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PART |
MATHEMATICAL PRINCIPLES ESSENTIAL TO COMMUNICATIONS-ELECTRONICS

CHAPTER 1
INTRODUCTION

1. Purpose and Scope

a. Purpose. This manual provides the basic
mathematics required by communications-elec-
tronics personnel.

b. Scope. This manual covers those principles
and applications of arithmetic, algebra, loga-
rithms, geometry, and trigonometry that are
required for a practical understanding of elec-
tricity and electronics. The manual is divided
into two parts:

(1) Part 1 is a review of the mathematical
principles essential to communica-
tions-electronics.

(2) Part II covers the application of the

mathematical principles to common
communications-electronics problems.

2. Mathematics and Electronics

Skill in the use of mathematics, particularly
arithmetic, algebra, and trigonometry, is essen-
tial in the fields of electricity and electronics.
Most of our basic ideas of electrical phenomena
are based on mathematical reasoning and are
stated in mathematical terms. Therefore, a
thorough knowledge of mathematics and of the
specific applications of mathematics to the field
of electricity will serve as a foundation for the
technical knowledge needed by communications-
electronics personnel.



CHAPTER 2
PERCENTAGE

3. General

a. Definition. Percentage is the process of
computation in which the basis of comparison
is a hundred. The term percent—from per, by,
and centum, hundred—means by or on the hun-
dred. Thus, 2 percent of a quantity means two
parts of every hundred parts of the quantity.

b. Symbol. The symbol of percentage is %.
Percent may also be indicated by a fraction or
a decimal. Thus, 5% :%6 = .05. Figure 1
shows the relationship between fractions, deci-

mals, and percentage.
¢. Base, Rate, and Percentage.
(1) The base is the number on which the
percentage is computed.
(2) The rate is the amount (in hun-
dredths) of the base to be estimated.
(3) The percentage is a part or propor-
tion of a whole expressed as so many
per hundred. Percentage is the por-
tion of the base determined by the
rate.

4. Conversion of Decimal to Percent

To change a decimal to percent, move the
decimal point two places to the right and add
the percent symbol.

Ezxample: Chance .375 to percent.

Move decimal point two places to
right: 37.5
Add percent symbol: 37.5%

5. Conversion of Fraction to Percent

To convert a fraction to percent, divide the
numerator by the denominator and convert to
a decimal. Then, convert the decimal to per-
cent (pa:. ¢

4

Ezxample: Change fraction g to percent.

Divide numerator by denomina-
tor: 5 - 8 = .625-

Convert decimal to percent: 6.25
= 62.5%

Thus, g = 62.5%.

6. Conversion of Percent to Decimal

To change a percent to a decimal, omit the
percent symbol and move the decimal point two
places to the left.

Ezample 1: Change 15% to a decimal.
Omit percent symbol: 15% be-
comes 15
Move decimal point two places
to the left: 15 becomes .15
Thus, 15% = .15.

Ezample 2: Change 110% to a decimal.
Omit percent symbol: 110% be-
comes 110
Move the decimal point two
places to the left: 110 becomes
1.10.
Thus, 110% = 1.10.

7. Conversion of Percent to Fraction

To change a percent to a fraction, first change
the percent to a decimal (par. 6) and then to
a fraction. Reduce the fraction to its lowest
terms.

Ezxample 1: Change 25% to a fraction.
Change to a decimal : 25% = 25

. 25
Change to a fraction: .25 =100
Reduce fraction to lowest terms:
25 _1
100 — 4

Thus, 25% :% .



o
r Ezample 2: Change 37.56% to a fraction.
Change to a decimal: 37.6% =

a. General. To find the percent of a number,
— 30% OR .30 write the percent as a decimal and multiply the

-
E
: 375
i'a F—onono Change to ;71’51'actxon :
i 1 375 — —
7 : —‘zi% OR .128 o 1000
E Reduce fraction to lowest terms:
- 37 3
, - 1000 — 8
; —: j—20% OR .20 3
j Thus, 37.5% = '§ .
1 —: — 28% OR .28 8. Finding Percentage

. n number by this decimal. In this case, the base
s and rate are given. The problem is to ﬁnd\ the
s ' percentage.

s L 3gMon.Ts Ezample 1: Find 5% of 140 (140 is the base,
.} — 40% OR .40 5% is the rate, and the product

is the percentage).

5% of 140 = .06 X 140 =17
Example 2: Find 5.2% of 140.

52% of 140 = .052 X 140 =
p— 30 % OR .50 7.28
Example 8: Find 150% of 36.

1509 of 36 = 1.50 X 36 = 54

Ezample 4: Find %% of 840.

-} e 60 % OR .60 1

3 — 621 % OR 623 ‘2"7c =.5%

. 5% of 840 = .005 X 840 = 4.20

3 Thus, 3% of 840 = 4.20.

s Te%or .70 b. Application of Percentage. In communi-
cations-electronics, typical applications of per-

-} — 75% OR .73 centage computation are used in determining

tolerance values of resistors (par. 206) or in
determining the efficiencies of motors and gen-
erators (par. 209).

(P17

p~—80% OR .80

9. Finding Rate

Lllllllllll'lLlllllll.llllllllllllllIlijlllllljlllllll

hd 8719 0n 078 To find the percent one number is of another,
s i”; on 50 write the problem as a fraction, change the
0 4 ' fraction to a decimal, and write the decimal as
. a percent. In this case, the percentage and base

3 are given. The problem is to find the rate.
. Ezxzample 1: 3 is what percent of 87 (3 is the
- L.oo% percentage, 8 is the base, and the

T™ME84-7 quotient is the rate.)
Figure 1. Relationship between fractions, § — 375
decimals, and percentage. 8



376 =87.6% = 37-; %

Therefore, 3 is 37-;-% of 8.

Ezample 2: What percent of 542 is 284 ?
234
512 = 4317 4+ (round off)
432 = 48.2%
Therefore, 234 is 43.2% of 542.

Ezample 8: 125 is what percent of 50?7

125
50 = 2.50
2.60 = 260%

Therefore, 125 is 260 % of 50.

10. Finding Base Numbers

To find a number when a percent of the num-
ber is known, first find 1% of the number, and
then find 100% of the number. In this case, the
percentage of the number and the rate are given.
The problem is to find the base.

Ezample 1: 42 is 12% of what number?
12% (base number) = 42
1% (base number) =
42
= 3.50
100% (base number) =
100 X% 3.50 = 350
Therefore, the base number is

350.

Ezample 2: 45 is 150 % of what number?
150% (base number) = 45
1% (base number) =%= .8
100% (base number) =
100 X .3 = 30
Therefore, the base number is 80.

11. Expressing Accuracy of Measurements in
Percent

a. Relative error is the accuracy of a meas-
urement expressed in percent of the total meas-
urement. In determining the relative error, it
is first necessary to establish the limit of error.

b. The limit of error is the difference between
the true value and the measured value. Assume
that the reading on a scale, to the nearest tenth
of an inch, is 2.2 inches. If the true value is
2.15 inches, the limit of error is the difference
between 2.15 and 2.20, or .05 inch.

6

¢. Relative error is computed by solving the
LIMIT OF ERROR _ d
MEASURED VALUE® 8Md expressing

the result as a percent. In the scale reading

ratio

above, the relative error = 20—2 = 2.27%, or
2.8%.

12. Review Problems—Percentage

a. Show each of the following in three forms
—as a fraction or mixed number, as a decimal,
and as a percent:

3
(1) 5
(2) 50%
(8) .875
1
(4) y

(5) 625 %

(6) .6
3
) 10
(8) 70%
(9) 2.25
7
(10) l§
(11) .08
3
(12) 50
(13) .18

(14) §%

(156) .025
(16) .06

1
17) 85%

(18) 37%%

(19) 106%
(20) 4%
b. Evaluate the following:
(1) 250% of 60
(2) 125% of 40
(3) 200% of 2
(4) 225% of 400
c. What percent of a number is—
(1) 1.5 times the number?

{




@) 2§ times the number? e. Solve the following problems:
4 (1) Find the relative error for a limit of

3) 3 times the number? error of .05 inch in measuring 24.2
2 inches.
(4) 5gtimes the number ) e ot 5 aiman o onsing. 20
d. Find the following: yards.
(1) 2 % of 410 f. Find the number when—
5 (1) 12% of the number is 52
@ 29 of 416,000 (2) 16% of the number is 375

2 (3) 32% of the number is 166.4
(8) 5% of 8 (4) 8% of the number is 16
(4) 5.2% of 86 (5) 84% of the number is 168



CHAPTER 3
RATIO AND PROPORTION

Section |. RATIO

13. Understanding Ratio

It is often desirable, for the purpose of com-
parison, to express one quantity in terms of
another quantity of the same kind. One way
to express this relationship is by means of a
ratio. For example, if one resistor has a resist-
ance of 800 ohms and another has a resistance
of 100 ohms, the first resistor has 8 times as
much resistance as the second. In other words,
the ratio between the resistors is 8 to 1.

14. Expressing Ratio

Ratio can be expressed in four different ways
For example, the ratio of 12 to 3 can be ex-
pressed as follows: 12 to 8, 12:8, 12 —+~ 8, or
13—2. The numbers 12 and 3, which are the
terms of the ratio, are called the antecedent
and the consequent, respectively. The antece-
dent is the dividend or the numerator; the con-
sequent is the divisor or denominator.

15. Obtaining Value of Ratio

Both terms of any ratio may be multiplied
and divided by the same number without chang-
ing the value of the expression. In the ratio

%2- , for example, the 12 is divided by 3, giving

the value of 4. This means that the ratio 12:8
is equal to the ratio 4:1.

Ezxample 1: What is the ratio of 6:2?

6 .
E = 3, or3:1
Ezample 2: What is the ratio of 7:3?
7 1 1,
§ = 2§ or 23.1

Ezample 8: Find the ratio of the areas (par.
26) of two squares the sides of
which are 6 and 8 inches, re-
spectively. The areas of similar
figures are in the same ratios
as the squares of their like
dimensions.
82:6t — 64:36
64 .28 .7 . ,T.

36 — 136 = 19 or 19.1

Thus,
inches on a side) is l% times
as large as the first square (6
inches on a side).

the second square (8

Section Il. PROPORTIONS

16. Understanding Proportion

A proportion is a statement of equality be-
tween two ratios. If the value of one ratio is
equal to the value of another ratio, they are
said to be in proportion. For example, the
ratio 8:6 is equal to the ratio 4:8. Therefore,
this can be written 3:6 ::4:80r 3:6 = 4:8. In
any proportion, the first and last terms are
called the extremes; the second and third terms
are called the means (fig. 2).

3:4::9:12 MEANS =2
[Lad\ T

Figure 2. Terms of proportion.

17. Rules of Proportion

There are three rules of proportion that are
used in determining an unknown quantity.



They also can be used to prove that the pro-
portion is true.

a. In any proportion, the product of the
means equals the product of the extremes.
EKExample1: 3:4 :: 9:12,
3 X 12 = 36 (product of ex-

Ezample 2: % =—.

Note. When the proportion is ex-
pressed in fractional form, the numer-
ator of one fraction is multiplied by
the denominator of the other fraction.
This process is called cross-multipli-
cation.

3 X 12 = 36 (product of ex-
tremes)
4 X 9 = 36 (product of means)

b. In any proportion, the product of the
means divided by either extreme gives the other
extreme.

Ezample: 6:8 ::18:24.
8 X 18 =
means)

144 - 6 = 24 (one extreme)

144 — 24 = 6 (other extreme)

c. In any proportion, the product of the ex-
tremes divided by either mean gives the other
mean.

Exar\hple:

144 (product of

5:7 ::15:21

b X 21 = 106 (product of ex-
tremes)

106 = 7 = 15 (one mean)

105 = 15 = 7 (other mean)

18. Solving for Unknown Term

As demonstrated in paragraph 49, the un-
known term of a proportion can be determined
if the other three terms are known.

Ezample 1: In the proportion 1—50- = -lyﬂ, solve

for y (the unkown quantity).

Find the product of the means:
10 X 10 = 100

Find the product of the ex-
tremes: 5§ X y = by

The products of the means and
extremes are equal: 5y =
100

Divide both sides by 6 :

b 10
Therefore, 10 = 20
Ezample 2: In the proportion 6:12 :: 24:y,
solve for y.
Write the proportion in frac-
tional form:

6 _24

12 7~ y

Cross-multiply.

6y = 288

Divide both sides by 6.
48

sy _ 24

¢ ¢

Yy = 48

Therefore, 6:12 :: 24 :48.

Ezxample 3: In the proportion—zfo—=

1—50-, solve for z.
Cross-multiply.
10z = 100
Divide both sides by 10:
10

19z _ 198
19 — 1y
z2=10
10 b
Therefore, 20 = 10°

19. Stating Ratios for Problems in Proportion

When setting up a proportion problem, be
sure to state the ratios correctly. Analyze each
problem carefully to determine whether the
unknown quantity will be greater or lesser than
the known term of the ratio in which it occurs.
Arrange the terms of the ratio as shown below,
and solve for the unknown quantity as explained
in paragraph 18.



