 15 minutes for warm-up.
(4) Compute power meter reading that corresponds to 40 W , using power standard assembly output calibration factor at 50 MHz . (See power standard assembly test report.)
(5) Adjust signal generator for a frequency of 50 MHz and adjust signal generator output level to within RF power amplifier input operating range.
(6) Press PUSH-TO-TEST pushbutton and adjust RF power amplifier gain control for a 40.0 W indication on TI display. If power meter does not indicate within 20 percent of reading computed in (4) above, perform $\mathbf{b}(1)$ and (2) below.
(7) Repeat technique of (4) through (6) above for 1.0 W (3.0 W for TIs with S/N 1 through 634), except perform $\mathbf{b}(1)$ and (3) below at 1.0 W only.
(8) Reverse TI RADIO and ANT connections.
(9) Set MODE switch to RVS PWR position and repeat (4) through (7) above at 20.0 and 1.0 W (20.0 and 3.0 W for TIs with S/N 1 through 634), except perform $\mathbf{b}(4)$ and (5) below.
b. Adjustments
(1) Adjust RF power amplifier for power meter reading computed in $\mathbf{a}(4)$ above.
(2) Adjust R9 (forward) fig. 1) until TI display indicates 40.0 W (R).
(3) Adjust R7 (forward) (fig. 1) until TI display indicated 1.0 W. Repeat (1) through (3) above as necessary to obtain best in-tolerance conditions throughout the range of instrument.
(4) Adjust RF power amplifier for power meter reading computed in $\mathbf{a}(4)$ above.
(5) Adjust R10 (REVERSE (fig. 1) until TI display indicates 20.0 W (R).

10. Frequency

a. Performance Check
(1) Connect equipment as shown in figure 2
(2) Set MODE switch to FREQ position.
(3) Adjust signal generator and RF power amplifier levels for approximately 5 W as indicated on RF power amplifier meter and adjust signal generator frequency until TI display reads 30.0 MHz . Signal generator frequency display will indicate between 29.998 and 30.002 MHz .
(4) Repeat technique of (3) above for TI display and signal generator frequency display indications listed in table 4. Signal generator frequency display will indicate within limits specified.
b. Adjustments. No adjustments can be made.

Table 4. Frequency Accuracy

Test instrument display indications (MHz)	Signal generator frequency display indications	

11. Final Procedure

a. Deenergize and disconnect all equipment and reinstall protective cover on TI.
b. Annotate and affix DA label/form in accordance with TB 750-25.

SECTION IV
 CALIBRATION PROCESS FOR RECEIVER TEST SET AN/ARM-186 AND COLLINS MODEL 972Q-4

12. Preliminary Instructions

a. The instructions outlined in paragraphs 12 and 13 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
b. Items of equipment and accessories used in this procedure are referenced within the text by common name as listed in table 2 and 3.
c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 11-6625-2976-40 for this TI.
d. Unless otherwise specified, all controls and control settings refer to the TI.

13. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check.
a. Remove TI from case.
b. Remove both batteries from TI.
c. Position controls as listed in (1) through (11) below:
(1) BATTERY PWR switch to OFF.
(2) MKR BCN PWR switch to OFF.
(3) GLIDE SLOPE PWR switch to OFF.
(4) GLIDE SLOPE UP-OC-DOWN switch to OC.
(5) LOC PWR switch to OFF.
(6) LOC LEFT-OC-RIGHT switch to OC.
(7) LOC 1020HZ switch to OFF.
(8) VOR PWR switch to OFF.
(9) VOR bearing switch to 000.
(10) VOR 1020HZ switch to OFF.
(11) ATTEN controls to 0.

CAUTION

Use extreme care when connecting power to TI. Damage will result if connections are made improperly.
d. Connect dual volt power supply + (positive) terminal to pin A of J2 located in TI BATTERY section, - (negative) terminal to pin B, and common terminal to pin C.
e. Adjust both dual volt power supply outputs to 8.0 V .
f. Set BATTERY PWR switch to ON and allow 15 minutes for warm-up.

NOTE
Only one TI section should be energized at a time. Always set the energized section PWR switch to OFF before energizing another section.

14. RF Frequency Accuracy

a. Performance Check
(1) Connect frequency counter to TI J3. Short A6J9 fig. 3) to ground.

NOTE
Push N type male to BNC male adapter onto J3.