LESSER LESSER

GREATER — GREATER’ ' LESSER : GREATER :: LESSER : GREATER

Example: The weight of 15 feet of iron
pipe is 8 pounds.

What is the weight of 255 feet of
the same pipe? Let the un-
known quantity be repre-
sented by the letter y. Since
ratios must express a relation
between quantities of the same
kind, one ratio must be be-
tween feet and feet and the
other between pounds and
pounds.

Study the problems; 266 feet
of pipe will weigh more than
15 feet of pipe. Arrange the
first ratio in the order LES-
SER to GREATER—15 feet:
15

255 feet, or 555 °

Arrange the second ratio in
the same order—LESSER to
GREATER—8 pounds: vy

pounds, or % .

Write the proportion and solve.
15:255 = 8:y, or

15 _8
255 Ty
16y = 255 X 8
15y = 2040
_ 2040
V=15
¥ = 136 pounds

20. Inverse Proportion

a. The ratio 2:3 is the inverse of the ratio
3:2. In proportion, when a second ratio is equal
to the inverse of the first ratio, the elements are
said to be inversely proportional.

b. Two numbers are inversely proportional
when one increases as the other decreases. In
this case, their product is always the same. In
problems dealing with pulleys, the speeds of
different size pulleys connected by belts are
inversely proportional to their diameters. A
smaller pulley rotates faster than a larger
pulley.

10

Ezample 1: A pulley 80 inches in diameter 1s

turning at a speed of 800 revolu-
tions per minute. If this pulley
is belted to a pulley 15 inches in
diameter (fig. 8), determine the
speed at which the smaller pul-
ley is turning.

Let the speed of the smaller
pulley be represented by y.
Study the problem; the first
ratio will be between inches
and the second will be between
revolutions per minute (rpm).
Also note that the second pul-
ley is smaller than the first
and must make more revolu-
tions than the first. There-
fore, the answer will be a
number larger than 300.

Arrange the ratios in the order
LESSER to GREATER.

First ratio:
16
15:30, or 30

Second ratio:
300:y, or gg_g
The proportion:

80 — 800 v op 15 — 300
15:30 = 300:y, or 30 =
Solve the proportion:

16 _ 300
30 — vy
15y = 800 x 36
15y = 9000
__ 9000
V=15

Figure 8. Pulleys and inverse ratio.




Exzample 2: A 24-inch pulley is fixed to a
drive shaft that is turning at
the rate of 400 rpm. This pulley
is belted to a 6-inch pulley. De-
termine the speed of the smaller
pulley in revolutions per minute.
Driving pulley (400 rpm, 24
inches in diameter).

Driven pulley (y rpm, 6 inches
in diameter).

6 _ 400
24 7y
6y 400 x 24 = 9,600

¥y = 1,600 rpm

21. Problems Using Proportion

a. A steel plate 14 inch thick, 12 inches wide,
and 9 feet long weighs 183.6 pounds. What is
the weight of a piece of steel plate of the same
thickness and width if it is 16 feet 6 inches
long?

b. If three men complete a certain job in 8
days, how many days would it take seven men

to complete the same job, considering that they
will work at the same speed?

c. If 8 resistors cost 25 cents, find the cost of
60 resistors at the same rate?

d. If the upkeep on 62 trucks for a year is
$3,100, what would be the upkeep on 28 such
trucks for 1 year at the same rate?

e. At a given temperature, the resistance of
a wire increases with its length. If the re-
sistance of a wire per 1,000 feet at 68°F is
.248 ohm, what is the resistance of 1,500 feet;
of 1,200 feet; of 1,850 feet; of 3,600 feet?

f. If 21-gage wire weighs 2.452 pounds per
1,000 feet, what is the weight of 1,150 feet;
1,640 feet; 1,680 feet; 349 yards?

g. The speeds of gears running together are
inversely proportional to the number of teeth
in the gears. A driving gear with 48 teeth
meshes with a driven gear with 16 teeth. If
the driving gear turns at the rate of 100 rpm,
how many rpm are made by the driven gear?

h. A 36-tooth gear running at a speed of 280
rpm drives another gear with 64 teeth. What
is the speed of the other gear?



CHAPTER 4
POWERS AND ROOTS

22. Powers

There are many times in mathematics when
8 number must be multiplied by itself a number
of times, such as 4 X4 X 4 X4 X 4. This is
written as 4% and is described as 4 raised to the
fifth power. A number multiplied by itself
once is said to be raised to the second power
(squared). Thus, 6 X 5 is written 52 The
number 2, written to the right and above the
number 5, is the exponent; the number 5 is the
base. The base number is a factor of a num-
ber written in exponential form because the
product is evenly divisible by the base.

23. Roots

The root of a number is that number which,
when multiplied by itself a given number of
times, will equal the given number. The square
root of 25 is 5, since 5 X 5 or 5% equals 25.
The third root (cube root) of 216 is 6, since 6
X 6 X 6 or 6 equals 216. The fourth root of
81 is 3, since 3 X 8 X 8 X 8 or 8¢ equals 81.
Extraction of a root is generally indicated by
placing, in front of the number, a radical sign
(V™). A small figure is placed in the angle
at the front of the sign to indicate the root to be
taken. If the small figure is omitted, it is un-
derstood that the operation required is square
root.

Thus,
v25 =5
V216 = 6
V81 =3

24. Finding Square Root of a Number

a. Finding Square Root by Mental Calcula-
tion. In some instances, the square root can be
determined mentally from a knowledge of com-
mon multiplication. For example, 25 is b5,
since 5 X 5 or 52 = 25. Similarly, /144 is 12,
since 12 X 12 or 122 = 144.
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b. Finding Square Root by Arithmetical
Process. In most cases, the square root of a
number must be determined by a mathematical
process. If the number is a perfect square, the
square root will be an integral number; if the
number is not a perfect square, the square root
will be a continued decimal. To save time in
calculation, a table of square roots of numbers
from 1 to 100 is given in appendix III.

Ezample 1: Evaluate /3398.89.

Step 1. Starting at the decimal point
mark off the digits in pairs in
both directions.

v33 98.89

Place the decimal point for the
answer directly above the de-
cimal point that appears under
the radical sign.

v33 98.89
Determine by inspection the
largest number that can be
squared without exceeding the
first pair of digits—33. The
answer is 5, since the square
of any number larger than 5 will
be greater than 33. Place the
5 above the first pair of digits.

b
v33 9889
Square 5 to obtain 25, and place
it under 33. Substract 25 from
33 and obtain 8. Bring down the
next pair of digits—98.

b
v33 98389

25

898
Double the answer, b, to obtain
a trial divisor of 10. Divide the
trial divisor into all but the last

Step 2.

Step 8.

Step 4.

Step 5.




Step 6.

Step 7.

digit of the modified remainer.
It will go into 89 eight times.
Place the 8 above the second pair
of digits, and also place the 8 to
the right of the trail divisor.
Thus, the true divisor is 108.
Multiply 108 by 8 and obtain
864. Subtract 864 from 898 to
obtain 34. Bring down the next
pair of digits—89.

2 X 65 =108 "898
8] x 108 = 864
3489

Note. With each new successive
digit in the answer:

1. Place the digit in the answer
above the pair of digits involved.

2. Place the same digit to the right
of the trial divisor to obtain the true
divisor.

8. Multiply the digit by the true

divisor. (Do not use the square boxes
in actual problems.)
Double the answer, 58, to obtain
a trial divisor of 116. Divide the
trial divisor into all but the last
digit of the remainder. It will
go into 348 three times. Place
the 3 above the third pair of di-
gits, and also place the 8 to the
right of the trial divisor. Thus,
the true divisor is 1168. Multi-
ply 1163 by 38 to obtain 3489.
Subtract 3489 from 3489. There
is no remainder. Therefore
3398.89 is a perfect square and
its square root is 58.3.

5 8 3
v33 9889

26

898

864
2 X 58 =116 3] 3489
37 X 1168 = 3489
Check the answer by squaring
58.3—58.3? — 3398.89.
The complete calculation is

shown below:

5 8.3
V33 98.89
b X5 = gg
2 X5 =108 898
18] X 108 = _8_24_
2 x 58 = 116[3] 3489
B x 1163 = 3489

Ezample 2: Evaluate 1/786.808

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Starting at the decimal point,
mark off the digits in pairs in
both directions.
v 07 86.80 80

Note. The extreme left-hand group
may have only one digit. However,
there must be an even number of
digits to the right of the decimal
point. If necessary, add a zero.

Place the decimal point for the
answer directly above the de-
cimal point that appears under
the radical sign.

V0T 86.80 80

Determine the largest number
that can be squared without ex-
ceeding the first digit—7. The
answer is 2, since the square of
any whole number larger than
2 will be greater than 7. Place
the 2 above the 7.

2
v 07 36.80 80
Square 2 to obtain 4 and place
it under 7. Subtract 4 from 7 to

obtain 8. Bring down the next
pair of digits—86.

2
v07786.80 80

4

386
Double the answer, 2, to obtain
a trial divisor of 4. Divide the
trial divisor into all but the last
digit of the modified remainder.
It will go into 38 nine times.
Place the 9 above the second pair
of digits, and also place the 9
to the right of the trial divisor.

The true divisor is 49. Multiply
49 by 9 to obtain 441. However,

13
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Step 6.

Step 7.

441 cannot be subtracted from
386, so the next lower digit must
be tried. Substitute 8 for 9 in
both the answer and the divisor
and multiply 48 by 8 to obtain
384. Subtract 384 from 386 to
obtain a remainder of 2. Bring
down the next pair of digits—
80.

2 9.
v 07 86.80 80

4

"386
441

2 8.
V07 86.80 80
4

2)(2:4@
@)(49:

4 @ 386

m X 48 = &
280

Double the answer, 28, to obtain
a trial divisor of 56. Divide the
trial divisor into all but the last
digit of the remainder. Since it
is not possible to divide 56 into
28, place a zero above the third
pair of digits and bring down the

next pair of digits—80.
2 8. ]'9'_]
07 86.80 80
4
~386
384
2 X 28 = 56 280

Multiply 280 by 2 to obtain a
trial divisor of 560. Divide the
trial divisor into all but the last
digit of the remainder. It will
go b times. Place the 5 above
the fourth pair of digits, and
also place the 6 to the right of
the trial divisor. Thus, the true
divisor is 5605. Multiply 5605
by 5 to obtain 28025. Subtract
28025 from 28080. There is &
remainder of 55. Thus, the
square root of 786.808 is 28.05,
with a remainder of 65. A more
exact answer can be obtained by

adding pairs ot zeros and con-
tinuing the square root process.

2 8.0 65
V07 86.80 80
4
"386
384
2 X 280 = 560 5] ~ 28080
[B] X 5605 = 28025
55

Check the answer by squaring
28.05 and adding the remainder
(28.052 4+ .0055). Place the ex-
treme right digit of the re-
mainder under the extreme right
digit of the squared number. The
complete calculation is shown be-
low:

2 8.0 6

v 07 86.80 80
2X2=4 @ 4
B x 48 = 386
2 X 28 = 56 384
2 X 280 = 560(5] 28080
[B] x 5605 = 26026

T 66

25. Review Problems—Square Root
a. Solve the following:

(1)
(2)
(3)
4)
(6)
(6)
)]
(8)

b. Solve the following to nearest thousandth.

(1) Vb
2) V7
3) viIl
(4) Vi3
(65) V1B
6) v1i7

c. The current (in amperes) flowing through
a resistor can be determined by taking the
square root of the quotient obtained by divid-
ing the value of power supplied to the resistor
(in watts) by the value of the resistance (in



ohms). Thus, if a resistance of 300 ohms is
absorbing 60 watts of power, it is drawing a

current of / 16 amperes. This equals about
VvV 800

447 ampere. In the same manner, find the
value of current for each of the following values
of power and resistance:

Power
(watts)

(1) 26
(2) 50
(3) 40
(4) 75

Resistance
(ohms)

1,000
7,000
500
60

Current
(amperes)
?

?
?
?

15



CHAPTER 5
ALGEBRA

Section I. INTRODUCTION

'26. General

a. Algebra is an extension of arithmetic. All
of the four basic operations of arithmetic—
addition, subtraction, multiplication and divi-
sion—apply also to algebra. Arithmetic deals
only with particular numbers; algebra may also
employ letters or symbols to represent numbers.

b. Algebra is often referred to as the short-
hand language of mathematicians. The sim-
plest example of the algebraic language is the
formula, in which letters are used to represent
words or numbers. For example, the area (4)
of a rectangle can be determined by multiply-
ing the length (I) by the width (w). Algebra-
ically, this is stated as A = lw.

27. Algebraic Expressions and Terms

a. An algebraic expression is the representa-
tion of any quantity in algebraic signs and
symbols; for example, 22 — 7. A numerical
algebraic expression consists entirely of nu-
merials and signs, such as 8 — (6 X 2). A
literal algebraic expression contains only letters
and symbols, such as ar — ay.

b. Each algebraic expression contains two or
more terms, separated by one of the signs of
operation (4-, —, =-, X). The expression 8x —
4xy — 2y, for example, contains three terms:
3z, 4xy, and 2y. If the terms have the same
letters and exponents, such as 3a%x, 9a%x, and
12a2z, they are called similar terms. Terms that
do not contain the same letters and exponents,
such as 3ab? 3a?b, and 3x2y, are dissimilar
terms.

c. If an algebraic expression contains one
term, such as 3abc or 5a‘z?, it is called a mono-
mial; if it contains two terms, such as * — y,
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it is called a binomial, and if it contains three
terms, such as 522 — 3xy — 22, it is called a
trinomial. A more general rule of algebraic ex-
pressions states that any expression containing
more than one term is called a polynomial.

28. Signs of Operation

In algebra, the conventional signs of opera-
tion (4, —, X and =) retain the same mean-
ing as in arithmetic. In algebra, however, cer-
tain other signs may be used.

a. Multiplication may be indicated as follows :

Arithmetic Algebra
axbd ab
aXb a.b
axb (a) (b)
b. Division may be indicated as follows:
Arithmetic Algebra
. z
. a4
(a + b) = (a—0D) a—0b

c¢. The arithmetical signs for both addition
and subtraction are retained in algebra.

Arithmetic Algebra
4+5 445
a—b>b a—b>b

29. Coefficients

Any factor of a product is known as a co-
efficient of the remaining factors. In the term
2xf, 2 is the numerical coefficient of »f, f is the
coefficient of 2x, and « is the coefficient of 2f.
However, it is common practice to speak of the
numerical part of the term as the coefficient.
If a term contains no numerical coefficient, the
number 1 is understood. Thus, abc is 1 abe,
and ryz is 1 xyz.

M ——




30. Subscripts

In expression such as R, = R, + R, + R,,
the small numbers or letters written to the right
and below the literal terms are called sub-
scripts. Subscripts are used to designate differ-
ent values of a variable quantity. They are
read: R sub 1, R sub 2, etc.

31. The Radical Sign

The radical sign (v~ ) has the same mean-
ing in algebra as in arithmetic (ch. 5§). Thus,
the expression z = 2\/R? + x? states that z is
equal to 2 times the square root of R? + a2,

Section Il. POSITIVE AND NEGATIVE NUMBERS

32. Signed Numbers

Only positive numbers are used in arithmeti-
cal operations, but both positive and negative
numbers may appear in algebraic expressions.
The plus sign (4 ) is used to indicate a positive
number and the minus sign (—) to indicate a
negative number. If the sign is omitted, the
number is understood to be positive. Positive
and negative numbers are called signed num-
bers.

33. Need for Negative Numbers

The need for negative numbers may be seen
from the succession of subtraction below:

6 6 6 6 6 6 6 6 6 6
—~0—1-2-—8—4-—5—6—T7—8—9

6 5 4 3 2 1 0—1—2-—3

When the subtrahend is greater than the minu-
end, the difference becomes less than zero and
the negative sign is placed before the differ-
ence. Thus, a negative number may be defined
as a number less than zero.

34. Application of Positive and Negative Num-
bers

In technical work, many scales are calibrated
above and below (or to the right and left of)

NEGATIVE NUMBERS
Ve

ZERO

a center point designated 0 (zero). For ex-
ample, the degrees of temperature indicated on
a thermometer scale are measurements of dis-
tance taken on a scale in opposite directions
from some point chosen to represent a refer-
ence or zero point. Temperature is always so
many degrees above or below zero. In mathe-
matics, it is convenient to indicate that a tem-
perature is so many degrees above or below
zero by prefixing the reading with a positive
or negative sign. Thus, 45° above zero is 4+45°
and 15° below zero is —15°. Similarly, in elec-
tronic and electrical measuring instruments,
scales are often calibrated to read positive num-
bers on one side of a zero and negative numbers
on the other.

35. Graphical Representation of Positive and
Negative Numbers

a. Principle. Positive and negative numbers
may be represented graphically as shown in
figure 4. The zero is the reference point. This
graph can be used to illustrate both addition
and subtraction.

b. Addition. To add numbers graphically,
start at the zero reference point and mark off
the first number, going to the right if the num-
ber is positive, or to the left if the number is

POSITIVE NUMBERS
N\

/ \If A

n & A Lan A Sl
g

n 2k n S el

e \J ¥

-6 -5 -4 -3 -2 -

"
T ]

+1 42 +3 +4 +5 +6
TME84-10

Figure 4. Graphical representation of positive and negative numbers.
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R 5 6 7 8 9 10
T™E84-11

Figure 5. Graphical representation of addition of positive numbers.
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Figure 6. Graphical representation of addition of negative numbers (—1 and —S5).

- b

a e 2 2 n

-6 -5 -4 -3

TM6E84-13

Figure 7. Graphical representation of addition of
negative numbers (—3 and —2).

negative. From this new point, mark off the
second number, again going to the right if the
number is positive, or to the left if it is nega-
tive. The number of units between zero and
the final point is the sum of the two numbers.
This procedure can be continued for more than
two numbers. Figure 5 shows graphical addi-
tion of positive numbers; figures 6 and 7 show
graphical addition of negative numbers; and
figure 8 shows the addition of a combination
of a positive and a negative number. Figures 6
and 7 show that the order in which the negative
numbers are taken does not affect the answer.

¢. Subtraction. To subtract numbers graph-
ically, change the sign of the subtrahend (num-
ber to be subtracted) and proceed as for addi-
tion. Figure 9 shows the subtraction of 43
from +5 to obtain the difference of 42.

36. Absolute Value of a Number

The numerical value of a number, without
regard to its sign, is called the absolute value

b=

of the number. Thus, the absolute value of —3
or 43 is 3. This is written |3|.

37. Addition of Positive and Negative Numbers

a. Positive Numbers. To add two or more
positive numbers, find the sum of their absolute
values and prefix the sum with a plus sign.
When there is no possibility of misunderstand-
ing, the plus sign is usually omitted.

Ezample: Add +4, 45, and +6

+‘:5+ (+8) + (+6) = +15or

b. Negative Numbers. To add two or more
negative numbers, find the sum of their absolute
velues and prefix the sum with a minus sign.

Ezxample: Add —4, —5, and —6

—4 4 (—5) + (—6) =—16

c. Positive and Negative Numbers. To add a
positive and a negative number, find the differ-
ence between their absolute values and prefix
the sum with the sign of the number that has
the greater absolute value. This is called al-
gebraic addition. When three or more positive
and negative numbers are to be added, first find
the sum of all positive numbers, and then the
sum of all negative numbers. Add these sums
algebraically as above.

Ezample 1: Add +6 and —9.

+6 + (—9) = —3

011-

-8 -7 -6 -5 -4 -3 -2 -|

2 3 4 5 6 7 8 9 10
TME84-14

Figure 8. Graphical representation of addition of positive and negative numbers.
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Figure 9. Graphical representation of subtraction of positive numbers.




Ezxample 2: Add +5, —8, +12, and —6.

+5 + (+12) = +17
—8 + (—6) =—14
(+17) + (—14) = +3

38. Subtraction of Positive and Negative Num-
bers
To subtract positive and negative numbers,

change the sign of the subtrahend and proceed
as in addition (par. 37).

a. Positive Numbers.

Example 1: Subtract +2 from +5.
+5 — (4+2) = 45 —2 = +3
or3
Ezxample 2: Subtract 4+5a? from +6a?.
+6a? — (4-56a?) = +4-6a? — 5a?
= +1at = a?

b. Negative Numbers.

Example 1: Subtract —3 from —b5.
—5—(—3)=—5+4+8=—2

Ezample 2: Subtract —4a from —2a.

—2a — (—4a) = —2a + 4a =
+2a or 2a

¢. Positive and Negative Numbers.

Ezample 1: Subtract —2 from +45.
+5 — (—2) = 45 4+ 2 = 47
or 7.
Example 2: Subtract —3x? from 452,
+5x2 — (—3x2) = 4522 {3x2
= +8a2 or 8x2

39. Multiplication of Positive and Negative
Numbers
a. Numbers Having Like Signs. If the two
numbers to’ be multiplied have the same signs,
the product is positive.
Example 1: Multiply +5 by 43.
(+5)(+3) = +150r 15

Ezample 2: Multiply —5 by —3.
(—5) (83—3) = +150r15

b. Numbers Having Unlike Signs. If the two
numbers to be multiplied have unlike signs,
the product is negative.

Ezxample 1: Multiply —5 by 4-3.
(—5)(+3) =—15

Ezample 2: Multiply +5 by —3.
(+5)(—3) = —15

¢. Several Positive and Negative Numbers.
To multiply several positive and negative num-
bers, multiply the numbers in groups of two in
the order in which they appear.

Ezxample 1:

Multiply (—5) (43) (47) (—2) (—4).
(=5)(+3) (+T(=2) (—4)

= (—15) (—14) (—4)

= (+210) (—4)

= —840

Example 2:

Multiply (47) (42) (—5) (—3) (—1) (—4).

= (+D(+2) (—5)(—=3) (—1)(—4)

= (+14) (+15) (+4)

= (4210) (+4)

= 840

40. Division of Positive and Negative Numbers

a. Numbers Having Like Signs. The quotient
of two numbers that have the same signs is
positive.

Example 1: Divide —15 by —5.
—15+~—5=+3o0r3
Example 2: Divide 424 by +6.
424 - 4+6=+440r4
b. Numbers Having Unlike Signs. The quo-
tient of two numbers that have opposite signs
is negative.
Example 1: Divide 35 by —T1.
+35 - —7T=—5
Example 2: Divide —8,988 by 28.
—8988 - 28 = —321
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41. Order of Signs

When only

addition and subtraction signs

appear in a series of terms, addition and sub-
traction procedures may be performed in any
order. However, when multiplication and divi-
sion signs appear in the same series with addi-
tion and subtraction signs, the multiplication
and division must be performed first, and then
the addition and subtraction.

Ezxample 1:
Step 1.

Step 2.

Step 8.

Ezxample 2:

Step 1.

Step 2.

Step 8.

Ezxample 3:

Step 1.

Step 2.

Step 8.
Step 4.

Step 5.

Evaluate 156 + 5 —8 4+ 4 — 8.

Add the + terms:

154+5+4+4=24

Add the — terms:

(—3) + (—8) =—11

Add the 4 terms and — terms
algebraically:

24 — 11 = 18.

Evaluate 9 X 4 + 6 — 8 + 5
X 2.

Perform the multiplication first:

(9X4)+6—-3+(6xX2)=
(36) +6—3 4 (10)

Add the 4 terms:

86 4+ 6 + 10 =52

Add the + terms and the —
terms algebraically:

52 —8 =49

Evaluate 81 <- 9 —8 4+ 6 — 15
+ 4 X 6.

Perform the division:

81 +9) —8 4+ 6 — 156 +
(4xX5)=(9)—8+6—15
+ (4 X B)

Perform the multiplication:

9—34+6—156+4+ (4 X56) =
9—346—15 4 (20)

Add the 4 terms:

94+6+20=235

Add the — terms:

(—3) + (—15) =—18

Add the = terms and the —
terms algebraically :

356 — 18 = 17.

42. Review Problems—Positive and Negative

Numbers

a. Add the following:

(1) 23 and —6

(2) 21 and 87

(8) —b54 and 33

(4) —43° and —96°

(5) 682 volts and —934 volts

. Subtract the following:

(1)—104 amperes from 147 amperes
(2) —317 volts from —45 volts

(38) .64cy from .00265cy

(4) 21.36azx? from —10.63ax?

(6) —.986z%y from .824xy

. Find the product of the following:

(1) —6.4 and 2.8
(2) 3, —6,and 4

2 6 2
(3) —'51 _7’ and —'5‘

(4) 3.01, —.02, and —1.26
(6) —.0025, 150, —.10, and .075
(6) —2' 5’ 3. —'1' and 4

. Divide:

(1) 36 by 4

5 3
(2) —q by i

(8) —b5.6 by —.008
(4) —T750 by —3

(5) % ampere by % ampere
(6) —.8750 by 150

. Evaluate the following:
1) 24+3—9
2) 8+4+2x5—38
3)2—3x9

(4) 3X4+2Xx5—38

(6) 6+3XT—2x11417

(6) 28 +-14—8+4+164+838 %2
(7) 46 —184+3 x4—8+12
8) 56—8+6x4+40

(9) 8—16+4x3—10X%5
(10) 16+-5—3+2X10—2



Section lil. FUNDAMENTAL OPERATIONS

43. Addition and Subtraction of Algebraic Ex-
pressions

a. General. Only similar algebraic terms—
those that are exactly alike in all respects other
than numerical coefficients—may be added or
subtracted. For example, the sum of 322y and
bz%y is 8x%y. Dissimilar terms cannot be added
or subtracted directly, but the processes of
addition or subtraction can be indicated by the
use of plus or minus signs. For example, the
sum of 4z%y and 2z)? is 42ty 4+ 2xyt.

b. Procedure. To add or subtract algebraic
expressions, arrange the terms so that like
terms are in the same vertical column, and pref-
erably in descending order of powers. Add or
subtract the terms according to the rules of
signed numbers (pars. 37 and 38).