Figure 3. Test instrument-top view
NOTE
Use appropriate input channel on frequency counter to obtain desired frequency range reading.
(2) Set VOR PWR switch to ON and VOR 108.00-108.05 switch to 108.00. If frequency counter does not indicate between 107.9973 and 108.0027 MHz , perform $\mathbf{b}(1)$ below.
(3) Set VOR 108.00-108.05 switch to $\mathbf{1 0 8 . 0 5}$. If frequency counter does not indicate between 108.0473 and 108.0527 MHz , perform $\mathbf{b}(2)$ below.
(4) Set VOR PWR switch to OFF and LOC PWR switch to ON.
(5) Set LOC 108.10-108.15 switch to 108.10. If frequency counter does not indicate between 108.0973 and 108.1027 MHz , perform $\mathbf{b}(3)$ below.
(6) Set LOC 108.10-108.15 switch to $\mathbf{1 0 8 . 1 5}$. If frequency counter does not indicate between 108.1473 and 108.1527 MHz , perform $\mathbf{b}(4)$ below.
(7) Remove short from A6J9 (fig. 3) and connect to A6J1 (fig. 3). Set LOC PWR switch to OFF and GLIDE SLOPE PWR switch to ON.
(8) Set GLIDE SLOPE 334.70-334.55 (334.70-334.10) switch to $\mathbf{3 3 4 . 7 0}$. If frequency counter does not indicate between 334.69164 and 334.70836 MHz , perform $\mathbf{b}(5)$ below.
(9) Set GLIDE SLOPE 334.70-334.55 (334.70-334.10) switch to $\mathbf{3 3 4 . 5 5}$ (334.10). If frequency counter does not indicate between 334.54164 and 334.55836 (334.0916 and 334.1084) MHz, perform $\mathbf{b}(6)$ below.
(10) Set GLIDE SLOPE PWR switch to OFF and remove short from A6J1.
(11) Remove connection from $\mathbf{J 3}$ and connect to J1.
(12) Set MKR BCN PWR switch to ON. If frequency counter does not indicate between 74.99625 and 75.00375 MHz , perform $\mathbf{b}(7)$ below.
b. Adjustments
(1) Adjust A5L2 (fig. 4) for frequency counter indication of $108.0000 \mathrm{MHz}(\mathrm{R})$.

NOTE
Boards A1 through A5 are identical

Figure 4. Adjustment locations - A1 through A5 boards.
(2) Adjust A5L2 (fig. 4) for frequency counter indication of 108.0500 MHz . Repeat $\mathbf{a}(2)$ and (3) above for best compromise (R).
(3) Adjust A4L2 (fig. 4) for frequency counter indication of $108.1000 \mathrm{MHz}(\mathrm{R})$.
(4) Adjust A4L2 fig. 4) for frequency counter indication of 108.1500 MHz . Repeat $\mathbf{a}(5)$ and (6) above for best compromise (R).
(5) Adjust A3L2 (fig. 4) for frequency counter indication of $334.70000 \mathrm{MHz}(\mathrm{R})$.
(6) Adjust A3L2 (fig. 4) for frequency counter indication of 334.55000 (334.1000) MHz . Repeat $\mathbf{a}(8)$ and (9) above for best compromise (R).
(7) Adjust A1L2 (fig. 4) for frequency counter indication of $75.00000 \mathrm{MHz}(\mathrm{R})$.