Example 1: Add 23 — 322 4+ 1, 28 + 2 — 38,

and 2t 4z + 1.

z3 — 822 +1

z3 4+ z—38
24+ z41

273 — 222 4+ 2z — 1
Ezxample 2: Subtract 2® 4 322 4+ z — 1 from
24 + 23—z 42,
¢ 4 23 —z 4+ 2
_—(x* — 82—z + 1)
Remove parentheses and change

signs.
x4 4+ 28 —2z 42
—z? — 32 —2x 41
x4 —322—22 43

44. Multiplication and Division of Monomials

a. Multiplication. In multiplying monomials,
multiply the numerical coeficients and write
this result as the coefficient of the product.
After the coefficient, write each literal factor
with an exponent equal to the sum of all the
exponents of that letter in the original factors.

For example, 3a" * 2a» = 6a"+™.
Example 1: Multiply x by x2.
2223 = 243 =zt
Ezample 2: Multiply z, 23, and z!°.
Ve 8. 210 — xl+3+10 —_ xl‘
Ezample 8: Multiply x3y¢ by 3xy2.
Step 1. Multiply the coefficients:
1-3=38

Step 2. Multiply the two factors having
the base x:
x‘ ‘xr = x8+l — x‘
Step 8. Multiply the two factors having
the base y:
yveyr=ytt=9y*
Step 4. The product is:

3yt - Syt = x4yt

Ezample 4: Multiply z2y¢z and wztyzs.

Ytz ¢« wrdyzt = wattdyt+izi+s

23+3 — 26

y4+l = yS

2148 — 28

Therefore, zty‘z * watys® =
wxbyszs,

b. Division. In dividing a monomial by a
monomial, divide the numerical coefficient of
the dividend by the coefficient of the divisor
and write the result as the coefficient of the
quotient. After the coefficient, write each literal
factor with an exponent equal to its exponent
in the dividend minus its exponent in the
divisor. Thus, to divide 6a* by 3a* (n greater

sa. N —
than m), W = 2a"—",
Example 1: Divide «3 by z2.
Cd =z 3=z'=z
x!

Ezxample 2: Divide 5x%yz® by 6x322.

3
5:;3;” — _g.xo—syza—z
_ 54y op 5202
= 62? Yz or 3

¢. Removal of Parentheses and Brackets.

(1) In multiplying a quantity in paren-
theses by a given factor, multiply each
term inside the parentheses by that
factor and drop the parentheses. If
the factor is a negative quantity, the
sign of every term inside the paren-
theses is changed. For example,
—b(a — b + ¢) = — ba + 5b — be.

(2) When an algebraic expression, such as
bx — 4 [*x — 2(x — 8)], has more
than one grouping symbol (paren-
theses and brackets), remove the
inside grouping symbol first and then
successively remove the outer group-
ing symbols.
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Ezample 1: Simplify 5z — 4 [z — 2(z — 8)].
bz —4 [z —2(z—38)] = bz —4 [z — 2z + 6]

bz —dz 4+ 82— 24
9z — 24
3(3z —8)

Ezample 2: Simplify 4a — {6a — 2b + 2 [2a — b + 42] — (¢ + 2b)}.
4a — {(6a — 2b 4 2 [2a — b 4 42] — (¢ + 2b)).

4a — (6a — 2b + 4a — 2b + 84 — c — 2b)
4a —6a 4 2b—4a 420 —84 ¢+ 20
—6a 4 6b 4+ c—84

Ezample 8: Simplify —(—1 [—(z —y — 2) + 29] — 89 +-2y — 2).
—(—1 [—(z —y —2) + 29] — 89 + 2y —z}

—2—y+2:+68

45. Raising Algebraic Functions to Powers

—(—1[—=+vy+2+29] —3942y—z2}
—(+2—y—2—29—389 4 2y — 2}
—24+Y+2+294+39—2y 42

To raise an algebraic function to a power, multiply the exponents. Thus, (a*)® = a*=,

Ezample 1: Simplify (5%)¢.

(5%)¢ = 53¢ = 512
Ezample 2: Simplify (2ab)3.

(2ad)? = 2ad

* 2ab * 2ab = 8a® b*

or 2l.la1.8b1.8 I salbl
Ezxample 8: Simplify (ax?)s.
(azt)® = al3zt3 = a3z¢
Ezxzample 4: Simplify [(x2)4]°.
[(2%)4]% = [284]% = [213]% = 2188 = z%

Ezxample 5: Simplify ( %)‘
( 2)5 218 2 82
7)) =z =6 =z
46. Negative Exponents Step 2. Place all factors in the numer-
The rule for dividing monomials (par. 44b) 2 ?t:_l_',' . gt
also. holds when the exponents of the denomina- Step 8 Multiply the factors (add their
tor is greater than the exponent of the numera- exponents) :
tor. For example, a® < a® = a*—*% = a—%; how- Z4143 — ¢

ever, a quantity such as a—2 may be written as
1

F.
Ezample: Multiply 22, z—!, and x"lz,' .
Step 1. Write down the factors of the
multiplication :
EARE zl—"

47. Zero Exponents

The zero power of any quantity is equal to 1.
For example z® * 2—t = 2% when the exponents
are added. However, z—2 can also be written

f;;inthiucue,z’w-': -:—:-: 1.

Therefore, 2z = 1. Any number (except zero)
raised to the zero power is equal to 1.




o

. a2
Ezample: Solve r zy + =5
ot M AN v . v 2 o s ot a2
z zy £ T =xyz 8 T zyz P
7
= x‘y‘: = p-3yi—3y1-1
2

TS =211 28 =

48. Multiplication of Polynomials Ezample 1: Multiply (a 4 b) by (a + d).
a. By a Monomial. To multiply a polynomial e+ :
by a monomial, multiply eack term in the po- 2,—+—a—b
lynomial separately by the monomial and add a* + ab 4+ bt
the products. Observe the rules for the multi- —,——ﬁ
plication of signed numbers (par. 89) and ex- o'+ +
ponents (par. 44a). Ezample 2: Muiltiply 2z + 8y by 2z 4 8z.
Ezample 1: Multiply 3a + 2ab + 5¢ by 2b. 2z 4 3y
3a + 2ab + b¢ M
2 ERPTYY
6ab + 4ab* + 10bc . o2y v
Ezample 2: Multiply ad — ae + af by Sa. dat + 6zy + 62z + 9yz
ad — ae + af Example 8: Multiply 522 — 62y 4 8y* by 2
3at +v.
8atd — 8a’e + 3a’f 522 — 6zy 4 83*
Ezample $: Multiply 323yt — 2233 + 52y by r+y

423y.
8zt — 22y + bzly
4z%y
12283 — 8z4y¢ 4 2027y
b. By a Polynomial. To multiply a polynomial
by another polynomial, multiply each term of
one polynomial by each term of the other and
add the products.

5z% — 6z%y + Szt
___+ bty — 62yt 4 3y*
bz — zly — 32y? 4 8y*

49. Division of Polynomials

a. By a Monomial. To divide a polynomial
by a monomial, divide each term of the poly-
nomial by the monomial.

Example 1: Divide 3at + 4ab 4 bac by o.

8a? 4 dab 4 Sac

a

= 3a + 4b + B¢

Ezample £:

Ezample 3:

Divide 7Txt + 14zy — 21a2t by Tx.

Txt 4 14zy — 2lax?
Tz

Divide 4r(s +t) —r*(s + t)2 4 grt(s + t)2 by r2(s 4 t).

dr(s4t)—1r (s +t)2 4 qrt (s 4 ¢)3

=24 2y —3azx

(s + t)
_4r(s+t) r(s4t)r  grt(s4t)
T (e 4+t) T s+ t) P (s + 1)

- —r(8+t)+q(s41t)2



b. By a Polynomial. To divide a polynomial
by a polynomial, just arrange the dividend and
the divisor according to descending powers of
one variable, starting with the highest powers
at the left. Then proceed as shown in the ex-
amples below. If there is a remainder, write it
as the numerator of a fraction the denominator
of which is the divisor.

Ezample 1: Divide ab + ac 4+ db 4 de by a
+ d.

Divide the first term of the
divisor, a, into the first term of
the dividend, ab. The quantity
a is contained in the first term,
ab, b times. Write b as the first
term of the quotient.

b
a 4 d/ab + ac + @b + de
Multiply both terms of the
divisor by b:

b
a + d/ab + ac + ab + de

ab 4 db

Subtract the result from the
original dividend:

b
a + d/ab + ac 4 db + dc

ab + db
ac + de

Divide the first term of the
divisor into the first term of the

Step 1.

Step 2.

Step 8.

Step 4.

Ezample 8: Divide 6a — ab — 27ac — 15b* 4 Tbc + 30¢t by 8a — 5b —

Step 5.

Step 6.

Ezample 2:

remainder. It is contained in the
first term, ac, ¢ times. Write ¢
as the second term of the quo-
tient.
b+e¢
a 4 d/ab + ac + db + de
ab + db
ac + de
Multiply both terms of the
divisor by ¢ and subtract. There
is no remainder:
b+e¢
a4 d/ab + ac + db + de
ab + db
ac + de
ac + de

Therefore,
ab +ac 4 db 4 de
a+d

Divide 22 4 2zy 4 ¥yt by 2 4 y.
2420y 43t _
z+y
z4vy
xiz/z‘+§zv+v'
z3 z
zy + ¥t
2+

=b+e

Therefore,

22yt
sty =t

6c.
6a® — ab — 27ac — 15b® 4 Tbe 4 80¢* _
8a — 5b — 6¢ -
2a 4 8b — b¢

3a — 5b — 6¢/6af —ab — 27ac — 16b% + 7bc + 30c3
6at — 10ab — 12a¢
9ab — 16ac — 15b® + Tbe 4 30ct

50. Review Problems—Fundamental Operations
a. Add the following algebraic expressions:

9ab — 15b* — 18b¢
— 1bac + 26 bec + 30¢?
— 15ac + 26 bec + 30¢?

(1) 2a* + 3atb? 4 5b¢, a' — Ba2b® —2b¢, and 3at — 2a?bt + bt
(2) 8E — 2RI — 15ZI, 6RI + 24ZI, and — 2E — RI + 11Z1I.
(8) 10w — 4z + 3y + 62, 2x — 5w + ¥, 32 — 22z — y, and 6y — 4w — z 4 bz.



b. Subtract the following algebraic expres-
sions:
(1) —T7ax — 2by + cz from 12ax 4 16by
— 8cz.
(2) 10w — 8y — 4z 4 6z from 3z 4 by —
2z — 15w.
(3) 8at 4+ 10ab — 4b* from 12a® — 24ab
+ 2b2,
¢. Simplify:
(1) 7a®
(2) (6z + 9)°
(8) (822 4+ Tz + 1)°
d. Perform the indicated operatiors:
(1) fo- 1
@) y
(3) ps+l . g1
rlo
4) -5
(5) (R*)™

(6) 1:—?

Section V.

51. Understanding Factoring

Factoring is the breaking up of an expression
into the factors or individual parts of which it
is composed. In other words, to factor an al-
gebraic expression means to find two or more
expressions which, when multiplied together,
will result in the original expression. For ex-
ample, since 3 * 5§ = 15, 3 and 5 are the factors
of 15; since 4 * a * b = 4ab, 4, a, and b, are the
factors of 4ab; since a(z + y) = ax + ay, a
and (z + y) are the factors of az + ay.

52. Factors of Positive Integers

It is often difficult to determine at a glance
the factors of which a number is composed. For
example, consider the numerical expression 36.
There are many different combinations of num-
bers that would result in an answer of 36; for
example, the desired factors for 36 in a certain
problem might 36 - 1, 18 - 2, 12°3,9° 4,6 6,
2°2°9,4°-3°3,2°3°6,and soon.

e. Express with positive exponents:
(1) 4z—¢
(2) r3z2—¢
(8) (6a)—2
(4) ItR—!
(5) 2—%ab—3
(6) 3EI ;R 1
f. Perform the indicated operations:
(1) (5ab) (2at — 8ab + Tb3)
(2) 4a(a® 4+8a+1)
(8) (48t +9)(i—38)
(4) (22 4 3zy —y2) (2 + zy + 3?)
(6) (3z* — 2zy — by*) (322 + 2zy — b3?)
6) [(z—1)a— (z—1)c] =
[((z—1) ac]
(7) (3L — rR?) = rR
(8) (5a‘d — 10a%b® + 15a%b¢) = ba‘d
(9) (1 4+22¢ 4422 —22 4 T72) —
8 +2t—2)
(10) (100b% — 13b? — 3b) = (8 + 256b)

FACTORING

53. Factors of a Monomial

Because the factors of a monomial are evi-
dent, usually a monomial is not separated into
its prime factors. The factors of a‘b2c are
a-a-a-a-b-b-c and the factors of 15a2bs
are3-5-a-a-b-b-0>.

54. Square Root of a Monomial

The square root of an algebraic expression
is one of its two equal factors. Thus, the square
root of 49 is 7, the square root of 81 is 9, the
square root of a® is a, and the square root of
2%y is zy. As discussed in paragraph 31, the
radical sign is used to indicate the square root
of a number. Actually, every number has two
square roots, one positive and one negative.
If no sign precedes the radical, the positive or
principal root is understood. For example,
v9 = +43. If a negative sign precedes the
radical, however, the negative root is intended.
Thus, — V9 = —3. When dealing with literal
terms, the values of the various factors often
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are unknown. Therefore, when extracting the
square root of a monomial, extract the square
root of ihe numerical coefficient, divide the ez-
ponents of the literal terms by 2, and prefiz the
square root with the plus or minus (%) sign,
which denotes that either the positive or nega-
tive root may be the correct one.

Example 1: /x1¢y¢ = 282
Example 2: \/49a%0 = =Tatb.

55. Cube Root of a Monomial

The cube root of a monomial is one of its
three equal factors. The index 8 in the angle
of the radical sign (¥ ) indicates cube root
(par. 31). To extract the cube root of a
monomial, extract the cube root of the num-
erical coefficient, divide the exponents of the
literal terms by 8, and prefix the cube with the
same 8ign as that of the monomial.

Ezample 1: Ya%y® = a¥y.
Ezxample 2: \/2Tx12y%2% = 3x4ytzs.
Example 8: \Y—64rt1g? = —4r7s.

56. Factors of a Polynomial

a. Common Monomial Factor. In an algebraic
expression, the type of factor which can be
recognized most easily is the monomial factor
(single letter or number) which is common to
each term in the expression. For instance, in
the expression za 4 zb + zc, the z is a factor
common to each of the terms. Thus, the ex-
pression za 4+ zb 4 zc can be written z(a +
b 4+ ¢). This relationship is shown pictorially
in figure 10. Since the area of a rectangle is
equal to its base multiplied by its altitude (par.
136b), the area of the uppermost rectangle in
figure 10 is z times a, or za. The areas of the
center and lower rectangles are zb and zc, re-
spectively. The area of the large rectangle
formed by the three small rectangles is equal
to its base x times its altitude (e 4+ b 4 ¢), or
z(a + b 4 ¢). Since the area of the large

——_

(1] [ ]

i

x(a+bec)= x0¢exbexc

TuEss-18

Figure 10. Common monomial factors.

rectangle is equal to the sum of the areas of
the three smaller rectangles, then z(a 4+ b + ¢)
is equal to za 4+ zb 4 zc. This shows that the
factor z can be removed from ze + zb + zc
and the expression written z(a + b + ¢). Ac-
curacy of factoring can be checked by multiply-
ing the two factors together—the product
should be the original expression. Thus, z(a +
b+ ¢) = za + zb + zc. To factor a polynomial
the terms of which have a common monomial
factor, determine the largest factor common to
all of the terms, divide the polynomial by this
factor, and write the quotient in parentheses
preceded by the monomial factor. The first
factor contains all that is common to all of the
terms; it may consist of more than one literal
number and may be to a power higher than the
first.

Ezample 1: Factor 22 — Tz 4 4z.

22— Txt + 42 = 2(22 — Tz + 4)

Ezample 2: Factor abz + aby — abz.

abz 4+ aby — abz = ab(z + y — 2)

Ezxample 8: Factor 2az2 — 4bzt 4 6c¢z2.
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2azt — 4bzt 4 6cz® = 228 (a — 2° 4 89)



b. Binomial Factors. Sometimes binomial
factors are not immediately apparent, and an
algebraic term may appear to have no common
factors. For example, the expression am + bm
+ an 4 bn may seem to have no factors in
common. However, the first pair, am + bm,
has a common factor, m, and the second pair,
an + bn, has a common factor, n. Factoring
out the common factors, the expression becomes
m(a 4+ b) 4+ n(a 4+ b). Since there are two
terms containing a common factor (a + b),
this factor can be removed to make the expres-
sion (a + b) (m 4 n). Thus, the factors are
(a + b) and (m 4+ n). This relationship is
shown pictorially in figure 11. Starting with

the upper left-hand rectangle and going clock-
wise, the areas of the four rectangles are an,
am, bm, and bn. The area of the large rectangle
formed by the four smaller rectangles is its
base (m 4 n) times its altitude (a + b), or
(m 4+ n) (a 4+ b). Since the area of the large
rectangle is equal to the sum of the areas of the
four smaller rectangles, then (m + n) (a + b)
is equal to an 4+ am 4 dbm 4 bn. This shows
that the expression am + bm + an + bn can be
factored into (m + n) and (a + b). To check
the factoring, multiply (a 4+ b) by (m 4 n);
the product is am 4 an 4 bm + bn. Since the
addition of terms can be expressed in any order,
the factoring is correct.

Example 1: Factor py — pz — qy + qz.
PW—rz2—qy+qz=p(y—2) —q(y —2)
=(—9q) (y—2)
Ezxample 2: Factor 4za — 820 — 6ya — 4zb + 8za 4 6yb.
4za — 82zb — 6ya — 4xb + 8za + 6yd

4za — 6ya + 82a — 4zb 4 6yb — 82b
2a (22 — 3y + 4z) — 2b(2x — 8y + 4z2)
(2a — 2b) (22 — 3y + 4z2)

2(a — b) (22 — 3y + 42)

Ezample 8: Factor da + db — dc — ea — eb + ec + fa + fb — fe.
da 4+ db —dc —ea — eb + ec + fa + fb — fe
=da+b—c)—e(a4+b—c)+f(a+b—~2¢)
=((d—e+f) (a+b—c¢c)

-

n —i_ m vi

-1

(men)(a+b)=am +bm+an+bn

TMG84-17

Figure 11. Binomial factors.



57. Factors of the Square of a Binomial

a. Square of Sum of Two Numbers. The
square of the sum of two numbers is a special
product that should be readily recognized to
aid in factoring algebraic expressions. The
square of the sum of two numbers equals the
square of the first, plus twice the product of the
first and second, plus the square of the second.
To illustrate, (a + b)? = a* 4 2ad 4 b2. Con-
versely, the factors of a®* 4 2ad 4 b® are (a +
b) (@ + b) or (a 4 b)% This relationship is
shown in figure 12. The areas of the four
rectangles, as shown on the figure, are a*, ab,
ab, and b:. The area of the large rectangle
formed by the four smaller rectangles is equal
to its base (a 4 b) times its altitude (a 4 b),
or (a + b)% Since the area of the large rec-
tangle is equal to the sum of the areas of the
four smaller rectangles, then (a 4 b)? is equal
to a* 4 ab + ab 4 b3, or a® 4 2ab 4 b2 This
shows that the expression a* 4 2ab + b* can
be factored into (a 4 b) (& + b), or (a + b)8%.
Figure 13 shows a similar relationship in which
nine small rectangles form one large rectangle.

In this case, the area of the large rectangle is
(a 4 2b)* and the sum of the areas of the nine
smaller rectangles is a®* 4 4ab + 4b%; conse-
quently, (a 4 2b) and (a 4 2b) are factors of
a* 4 4abd 4 4b%. Thus, the factors of the square
of one number, plus twice the product of the
first and second number, plus the square of the
second number are the square of the sum of the
two numbers.

i —
S N

(cvb)‘ a ot e20b 40t
THES -8

Figure 18. Square of sum of two numbers.
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Figure 13. Factors of square of positive binomial.




Ezample: Factor 4b* 4 16db 4 16ds.
46 + 16ddb + 16d* = (2b + 4d) (2b + 4d)
= (2b + 4d)t
= [2(b + 2d)]*
=2t (b 4+ 2d)?

To prove the factoring:

(2b + 4d)t = (2b)* + 2(2b) (4d) + (4d)*
= 4b* + 16db + 16d?

Note that 4 (that is, 2¢) may be removed before factoring the rest of the

expression—this often simplifies computation.

4(b® 4 4bd + 4d?) = 4(b + 2d)*

b. Square of Difference of Two Numbers.
The square of the difference of two numbers
equals the square of the first, minus twice the
product of the first and second, plus the square
of the second. For example, (& — b)* = at —
2ab 4 bt The factors of a® — 2ab + bt are (a
—b). (a — b) or (a — b)2. This relationship
is shown pictorially in figure 14. The area of the

“Jarge rectangle formed by the four small rec-

tangles is at. The areas of the four smaller rec-
tangles are shown on the illustration. The
area of the upper left-hand rectangle is (a —
b)2. It is also equal to the area of the large rec-
tangle minus the areas of the other three rec-
tangles,orat — b (a — b) — b (a — b) — b2,
This can be further simplified as follows:

at—b(a—b) —b(a—b)— 02

at —2b (a —b) — b2

at — 2ab + 2b® — b?

at — 2ab + b2

(e=>2 = o -20b +b?
TME84-20

Figure 14. Square of difference of two numbers.

Therefore, (a — b)? = a® — 2ab + b?, and (a —
b) and (a — b) are factors of a* — 2ab 4 b2
Thus, the factors of the square of one number,
minus twice the product of the first and the
second, plus the square of the second are the
square of the difference of the two numbers.

Ezxample:
Factor 9b* — 12bd 4 4d:.
9bt — 12bd + 4dt = (8b — 2d) (3b — 2d)
= (3b —2d)?
To prove the factoring:

(8b — 2d)t = (3b)t — 2 (3b) (2d) + (2d)¢
= 9bt — 12bd + 4d*

58. Factors of Difference of Two Squares

The product of the sum and difference of two
numbers is equal to the difference of their
squares. Thus, (a 4+ b) (a — b) = at — b2, To
factor the difference of two squares, extract the
square roots, then write the sum of the roots
as one factor and the difference of the roots as
the other factor. Thus, the factors of at — b2
are (a 4+ b) (a—0b).

Ezxample:
Factor 4xt — 9y2.
4z — 9t = (22 + 3y) (22 — 3y)

To prove the factoring:

(2z + 3y) (22 —3y)
= (2z)* + (22)(3y) — (2z)(3y) — (3y)*
= 4x2*—9y2
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59. Factors of Trinomials

a. Trinomials Such as z* 4+ z(a 4+ b) + ab. The factors of a trinomial consisting of the square
of the common term, the product of the common term and the algebraic sum of the unlike terms,
and the product of the unlike terms are two binomials that have one term in common and the other
term unlike. Thus, the factors of z* 4 z(a 4 b) + ab are (z 4+ a) (z + b) where z is the common
term, and a and b are the unlike terms. As proof, the product of (x 4+ a) (x + b) is 22 4 za 4
zb 4+ zb + ab. By factoring the two terms which have a common factor, z, the original trinomial

22 4+ z (a 4+ b) + ab is obtained.

Example:

Factor 972 4 6r(s + t) + 4st.

924 6r(s+t) +4s8t=(3r+ 28) (3r 4 2t)

To prove the factoring:

(3r + 28) (3r + 2t)=

b. Trinomials Such as z* 4+ 6x + 8. To
factor a trinomial of the form 22 4 6z 4 8, z2
— 62 + 8, 22 + 6z — 8, or 22 — 62 — 8, much
of the work is done by trial and error. The
problem is to find two factors of the final term
which, when added together, will give the
coefficient of the middle term. Taking the first
of the trinomials above, the factors of 8 are
8:-1and4 -2 Since4d+2=6and8+1=09,
the factors that will be used are 4 and 2. With
regards to signs, if the sign of the final term
i8 positive, the signs of the two factors are alike
and will be the same as the sign of the middle
term. Thus, the factors z* 4+ 6z + 8 are (z
+ 4) and (z + 2), and the factors of z* — 6z
+ 8 are (x — 4) and (z — 2). If the sign of
the final term i8 negative, however, the signs
containing the two terms of each binomial
factor are unlike; the larger factor will take
the sign of the middle term. For example, the
factors of 22 4 2x — 8 are (z 4 4) and (z — 2),
and the factors of #2 — 2x — 8 are (z — 4)
and (z + 2).

Example 1: Factor y* 4+ 12y 4 32.

¥+ 12y 4+32=(y+8)(y+4)
Ezample 2: Factor 22 — 11z 4 30.

22— 1124 30 = (2z—6) (z—1b5)
Example 8: Factor r 4 4r — 12.

n4+4r—12=(r+6)(r—2)
Example 4: Factor s2 — 8 — 20.

828 —38—20=(s—5)(s+ 4)

¢. Trinomials Such as 6a® — 11a — 10. The
procedure used to factor trinomials of this type

30

(3r)% 4 (3r) (28) + (87)(2t) + (28) (2¢)
972 4 6rs 4-6rt 4 4st
972 4 6r(s 4+ t) + 4st

is an extension of the procedure described in
b above and as shown in the example below.

Ezxample: Factor 6at — 11a — 10.
Step 1. Find two numbers that, when
multiplied together, form the
left-hand term, 6a?.

(6a)(a) = 6at

(2a) (3a) = 6a?
Find two numbers that, when
multiplied together, form the
right-hand term, —10.

(10)(—1) = —10

(5)(—2) = —10

(—10)(1) =—10

(—b)(2) = —10
By trial and error, set up two
binomial expressions contain-
ing factors from step 1 in the
left-hand term and factors from
step 2 in the right-hand term.
The proper selection of factors
should give the middle term of
the trinomial when the binom-
ials are multiplied.