15. RF Level Output

a. Performance Check

(1) Connect power meter to TI J1. If power meter does not indicate greater than -20 dBm , perform $\mathbf{b}(1)$ below.
(2) Set MKR BCN PWR switch to OFF and VOR PWR switch to ON.
(3) Short A6J9 (fig. 3) to ground.
(4) Move power meter connection from J1 to J3. If power meter does not indicate greater than -10 dBm , perform $\mathbf{b}(2)$ below.
(5) Set VOR PWR switch to OFF and LOC PWR switch to ON.
(6) Remove short from A6J9 and connect to A6J2 (fig. 3). If power meter does not indicate greater than -10 dbm, perform $\mathbf{b}(3)$ below.
(7) Set LOC PWR switch to OFF and GLIDE SLOPE PWR switch to ON.
(8) Remove short from A6J2 and connect to A6J1 fig. 3). If power meter does not indicate greater than -20 dbm , perform $\mathbf{b}(4)$ below.
(9) Remove short from A6J1.
b. Adjustments
(1) Adjust A1C18 fig. 4) for indication greater than -20 dBm . If indication is less than -20 dBm , adjust A1C18 for maximum indication and then adjust A1L8 (fig. 4) for indication greater than $-20 \mathrm{dBm}(\mathrm{R})$.
(2) Adjust A5C18 (fig. 4) for indication greater than -10 dBm . If indication is less than -10 dBm , adjust A 5 C 18 for maximum indication and then adjust A5L8 (fig. 4) for indication greater than $-10 \mathrm{dBm}(\mathrm{R})$.
(3) Adjust A4C18 fig. 4) for indication greater than -10 dBm . If indication is less than -10 dBm , adjust A 4 C 18 for maximum indication and then adjust A4L8 (fig. 4) for indication greater than $-10 \mathrm{dBm}(\mathrm{R})$.
(4) Adjust A3C18 fig. 4) for indication greater than -20 dBm . If indication is less than -20 dBm , adjust A3C18 for maximum indication and then adjust A3L8 (fig. 4) for indication greater than $-20 \mathrm{dBm}(\mathrm{R})$.

16. VOR Modulation

a. Performance Check
(1) Set GLIDE SLOPE PWR switch to OFF and VOR PWR switch to ON. If VAR light is illuminated, press light to extinguish.
(2) Connect measuring receiver power sensor module to TI J3. Position measuring receiver controls to measure AM.
(3) Press and hold VOR 30VAR and 30REF pushbuttons. If measuring receiver does not indicate between 27 and 33 percent, perform b(1) below. Release VOR 30VAR and 30REF pushbuttons.
(4) Short A6J12 (fig. 3) to ground, using lead and adapters. If measuring receiver does not indicate an amplitude modulation between 27 and 33 percent, repeat $\mathbf{b}(1)$ below for best intolerance compromise between $\mathbf{a}(3)$ and (4).
(5) Set VOR 1020HZ switch to ON. Press and hold VOR 30VAR pushbutton. Measuring receiver will indicate an amplitude modulation between 5 and 15 percent. Release VOR 30VAR pushbutton.
(6) Connect audio analyzer to measuring receiver modulation output.
(7) Press and hold VOR 30VAR pushbutton. Measure distortion. Audio analyzer will indicate less than 10 percent. Release VOR 30VAR pushbutton.
(8) Set VOR 1020HZ switch to OFF.
(9) Measure distortion. Audio analyzer will indicate less than 5 percent.
(10) Remove short from A6J12 (fig. 3).
(11) Press and hold VOR 30VAR and 30REF pushbuttons. Measure distortion. If audio analyzer does not indicate less than 3 percent, perform $\mathbf{b}(2)$ through (4) below.
(12) Disconnect audio analyzer from equipment setup and connect frequency counter to modulation output.
(13) Press and hold VOR 30VAR and 30REF pushbuttons. Frequency counter will indicate between 9959.004 and 9960.996 Hz . Release VOR 30VAR and 30REF pushbuttons.
(14) Short A6J12 (fig. 3) to ground. Frequency counter will indicate between 29.997 and 30.003 Hz .
(15) Set VOR 1020HZ switch to ON.
(16) Press and hold VOR 30VAR pushbutton. Frequency counter will indicate between 994.5 and 1045.5 Hz. Release VOR 30VAR pushbutton and set VOR 1020HZ switch to OFF.
(17) Remove short from A6J12 (fig. 3)

b. Adjustments

(1) Adjust A6R10 5 (fig. 3) for indication of 30 percent on measuring receiver (R).
(2) Connect oscilloscope to A6J13 fig. 3). Disconnect audio analyzer from modulation output and reconnect to A6J12 and chassis ground.
(3) Press VOR 30VAR and 30REF pushbuttons and measure distortion. Adjust A6R80 (fig. 3) for minimum distortion while adjusting A6R57 (fig. 3) for a symmetrical square wave on oscilloscope (R).
(4) Disconnect equipment setup and reconnect audio analyzer to measuring receiver modulation output. Measure distortion. If distortion is still high, adjust A5L5 and A5L6 (fig. 4) for minimum distortion (R).

NOTE

If A5L5 and A5L6 (fig. 4) were adjusted, recheck paragraph 15a(4) above VOR RF level.

17. VOR 9960 FM Deviation

a. Performance Check

(1) Connect oscilloscope CH1 to TI A6J12 (fig. 3).
(2) Adjust oscilloscope controls for an 8 division sinewave display presentation at vertical setting of $200 \mathrm{mV} /$ div, uncal, and horizontal setting of $100 \mu \mathrm{~s} / \mathrm{div}$.
(3) Center sinewave on oscilloscope crt and adjust trigger level control to start sinewave at horizontal graticule centerline.
(4) Utilizing a delay time of $10 \mu \mathrm{~s} / \mathrm{div}$, expand the fifth cycle portion of the TI signal as indicated in figure 5. Measure and verify the width of the jitter. Verify the deviation of the expanded jitter display, as shown in figure 6, is equal to $48.5 \mu \mathrm{~s} \pm 3 \mu \mathrm{~s}$.

NOTE

The width of the jitter is proportional to the 9960 Hz FM signal. A 9960 Hz signal deviating $\pm 480 \mathrm{~Hz}$ varies between 9480 and $10,440 \mathrm{~Hz}$. The period of $10,440 \mathrm{~Hz}$ is $95.785 \mu \mathrm{~s}$ and the time for five cycles is $478.925 \mu \mathrm{~s}$. The period of 9480 Hz is $105.485 \mu \mathrm{~s}$ and the time for five cycles is $527.425 \mu \mathrm{~s}$. The difference between them ($527.425 \mu \mathrm{~s}$ minus $478.925 \mu \mathrm{~s}$) is 48.5 $\mu \mathrm{s}$. For a tolerance of $480 \pm 30 \mathrm{~Hz}$ deviation, the width of the jitter must be $48.5 \pm 3 \mu \mathrm{~s}$.

Figure 5. 9960 Hz FM Deviation Display.

Figure 6. 9960 Hz FM Deviation Display with Jitter expanded.
b. Adjustments. No adjustments can be made.

18. VOR Zero

a. Performance Check

(1) Connect zifor COMP INPUT to TI A6J9 fig. 3). If zifor does not indicate between 359.3 and 000.7 degrees, perform \mathbf{b} below.
(2) Set VOR bearing switch to positions listed in table 5. Zifor will indicate within limits specified.

Table 5. VOR Bearing

Test instrument VOR bearing switch positions	Zifor indications	
	Min	

b. Adjustments. Adjust A6R72 (fig 3) for indication of 000.0 degrees on zifor (R).

19. LOC DDM

a. Performance Check
(1) Set VOR PWR switch to OFF and LOC PWR switch to ON. If VAR light is illuminated, press light to extinguish.
(2) Connect digital multimeter to A6J2 (fig. 3).
(3) Press and hold LOC $\mathbf{1 5 0} \mathbf{~ H z}$ pushbutton. Record digital multimeter indication.
(4) Set LEFT-OC-RIGHT switch to LEFT. Record digital multimeter indication.
(5) Set LEFT-OC-RIGHT switch to RIGHT. Record digital multimeter indication.
(6) Release LOC 150 Hz pushbutton and press and hold LOC 90 Hz pushbutton. Record digital multimeter indication.
(7) Set LEFT-OC-RIGHT switch to OC. Record digital multimeter indication.
(8) Set LEFT-OC-RIGHT switch to LEFT. Record digital multimeter indication.
(9) Release LOC 90 Hz pushbutton.
(10) Subtract value recorded in (7) above from value recorded in (3) above. If difference is not less than 1 mV , perform \mathbf{b} below.
(11) Divide value recorded in (8) above by value recorded in (4) above. Ratio will be between 2.02 and 2.55.
(12) Divide value recorded in (5) above by value recorded in (6) above. Ratio will be between 2.02 and 2.55
b. Adjustments. Adjust A6R30 (fig. 3) and repeat a(3) through (10) above until value computed in $\mathbf{a}(10)$ above is less than $1 \mathrm{mV}(\mathrm{R})$.