(2a + 6) (3a — 2) (first trial)

6at 4+ 15a¢ — 4a — 10 = 6a®
+ 1la — 10 (multiplying out)
The middle term obtained does
not match the middle term of
the given trinomial. The num-
erical value, is correct, but the
sign is wrong. Make a second

Step 2

Step 3.




trial with the signs in the
binomials changed.
(2a —5)(8a + 2)
6at — 15a + 4a — 10 = 6a?
—1la — 10

Step 4. Since the second trial results in
the correct trinomial, the factors
of 6a2 — 1la — 10 are (2a — b5)
and (3a + 2).

Note. The method of trial and error
used above may not work in every
case. Other arrangements of factors
and signs must be tried until the cor-
rect results are obtained.

60. Factors of Two Cubes

a. Sum of Two Cubes. The factors of the
sum of two cubes, such as 2% 4 3, are (z 4+ y)
and (22 — zy + »?). In this case, the binomial
is an expression of the sum of the primes times
the sum of the squares of the primes minus the
product of the primes. This is seen readily by
dividing z* + y* by = + ¥.

Thus,

zt  —zy + ¥
z + y/a +

2 4 2%y

— zly

— 2y — z?

zyt + ¥*
zy* + ¢

Ezxample 1: Factor z3 4 8.
224+ 8=1(z+4 2)(22 — 2z 4 4)

To prove the factoring:
22 —2z <+ 4
z 4+ 2/28 + 8
22 4 222
—222
_—222 — 4z
4z + 8
4z + 8

Ezample 2:

Factor 7 4 12523,
7 4 1262 = (r 4+ bz)(r? —brz 4 25 23)

To prove the factoring:

re — bz + 2522

r 4 bx/r + 12623
r 4 briz
— 572

— 512y — 257x?
25rx2 4+ 12523
25rx2 4 12523

b. Difference of Two Cubes. The factors of
the difference of two cubes, such as z3 — 3,
are (z — y) (x2 4+ xy + ¥2?). These factors are
an expression of the difference of the primes
times the sum of the squares plus the product
of the primes. As in the sum of two cubes,
factoring can be proved by dividing the product
by the binomial factor.

Ezxample 1: Factor a® — b3,
a® — b3 = (a — b) (at + ab +

b?)
To prove the factoring:
a2 4 ab + b2
a—b/ad b3
a® — a?d
ab
ath — ab?
ab? — bd
ab? — b3

Ezxample 2: Factor 22 — 27.
2 —2T=(2—38)(22 +32+49)

To prove the factoring:

22 +3 4+ 9
2 — 3/7 p—
23 — 322
322
322 — 9z
9z — 27
92 — 27

3



Ezample 8: Factor 64s* — 2168,

64s® — 216¢* = (4s — 6t) (16s* 4248t 4-8612)

To prove the factoring:
1682 + 24 st 4 36t
4s — 6t — 2168
64s% — .96s3¢
96s2t
9651t — 14dst?
1448t — 216t
1448t — 216¢3
61. Review Problems—Factoring (5) y/100aB1®
a. Factor: (6) \/16a? - 52
(1) 26 + 6 —380 (1) V=21
(2) 8 44—382 (8) V—=9
(8) 9—18 4+ 21 (9) V(—=B)?
(4) Tr — 21r + 861 (10) 12621128
(6) 10z 4 8y + 62 d. Factor:
b. Find the values of the indicated powers: (1) 8z + 6
(1) (Tzy%)2 (2) 6a® + 16a

(2) (—2uwh)*

(8) (8atd¢):

(4) (9a'z)*

(6) (—38bz¢)3

¢. Find the value of each of the following:

(1) vB8

2) v&#

(8) vatd?

(4) V&2

(3) 102% — 142 —2x

(4) 6azy + 9bzx — 12¢2

(6) m® 4+ m®* — bmz

(6) 3a® — 6a‘b — 3a'b?

(7) Try* — 14ry® + 21198

(8) 12ztam + l4xa*m + 16zams?

9 ﬂ'-f— + rr%

(10) %c‘d — %c*d* + %cd:

Section V. ALGEBRAIC FRACTIONS

62. General

Algebraic fractions play an important part
in equations for electrical and electronic cir-
cuits. These fractions can be added, subtracted,
multiplied, and divided in the same manner as
arithmetical fractions.

63. Changing Signs of Fractions

a. The sign preceding a fraction is the sign
of the fraction. It refers to the fraction as a
whole and not to either the numerator or the
denominator. In addition, the numerator and
denominator each has a sign. For example, in

the fraction —%’%, the sign of the fraction is

minus, the sign of the numerator is plus, and
the sign of the denominator is plus. Any two
of the three signs can be changed without
changing the value of the fraction.

3a —3a 3a
5b — —5b°
Therefore, the sign of the fraction is not
changed if the signs of both the numerator and
the denominator are changed. Also, the sign of
the fraction must be changed if the sign of
either the numerator or denominator, but not
both, is changed.

b. If the numerator or denominator is a poly-
nomial, the sign of each term should be changed,
not just the first sign. For example,




o

a—b

—(—b) —a4+bd_b—a
c—d =t -

c—d c—d  ¢c—d’

¢. If the numerator or denominator is in factored form, change only the sign of one of the factors,
not both. Thus,

_lz—y(z—2%) (z+y) (z—2) W—2) (z—2y)
z+v z+v - z+y :

64. Changing Form of Algebraic Fractions

In algebra, as in arithmetic, any fraction can be changed to an equivalent fraction by multiply-
ing or dividing both the numerator and denominator by the same term or number except zero.
This will not change the value of the fraction. For example, to change the fraction § to a fraction
with 10 as its denominator, multiply both the numerator and the denominator by 2. Thus,

8 _8-2_6
6 52710
Similarly, to change the fraction % to a fraction with yz as its denominator, the denominator is

changed to yz by multiplying by z; the numerator also is multiplied by z to become zz. Thus,
z z°2 z2

Ezample 1: Change ais to a fraction with a* — 9 as its denominator.
4 -~ _4°(a+3)
a—38 (a—38) (a+38)
_4(a+38
-~ at—9

& 6: S to a fraction with 18+r%s as its denominator.

4r—8 (4r—38) *8wrs Sxrs(4r — 8)
6r 6r - 8»rs 18=r3s

Ezample 2: Change

65. Reducing Fractions to Lowest Terms I_:Lv' can be reduced to 8—117 by dividing the num-

As in arithmetic, when the numerator and

denominator of a fraction have no common
factor other than 1, the fraction is said to be

in its lowest terms. The fraction%, %, and

5—_7}'—%, therefore, are in their lowest terms
since the numerator and denominator of each
fraction have no other factor except 1. The

6 8a . .
fractions ;5 and g-; are not in their lowest

terms. The fraction 1%— can be reduced to its
lowest term by dividing both the numerator
and denominator by 6. Similarly, the fraction

erator and denominator by 6y. Thus, to reduce
a fraction to its lowest terms, factor the num-
erator and denominator into prime factors and
cancel the factors common to both (since they

are equal to %).

Example 1: Reduce 8%% to lowest terms.

Sy _ 2y _ 38
8 T 2y(4y) T W
zab?
Ezample 2: Reduce cb to lowest terms.
zab*  zb (ab) _ ab
zeb — xb(e) T ¢




} .
g b¥ to lowest terms.

Ezample 3: Reduce m

ad—b  (a4bd) (a—b) a—0d

4a 4 4b 4(a + b) - 4
. 2at 4 4ab + 2b?
Ezample 4: Reduce 22 + 2b to lowest terms,
2at 4 4ab 4 2b* 2 (a4b) (a4b) _a4b a4b
2a 4 2b - 2(a + ) - 1 =
66. Finding Lowest Common Denominator come 1_(5)_ and _95_  Similarly, the LCD of _43_? and
1 15° ! a

The lowest common denominator (LCD) of
two or more fractions is the smallest term or
number that is divisible by each of the de-
nominators. Inspect to find this term or num-
ber, divide the LCD by the denominator of each
fraction, and multiply both the numerator and
denominator by the quotient. For example,
ictionsg and 34' to frac-
tions which have an LCD, inspection shows that
16 is the smallest number which is divisible by

both 8 and 6. Thus, the

when changing the

. 2 S
\ctions 3 and 5 be-

% is 12atb because this is the smallest term

that is divisible by both 3at and 4ab. Thus, the

. 4xy 6z 16zyb 18za
fraction 3at and aab become 1%ath and 22’

respectively. When fractions have factors with
exponents in the denominators, the highest
power of each distinct factor is used to form
the LCD. For example, consider the problem
of finding the LCD of fractions having the fol-
lowing denominators: x3y%z, z2ysz?, yiz%, i,
The LCD is z3y4z% because 23, y¢, and 22 are the
highest powers of z, ¥, and z in any one denomi-
nator.

Ezample: Change —; i’_ g7 and —— :bb_ o5t to equivalent fractions
having an LCD.
Step 1. Factor each denominator into its prime factors:
8¢ 8a
a2a—b = (a+b) (a—0D)
4b 4b

a?—ab—2b — (a+ b) (a— 2b)

Step 2. The lowest common multiple of the denog\inators is the

LCD:

(e 4+b) (a—10) (a—2d)

Step 3. Divide the LCD by the denominators:
(a+b) (a—>b) (a—2b) -~ (a+b) (a—b) =a—2b
(e4+b) (a—bd) (a—2b) -(a+bd) (a—2b) =a—>

Step 4. Change

3a

@+0) (a—b) into a fraction having (a 4 b)

(a — b) (a — 2b) as its denominator:

3a

3a (a —2b)

(a+b) (a—b) = (a+bd) (a—0d) (a—2b)




Step 6. Change( P b)4?a — 2b)into a fraction having (a +b)

(a — b) (a — 2b) as its denominator.

4b _ 4b(a —b)

(@ +0b) (a—2b) ~ (a+0b) (a—Db) (a—2b)
8a¢ 3a(a — 2b)

Step 6. Therefore, 3—; = @+ 5) (a—b) (a—2b)
4b 4b(a —b)

and e 5 = (a1 b) (a—Db) (a —2b)

67. Addition and Subtraction of Algebraic Fractions

a. Addition. The addition of algebraic fractions is similar to the corresponding operation in
arithmetic. To add two or more fractions having a common denominator, add the numerators and
place the result over the common denominator. If the fractions have different denominators, con-
vert them to fractions with an LCD. The sum of the fractions is equal to the algebraic sum of the
numerators divided by the LCD. Simplify the numerator and reduce the result to its lowest terms.
If possible, factor or combine for further simplification.

Ezxample: Find the sum of p ?: ” and p ?1 7
The LCD is (2 4+ ¥) (z — y). Therefore,
2z + 2y _ _2x(z—y) + 2y(z + v)
z4+y "z—y (4+¥(E—y)  (@+y)(z—1y)
_ 2z(z—y) +2y(z + )
- (z+y)(z—y)
_ 22— 23y 2294 2)°
- (z+y)(z—1y)
2242
T (4 y)(z—y)
_ 2(x* 4 3%)
- z’_y’

b. Subtraction. To subtract two fractions having a common denominator, subtract the numerator
of the subtrahend from the numerator of the minuend and place the result over the common de-
nominator. If the denominators are different, find the LCD and subtract, as shown below.

8 9
2t 4 6z — 16 from 224+ Tz —18"
The LCD is (z — 2)(z + 8)(z + 9). Therefore,
9 8
*+ 7z —18  at 4 6z — 16
_ 9(x + 8) 8(z + 9)
T (x—2)(z+8)(z+9)  (z—2)(z+8)(z+9)
_ 9=z+8)—8(x+9)
T (z2—2)(z48)(z+9)
_ 9z r—8x—12
T (2—2)(z+8)(z+9)

Ezample: Subtract

F 4
(z—2)(z 4+ 8)(x+9)



68. Multiplication and Division of Algebraic Fractions

a. Multiplication. The process of multiplication of algebraic fractions is the same as in arith-
metic. The product of two or more fractions is the product of the numerators divided by the

product of the denominators. The operation may be simplified by dividing common factors in the
numerator and denominator by the same factor.

. 6atd 21zy

Ezxample 1: Multiply Tz by 54aib °
The first numerator and the second denominator are divisible by 6atd; the first de-
nominator and the second numerator are divisible by 7z. Therefore:

1 Szy
Satb | Aoty  Say
e 216 T 4
1 4
. at 4 2ab 4 b* at — 2ab 4 b®
Ezxzample 2: Multiply 5 —0b by e+ b
a*+2ab4+ b a*—2ab4 b2 _ (a4 b)(at+d) (a—0b)(a—b)
a—b * a+4b - a—b>b ‘ a+b
1 1
_ LaAb)(a 4 b)(a—=b) (a —b)
- 1 1
= (a 4+ b)(a — D)
= at— bt

b. Division. To divide algebraic fractions, multiply the dividend by the reciprocal of the

divisor. Thus, to divide by z, multiply by the reciprocal of z, that is % In other words, invert the
divisor and proceed as in multiplication.