20. LOC Modulation

a. Performance Check
(1) Connect measuring receiver power sensor module to TI J3. Position measuring receiver controls to measure AM. Set LEFT-OC-RIGHT switch to OC.
(2) Press and hold LOC 90 Hz pushbutton. If measuring receiver does not indicate an amplitude modulation between 18 and 22 percent, perform below. Release LOC 90 Hz pushbutton.
(3) Press and hold LOC $\mathbf{1 5 0} \mathbf{~ H z}$ pushbutton. If measuring receiver does not indicate an amplitude modulation between 18 and 22 percent, perform \mathbf{b} below. Release LOC 150 Hz pushbutton.
(4) Set LOC 1020 Hz switch to $\mathbf{O N}$ and press and hold both 90 Hz and 150 Hz pushbuttons. Measuring receiver will indicate an amplitude modulation between 5 and 15 percent. Release $\mathbf{9 0 ~ H z}$ and $\mathbf{1 5 0 ~ H z}$ pushbuttons.
(5) Connect audio analyzer to measuring receiver modulation output.
(6) Press and hold both LOC 90 Hz and 150 Hz pushbuttons. Measure distortion. Audio analyzer will indicate less than 10 percent. Release LOC 90 Hz and 150 Hz pushbuttons.
(7) Set LOC 1020 Hz switch to OFF.
(8) Press and hold LOC 90 Hz pushbutton. Measure distortion. Audio analyzer will indicate less than 5 percent. Release LOC 90 Hz pushbutton.
(9) Press and hold LOC 150 Hz pushbutton. Measure distortion. Audio analyzer will indicate less than 5 percent. Release LOC 150 Hz pushbutton.
(10) Disconnect audio analyzer from equipment setup and connect frequency counter to MODULATION OUTPUT.
(11) Press and hold LOC 150 Hz pushbutton. Frequency counter will indicate between 89.91 and 90.09 Hz . Release LOC 150 Hz pushbutton.
(12) Press and hold LOC 90 Hz pushbutton. Frequency counter will indicate between 149.85 and 150.15 Hz . Release LOC 90 Hz pushbutton.
(13) Set LOC 1020 Hz switch to ON.
(14) Press and hold both LOC 90 Hz and 150 Hz pushbuttons. Frequency counter will indicate between 994.5 and 1045.5 Hz . Release both LOC 90 Hz and 150 Hz pushbuttons.
(15) Set LOC 1020 Hz switch to OFF.
b. Adjustments. Adjust A6R51 (fig. 3. for measuring receiver indication of 20 percent. Repeat $\mathbf{a}(2)$ and (3) above for best compromise of adjustment (R).

21. Glide Slope DDM

a. Performance Check
(1) Set LOC PWR switch to OFF and GLIDE SLOPE PWR switch to ON. If VAR light is illuminated, press light to extinguish.
(2) Connect digital multimeter to A6J1 (fig. 3).
(3) Press and hold GLIDE SLOPE $150 \mathbf{H z}$ pushbutton. Record digital multimeter indication.
(4) Set UP-OC-DOWN switch to UP. Record digital multimeter indication.
(5) Set UP-OC-DOWN switch to DOWN. Record digital multimeter indication.
(6) Release GLIDE SLOPE 150 Hz pushbutton and press and hold GLIDE SLOPE 90 Hz pushbutton. Record digital multimeter indication.
(7) Set UP-OC-DOWN switch to OC. Record digital multimeter indication.
(8) Set UP-OC-DOWN switch to UP. Record digital multimeter indication.
(9) Release GLIDE SLOPE 90 Hz pushbutton.
(10) Subtract value recorded in (7) above from value recorded in (3) above. If difference is not less than 2 mV , perform \mathbf{b} below.
(11) Divide value recorded in (8) above by value recorded in (4) above. Ratio will be between 1.46 and 1.66.
(12) Divide value recorded in (5) above by value recorded in (6) above. Ratio will be between 1.46 and 1.66.
b. Adjustments. Adjust A6R37 (fig. 3) until value computed in a(10) above is less than $2 \mathrm{mV}(\mathrm{R})$.

22. Glide Slope Modulation

a. Performance Check
(1) Connect measuring receiver power sensor module to TI J3. Position measuring receiver controls to measure AM. Set UP-OC-DOWN to OC.
(2) Press and hold GLIDE SLOPE 90 Hz pushbutton. If measuring receiver does not indicate an amplitude modulation between 36 and 44 percent, perform \mathbf{b} below. Release LOC 90 Hz pushbutton.
(3) Press and hold GLIDE SLOPE 150 Hz pushbutton. If measuring receiver does not indicate an amplitude modulation between 36 and 44 percent, perform below. Release LOC 150 Hz pushbutton.
(4) Connect audio analyzer to measuring receiver modulation output.
(5) Press and hold GLIDE SLOPE 90 Hz pushbutton. Measure distortion. Audio analyzer will indicate less than 5 percent. Release GLIDE SLOPE 90 Hz pushbutton.
(6) Press and hold GLIDE SLOPE 150 Hz pushbutton. Measure distortion. Audio analyzer will indicate less than 5 percent. Release GLIDE SLOPE 150 Hz pushbutton.
b. Adjustments. Adjust A6R55 (fig. 3) for measuring receiver indication of 40 percent. Repeat $\mathbf{a}(2)$ and (3) above for best compromise of adjustment (R).

23. MKR BCN

a. Performance Check

(1) Set GLIDE SLOPE PWR switch to OFF and MKR BCN PWR switch to ON.
(2) Connect measuring receiver power sensor module to TI J1. Position measuring receiver controls to measure AM.
(3) Connect frequency counter to measuring receiver modulation output.
(4) Press and hold MKR BCN yellow (1300 Hz) pushbutton. If frequency counter does not indicate between 1274 And 1326 Hz , perform b(1) below. Release MKR BCN yellow pushbutton.
(5) Press and hold MKR BCN blue (400 Hz) pushbutton. If frequency counter does not indicate between 392 and 408 Hz , perform b(2) below. Release MKR BCN blue pushbutton.
(6) Press and hold MKR BCN white (3000 Hz) pushbutton. If frequency counter does not indicate between 2940 and 3060 Hz , perform b(2) below. Release MKR BCN white pushbutton.
(7) Press and hold MKR BCN yellow pushbutton. If measuring receiver does not indicate an amplitude modulation between 90 and 100 percent, perform \mathbf{b} (3) below. Release MKR BCN yellow pushbutton.
(8) Repeat (7) above for MKR BCN blue pushbutton.
(9) Repeat (7) above for MKR BCN white pushbutton.
(10) Disconnect frequency counter from equipment setup and connect audio analyzer to modulation output.
(11) Press and hold MKR BCN yellow pushbutton. Measure distortion. Audio analyzer will indicate less than 15 percent. Release MKR BCN yellow pushbutton.
(12) Repeat (11) above for MKR BCN blue pushbutton (400 Hz).
(13) Repeat (11) above for MKR BCN white pushbutton (3000 Hz).

b. Adjustments

(1) Adjust A6R110 fig. 3 until frequency counter indicates $1300 \mathrm{~Hz}(\mathrm{R})$.
(2) Repeat $\mathbf{a}(4)$ and $\mathbf{b}(1)$ above and adjust A6R110 for best in-tolerance condition.
(3) Adjust A6R119 (fig. 3) until measuring receiver indicates an amplitude modulation of 95 percent (R). If required, adjust A6R119 for best in-tolerance condition for the three modulated frequencies.

24. Final Procedure

a. Deenergize and disconnect all equipment and reinstall TI in its case.
b. Annotate and affix DA label/form in accordance with TB 750-25.

THESE ARE THE INSTRUCTIONS FOR SENDING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: $1,3,4,5,6,7,8,9,10,13,15,16,17$, and 27 .
From: "Whomever" whomever@avma27.army.mil
To: \quad 2028@redstone.army.mil
Subject: DA Form 2028

1. From: Joe Smith
2. Unit: Home
3. Address: 4300 Park
4. City: Hometown
5. St: MO
6. Zip: 77777
7. Date Sent: 19-Oct-93
8. Pub No: TB $9-6625$-xxxx- 35
9. Pub Title: Calibration Procedure for ...
10. Publication Date:
11. Change Number:
12. Submitted Rank: MSG
13. Sumitter Fname: Joe
14. Submitter Mname: T
15. Submitter Lname: Smith
16. Submitter Phone: (123) 123-1234
17. Problem: 1
18. Page: 2
19. Paragraph: 3

20 Line: 4
21. NSN: 5
22. Reference: 6
23. Figure: 7
24. Table: 8
25. Item: 9
26. Total: 123

27: Text:
This is the text for the problem below line 27.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

$$
\begin{aligned}
& \text { ful } 12 \text { Zher } \\
& \text { JOEL B. HUDSON }
\end{aligned}
$$

Administrative Assistant to the
Secretary of the Army 0236404

Distribution:
To be distributed in accordance with initial distribution number (IDN) 342260, requirements for calibration procedure TB 9-6625-2171-35.

TB 9-6625-2171-35

PIN: 060582-000