L miesa. 20 4 2b at — b2
Ezxample 1: Divide 2 —3 by %2 —6"
20+20  a*—b 22420  2a—6
a—3 ~ 2a—6 ~ a—38 at — bt
1 1
_ 2aiby | 2(a—BY
- a8 _(o¥r(a—D)
1 1
_2-2
“a—b>
__4
“a—>b

2—2—86 24 2—12
22— 25 by 22—2z—20°
$2—2z2—6  224+2—12 2#—2—6  282—2—20

Exzample 2: Divide

22—25 = 2#2—2—20  22—26 2 4z—12
1 1 1
_k—37(z + 2) A Lo—TBJist)
_-(-o—l-‘GT(z-}-S) -(ﬂr"'mb-l'ﬁ')'
_z2+2
~z45




69. Review Problems—Algebrax Fractions i i

(6) ,
a. Changing Signs of Fractions. Solve for ¢e—5" 2¢—10

the unknown. " e, £
4248 z—9 ¢—dt’ c—d

1) —g——=—7F—=56 d. Addition and Subtraction of Fractions
z—2 1 Perform the indicated operations.
@ =F==3 (1)l+1+3
r+4 r—2 _
(4) 4z — 8 4 4+ 6 -9
6z 8z (3) W + -6.47_1!'-
Tt+2 _
®=5—=3 @ i+ 5
z2—4  22—08 _ —
65—+~ g =3 5y X =2 2e—d
2r4+8 8r42
7 — =92 (r4+1)(r—38 (r—2)(r+8)
()72 ; ‘5 1 ©® T — J"‘ "+ 2r—18
z — z—
@ ==—+"7F =3 M 8y—3
b. Equivalent Fractions. Supply missing (8) a4+ b a—>b
terms. a—b  a+d
4 _ 1 16
1_21 8t—2t 2t—8t
@ =% 10 =@ — T
8) —— = ! e. Multiplication and Division of Fractions
r—s ’; —s Perform the indicated operations.
e—s _ 1 2
W T =3 @ 35 -3
I1—6 _ ? 3 a¢
®) =3 = T—Ha—9 @ 5 "5
(6) Change L i into an equivalent frac- (8) Szt | Tyt
R 49z 9zm
tion of which the denominator is 2* R. . ”
(7) Change E%f_c into an equivalent frac- “ (-———)(r— s

20" —bay —3y', 8249y

tion of which the denominator is 2I* R. (5) 7 — oyt 102% + b2y
¢. Lowest Common Denominator. Reduce to a—>b a4+ b
equivalent fractions having an LCD. (6) a* + 2ab + b* o — 2ab 4 O*
i 11 ot — bt
R' R r al
1 z .1
(2) a+1' a—1 ) 8z + %
b ¢ 5ba?
®) 57 37 (8) ——Sb
vy _ ¥ 12a=t . Sat
@2 re ©®) 20w  Tutv
2 3 3) . 2
®) % 77 (10) (e+2—;)-=-(c+1—‘)



Section VI. EXPONENTS AND RADICALS

70. General

Chapter 4 presents exponents and roots con-
sisting only of whole numbers. However, to use
exponents and radicals to solve many equations
and formulas, a knowledge of additional opera-
tions is required.

71. Fractional Exponents

a. General. A fractional exponent is merely
another way of expressing the root of a number.
For example, the cube root of z usually is writ-
ten Wz; however, it also can be written zi.
Similarly, \/2 also can be written 2.

b. Application. Fractional exponents have a
practical value in simplifying algebraic prob-
lems. They follow the same rules as exponents

that consist of integers, and can be added, sub-
tracted, multiplied, or divided in the same way;
thus
at-at=al+t=qa'=q,and at -
ad+i+i=ql =a.

at - al =

In other words, at! is one of two equal factors of
a or the square root of a, and al is two of three
equal factors of a or the square cube root of a;
therefore, at ='\/a and o} = ¥al.

¢. Changing from Radical Form to Exponen-
tial Form. To change a radical expression to
exponential form, remove the radical sign and
annex a fractional exponent to the radicand
(number under the radical sign). The numera-
tor of the fractional exponent is the power of
the radicand, and the denominator is the index
of the root.

Ezample 1: Change ¥af to exponential form and simplify.

V& =

(a’)}

Multiplying exponents and simplifying:

(a’)% = a’

L 2 1
t=ag'=a'=Va

Therefore, ¥al = \/a
Ezample 2: Change \¥/8a?b? to exponential form and simplify.

VIR = YR = @i =2 ' T

d. Changing from Ezxponential Form to
Radieal Form. To change an expression with a
fraction exponent to a radical form, make the
base of the fractional exponent the radicand,
the numerator of the exponent the power of
the radicand, and the denominator of the ex-
ponent the index of the root.

Ezample 1: Change 4i to radical form.
4 =1
Example 2: Change 3! to radical form.
3B=v8=v9
Ezample 3: Change (5atdb)? to radical form.
(5atd)t = /(Ga®b)?
= ¥/28a'b
72. Simplification of Radicals

a. Removing a Factor from the Radicand.
The form in which a radical expression is writ-

323
= 2%’ = 2‘¢x'b1 =2b (a’)’ = 2b Wa?

ten may be changed without altering its numeri-
cal value. Sometimes there is a question as to
what actually is the simplest form for an ex-
pression. For instance, consider the simplifica-
tion of an expression such as \/1250: /1260 =
V2B = 5%/2 = 26\/2. The expression 25\/2
usually is accepted as being simpler than
\V/1250. As a general rule, the fewer the factors
under the radical sign, the simpler the expres-
gion. Thus, a radicand may be separated into
two factors, one of which is the greater power
whose root can be taken. The root of this factor
may then be written as the coefficient of a radi-
cal of which the other factor is the radicand.
Ezample 1: Simplify /50.
VB0 = V252
V2. V2
=6\/2



)

Ezample 2: Simplify /32a"%.
VEZTH = (20T

818
= 2¢a‘d*
= 2424giaibl
= 2a /2a%D?
b. Rationalizing Denominator. Rationalizing
a denominator containing a radical means to
eliminate the radical in the denominator. For

example, to rationaliza the expression-é—l/g. first
change the denominator into an expression

having a fractional exponent; thus, —1— — %;

then multiply the denominator by a number
that will make its exponent equal to 1. This
operation eliminates the radical sign below the
line. In this case, 2! is such a factor; thus
21 - 21 = 2! = 2, Such multiplication can be per-

formed without changing the value of the frac- .

tion if the numerator also is multiplied by the
1
same number; thus 2% < 3T = 5

Finally, changing the numerator into radical
YF _ v .
form, 5 =5 Therefore, to rationalize a

denominator, multiply both the numerator and
the denominator by a number that will make the
exponent in the denominator equal to 1; then
simplify the radicand in the numerator. The
examples below illustrate the method of ration-
alizing a few different types of denominators.

Ezxample 1: Rationalize -l;
87
4 L
1_1 8 _3 v
3-:' 35 35 3 3
1
Ezample 2: Rationalize =.
V4.

First simplify \/8.
VB=\VT3=v3=2-2

1_ 1 2. _ V2
VB =T 2.3 4

1
Ezample 3: Rationalize =.
Vi
Here the square root in the de-
nominator is being multiplied by

itself, making the number a per-
fect square .
MV

\/7\/7\/7\/7\/77

¢. Practical Application. The processes of
the simplication of radicals and rationalization
of denominators are useful when computing
decimals. It is necessary to know, however,
that \/2 = 1.414, /3 = 1.782, etc. For example,

consider the problem of evaluating — 7

of evaluating this problem is to divide 1 by
1.414, This evaluation is a long-division problem
of some length, however. A much more simple

way is to rationalize—thus -1 = ﬁ, and

vZ
dividing 1.414 by 2 gives the result, 0.707

One way

73. Addition and Subtraction of Radicals

As discussed in paragraph 270, terms that
are alike in all respects, except for their co-
efficients, are called similar terms. Similarly,
radicals that have the same index and the same
radicand and differ only in their coefficients are
called similar radicals. For example, —5\/3,
2\/3, and \/3 are similar radicals. Similar
radicals may be added or subtracted in the same
way that similar terms are added and sub-
tracted. - However, if the radicands are not alike
and cannot be reduced to a common radicand,
they are dissimilar and addition and subtrac-
tion can only be indicated; thus to add or sub-
tract radicals, reduce them to their simplest
form, then combine similar radicals, and indi-
cate the addition or subtraction of dissimilar
radicals.



Ezample 1: Perform the indicated operations.
4/8 —5V8 — /6 + 10/8 = 8\/8

Ezample 2: Add.

ViG + fE 4 VB = 45 + 1V + Ve

_ 16
=3

Ezample 3: Perform the indicated operations.
VIO — Y7 + VEIR = YT — rir + VT

= ()0 —4(4r)} + (4r)}
— VT — r T+ VT
= W (2—-7’)

Ezample 4: Perform the indicated operations.
[ ] ]

74. Multiplication of Radicals

=2V8+ §VE—¢B

=28+ 8V/8—8
—4/8

6. Radicals With Same Indezes. Radicals can be multiplied and combined under the same radi-
cal sign even though they differ in value, provided the index of the radicals are the same. To
multiply a radical expression when radicals are of the same order, first multiply the coefficients,
then multiply the radicands, and then simplify, if possible. For example, 2\/3 - 8\/8 = 6v/16. If-
the radicand is a perfect square, simplify the result by extracting the square root. Remember
that there are two square roots, one positive and one negative; thus, 6\/3  4\/8 = 24,/0 = 24(=
8) = +72. When polynomial expressions, either or both of which involve radicals, are to be mul-
tiplied, proceed in the same manner as with literal polynominal expressions (par. 48). For example,

V8 +2v8) X (VE—2VB) =

Vi + 28
V3—2v8

Vo + 2v1B
—2\/18 — 4/28
\V4 ] — 425 = 8 — 4(=8)
= +8 +20
=8 +20 or —3 +20
= *+17 or +23

Ezample 1: Multiply 2 ¥/3a, 5 ¥4a, and 8 ¥18a.
2¥3 - 6% -8 ¥Y1Ba=2-5-8 %3z ¥a - ¥18a

= 80 ¥/216a’
=80 : 6a
= 180a

Ezample 2: Multiply /8% and V4i%s.
VBB - WAls = /32

=22 T
= 2t ¢20s




b. Radicals With Different Indexes. To
multiply radicals when the indexes are different,
first express them as radicals with a common
index (or common fractional exponent) and
proceed as in a above, The common index is
the lowest common multiple of the indexes of
the original radicals.

Ezample 1: Multiply \/2 - 4.

V2 -Vi=2-¥B
1 2
=22
3 4
= 26.2¢
1
= 2¢
s 1
=26.2¢
1
=2 -280r2¢2
Ezample 2: Multiply ¥4z - /823,
Yz - /B2 =Y ({dz)? -~ (82T
='l3‘ . B .
=~2/217 . 2
=~ -zt .-z
=2z\¥Y2% . z
=2x\’/3‘2z—

75. Division of Radicals

a. Monomial Radical Expressions. The di-
vision of radicals is essentially the opposite of
multiplication. When radicals are of the same
order, the division of two radicals may be ex-
pressed under one radical sign—for example,

3\% = = \/2. When radicals are of
different orders, they must be expressed as
radicals having the same index or be changed
to fractional exponents.

Ezample 1: Divide \/T8 by \/5.
FE
Ezample 2: gge _\?’5‘5 :/% V.
= ;/-”—,
=z
Ezample $: Divide \/35 by \/1B.
=V
- %\/ﬂ

Ezample 4: Divide \/4ab ¥Zab by<$/4a*b3.
Vab ¥2ab ~/(4ab)"Y(2aB)?

WB‘-\S’G‘E‘

= / o

= \/Fb_or (2‘b’)%
— 295

b. Binomial Expressions With Radical in
Divisor. When the divisor is a binomial in
which one or more of the terms contains a
square root, division is performed by first
rationalizing the divisor. Multiply the num-
erator and denominator of the fraction by the
denominator with the sign between the terms
changed; then simplify the numerator and the
denominator.

Ezample 1: Divide 3 by 4 + \/6.

8 38 44—\
4+V6 4+\V6 4—\/6
_ 3(4 —
="16—6
=3 -

10

4



Ezxample 2: Divide\/T + z — VI — zby V1 + =z + vi—z=z

Vitz—Vi=2z

vVi+z—vil—2z

VITE—\T—3

VIFz+VI—2

VIFz+VI—2

IFz—\I—2%

—(4z)—2/T—af4(1—2)
1l1+2)—(1—2)

_2—pI==
- 2z

1—\V1I—X
= z

76. Review Problems—Exponents and Radicals c. Express with fractional exponents.

a. Simplify. (1) Va¥
‘132 (2) Vo
(1) 23(2) (3) 6z Var
@) (& 4)
(3) V/BD (8) ¥5a%"
yT (6) ¥* ¥a?
O RVAT (7) 8 ¥%e
(5) VIBz —9 (8) 9-%47
WA (9) 8b-Yed®
v (10) ¥z — )t

(7 (:.,wus)‘s1 d. Simplify by removing suitable factors ‘

from radicand.

2
(8) (d%e!)* - 1) vIZ
64re\ 1 (2) V&3
(9) (T) (8) V&3zT
(10) (b)) (4) 2720
th radical si (5) \/60b%d®
b. Expr::ss with radical signs. (6) VAR
(1) 4 (7) 8\/63p%T
22 (8) 2dr2\/T08drs¥
(2) a%b? (9) 5a \/81a%b
3) 6-: (10) 16wz \/9Bwiziy¥z
1 e. Rationalize denominators.
(4) (8/)2 1) 1
(6) 6z \/150
(6) a':‘cx.s (2) \/E
L 2
@ SV
(8) (8 a%b?)? .
1 @ Yz
(9) (®ry + 3r.)2 ) 1 .
(10) 8(a0)t V3az \
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d

(10) \?‘_}3_
(i + 3)t
f. Simplify.

(1) 6v/T—3vE+2VE
(2) 6v/45 — 2\/20

3) = —‘/-8-—:—'-

@) 3+ /%

(5) /7ot + 7t /7“-

z 1y z—y
(6)’\/::%1; - \Iz-{-y.

(N VB +38VZ +5Vz

(8) 7va—4vb —2vb

9) 4VT—y+3VzFy—8vz—7y
(10) 8\/125a%Y + b\/20a¥ — /B00a%bY

g. Find product and simplify.

(1) 8V5 - 42
(2) 299 - 393

3
(4)
(6)
(6)
(7
(8)
(9)
(10)

4Ya’b7 - 2Yab¥
V&T - 2\/3

VA - /2Ny - Yy
2v/2pq%r - WVipg*rt - 3/Bpgh¥
(Va + Vb + Ve)r
a\/z(a\/az + z\/az + \/az)
VI— VI VI + /17
\’/m

h. Divide and simplify.

(1)
(2)
(8)
4)

6) ——5

(6)
(N
(8)
(9

(10)

2b — /T — 4b%

Section VIl. IMAGINARY AND COMPLEX NUMBERS

77. Imaginary Numbers

a. Indicated Square Root of Negative Num-

(1) In the study of roots to this point, only

the roots of positive numbers have
been considered. Sometimes a nega-
tive expression will appear under the
radical. Such an expression originally
was given the designation imaginary
number to distinguish it from real
numbers. In electricity and electron-
ics, however, so-called imaginary num-
bers are used for real physical calcula-
tions—the reactance of a large capaci-

(2)

tor or inductor must be calculated by
using this type of number.

In multiplication, when a real number
is multiplied by itself the result is al-
ways positive. For example, 4-5 - +5
= 25, and —5 - —5 = 25. Therefore,
any number raised to a power having
an‘even exponent will be positive be-
cause like signs are being multiplied.
However, this is not true for the in-
terpretation of an expression such as
v=73. Any negative number can be
regarded as the product of a positive
number of the same absolute value and
—1, and the square root of a negative

a



number can be written as the square root of a positive number times \/—T ; thus, /=9 =
V9 V=1 = 8\/=1, with \/—T being the imaginary number. Most mathematics texts
represent the imaginary number \/—1 by the letter i. However, the letter / or { means
current in electrical formulas; therefore, the letter 5, commonly called the operator §, is
used in electronics.

Ezample1: /=88 =\/(—D3W=\v/—T - /88 =v/—1 6=36

Ezample 2: \/—Z% =\/T—D2f=\/—1 - V2¥=\/—1 -2 =jZ

Ezample 8: —/—9af = —/(—1)9a? = —/—1 - \/Ba¥ = —/—1 - 8a = —j3a

b. Powers of Operator j. Imaginary numbers follow the fundamental laws of addition, subtrac-

tion, multiplication, and division. They also can be raised to a power; thus, 8 = f - § = —1(j) =
—j, and j¢ = j* - /# = —1(—1) = 1. The values of the powers of j are obtained as follows:
j3=j-j=\/:f°\/:f=—l;

Pp=F-i-i=vV=—T:vV=T: /=T= —1\/—T=—j;and
f=j-7-5-5=V=T-\V/=T - /T -vV=T=-—1 +—1=1;but
F=7-F-7-7-7=3%-7=7=+=1], and the whole cycle starts over again. Therefore, j*

can be eliminated as many times as it is contained in an expression, reducing the quantity to j, 5%,
or j* and getting its value from the following:

j=ji=vV—1
r=-—1
pP=—
=1
Example 1: Simplify 513,
M=-j=i=v=1
Example 2: Simplify 527,
M= -fp=p=—f=—v=I

¢. Addition and Subtraction of Imaginary Numbers. These numbers may be added or subtracted
in the same manner that any algebraic expression is added or subtracted (par. 44). Fil:lt change
the expression to the j form; then treat the j as any other letter in an algebraic expression.

Ezample 1: Add /=28, /=36, and \/=9.
V=25 + V=36 + V=9 = j5 +76 + j8 = j14
Ezample 2: Add 6\/'-_-?' + 5 vV=8 + 8\/—T18.
6v—2 + 5v/—J + 8y/—TI8 = /2 + /B + VB
=72+ -2)VE+4(8 - 3)VZ
= (§* 4+ " 4+ #M)V2
= jo/Z
Ezample 8: Subtract \/—84 from \/—38.
V-V = —p=—5
Ezample 4: Subtract 4,/—F from 6\/—1I8.
6/—I8 —4/=8 = j(6 - 8)\VE—j(4-2)\VZ
= (1 — )2
= j18/2




d. Multiplication of Simple Imaginary Numbers. When multiplying two imaginary numbers,.
remember that j* = —1, # = —j, and 54 = 1 (b above) ; then, proceed as with any problem in
multiplication (par. 45).

Ezample 1: Multiply \/—I8 and \/—I.
V=18 VA =§ p=8=(—1)8 =—8

Ezample 2: Multiply /=31, \/—25, and \/—19.
V=BI - \/=26 /=35 -5 j7= 7816 = (—7)8156 = —;815

e. Division of Single Imaginary Numbers. In the division of two simple imaginary numbers,
when both the dividend and divisor contain operator j, divide both by j and proceed as with ordi-
nary integers. If a § remains in the denominator, the denominator must be rationalized because
the j represents a radical expression. To rationalize, multiply both the numerator and denomi-

nator by the imaginary number.

Ezample 1: Divide \/—100 by v—16.

1
V=16 4
1
Example 2: Divide 12 by \/—6.
12__ 12 _ 12-58 128 _ 28 _ _ . 4
V= B iNEB-ivE me  —1
Ezample 8: Divide \/—8 by \/—4.
1
ﬂi:ﬂ:ﬂor.}_\ﬁ
v—4 72 2 2
1

Ezxample 4: Divide 6 by j.
6_6.7

i i 3 2 =

78. Complex Numbers

a. Operations With Complex Numbers. A
complex number is a real number united to an
imaginary number by a plus or minus sign;
thus, 10 — 556, z 4 jy, and R 4 jz are complex
numbers. Complex numbers are of great im-
portance in alternating-current electricity in
which many problems would be difficult to solve
without their use. A complex number expressed
in the form z 4 jy may be considered a bi-

~06 _ 16 _ _jg

nomial; thus, the addition, subtraction, multi-
plication, and division of complex numbers are
reduced to the corresponding operations with
binomials in which one term is real and the
other imaginary.

b. Addition and Subtraction of Complex
Numbers. To add or subtract complex numbers,
first combine the real parts, then combine the
imaginary parts, and write the results as a
binomial with the appropriate sign separating
the real and imaginary terms.

Exzample1: Add 8 + 55 and 6 — j.

B+78)+(6—5)=8+3j6+5—3j
=8 +j4
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Ezample 2: Add 6 4 \/—25 and 8\/—186.
(6 + V=25) + (8\/=18)=6 + 76 + (8 - j4)
=6 4 56 4 782
=6 4 737

Ezamples: Add 8 4 \/—IZ2 and 9 + \/—T5.
(8 + V—I2) + (9 + V/—TB) =8 + j2/F + 9 + j6/F
=17+ 1V/8

Ezample 4: Subtract 7 — j6 from 8 — j2.
(8—i2) — (71— j6) =83—3j2—T7+4j6
=—4 4 j4

Ezample 5: Subtract 2 — 8\/—4 from 10 4 \/—.
(10 + V=) — (2 —8v—) = (10 4 j2) — (2 —j6)
=104 j2—2 4 j6
=84 j80r8(1+j)
Ezample 6: Subtract 8 4+ 7\/—24 from 5 4 8\/—=5.
(5 +8vV=6) — (8 + TV=24) =5 + 786 — [8 + 7 (7 - 2)\/B]
=5+ 8\/6—8 — j14\/6
=2—j11\/6

¢. Multiplication of Complex Numbers. As in addition and subtraction, when complex numbers
are multiplied they are treated as ordinary binomials. Remember, however, that j2 = —1.

Ezample 1: Multiply 8 — ;6 by 4 + 2.

38 —j6
4 +72
12 — j24
+376 — j*12 . .
- = j12 — j18 — (—1) (12)
12—418—M2 _15__j18 412
=24 — ;18
Ezample 2: Multiply 8 — \/—5 by —2 4 \/—8.
8—i\B
—_2 14
—16 + j2\/B + j8\/8 — j%/30 = —16 + j2\/F + j8\/6 — (—1)VET
=—16 + 72/ + 78\/6 + /80
=—16 + /80 + 7(2/5 + 8\/6)

d. Divisio- of Complex Numbers. When dividing complex numbers, the denominator of the
expression in its fractional form must first be rationalized (par. 74). To obtain a real number as
a divisor, multiply both the numerator and denominator by the complex number of the denomi-
nator with its sign changed (called the conjugate of the. complex number). In carrying out the
multiplication, the radical expression is eliminated. Since ;2 = —1, the sign of the coefficient of
4% is changed; the complex number thus becomes a real number to combine with the other real
number in the denominator.
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Ezample 1: Divide3 + jd by 1 + j.
83+j4_38+44 1—§
1+5 147 1—j

—3+i—4
=5
84— (—1)4
- 1—(—1)
_3+j+4
2
1 . 1
=3 +7 -2—‘
Ezample 2: Divide 6 by 3 + \/—2.
6 __ 6 .3—iT
83+V=2 3432 3—jivVZ
- 6(3 —7/2)
3.+ iV2) 8 —iV?2)
18 — ]'6){2
T 9 —t2
_18—j6/T
- 11
79. Review Problems—Imaginary and Complex d. Multiply.
Numbers (1) 44+ /=Bl by2 4 /=19
a. Simplify the radical, using operator j. (2) 24 2y/—2by38 + 3=
(1) /=785 (3) 2—j3by2+ 58
(2) V=28 (4) (2—j3)2
(3) —/—64az? (5) (4 + 72 + 8 + j4)*
(4) —/=T00z%% (6) 4 — jTby 8 + 52
(5) _é () f+igby f +dg
I — (8) I+ jE by I — JE
b (jl)id (9) 8 —718 by 11 — ;12
(1) —47 + 17 and 68 + 792 (10) & + vV—T6by 7— =BT
(2) 27 — j11 and 14 —j11 e. Diyide.
(3) 123 — 5114 and —62 —;137 (1) 1by 8 4 72
(4) 44 + 717 and —47 (2) 6+jbyj

(6) 6 4+ 710 and j1
(6) 14 + 715 and —16 — 562

¢. Subtract.
(1) —69 + 7432 from 710 + ;61
(2) 14 — 7121 from 78 — ;7
(8) 84 — ;762 from 62 — ;47
(4) —74 — 720 from 81 — ;81
(6) —87 — 57 from 82 4 516
(6) —9 4 j from —j7

(8) 24 j8by8 —j4

(4) 4 +\/—Iby2 —\/=1
(5) z 4+ jyby z —jy

(6) 10by 1 4 52

(7) 8by 1 —j

(8) 8 +\/—28by4—\/—
(9) 6 — j2 by 4 — ;57

(10) I 4 jE by I — jE



Section Vlil. EQUATIONS

80. General

An equation is a statement of equality be-
tween two expressions. For example, 2 4+ y =
12,8z + 5 = 20, and 8 - 9 = 27 are equations;
therefore, all expressions separated by the
equality sign are equations, whether the expres-
sions are algebraic or arithmetical. The expres-
sion to the left of the equality sign is called the
left-hand member of the equation; the expres-
sion to the right of the equality sign is called
the right-hand member. Finding the values of
the unknown quantities of an algebraic equation
is known as solving the equation, and the
answer is called the solution. If only one un-
known is involved, the solution is also called the
root.

81. Solving Simple Equations

a. Adding Same Quantity to Both Members
of Equation. Equal quantities may be added to
both sides of an equation without changing the
equality.

Ezample 1: Solve the equation 2z — 4 =
7 for z.
z2—4="
z2—44+4=T7T+4
z=11
Ezample 2: Solve the equation z — 7 = 14
for z.
z—T=14
e—T4+7T=144+17
z =21

b. Subtracting Same Quantity From Both
Members of Equation. Equal quantities may be
subtracted from both sides of an equation.

Ezample 1: Solve the equation z 4+ 2 = §

for z.
z+2=5
24+2—2=05—2
z=38
Ezample 2: Solve the equation z 4 6 = 12
for z.
z4+5=12
z4+5—6=12—5
z="

e. Multiplying Both Members of Equation by
Same Quantity. Both sides of an equation can
be multiplied by the same quantity.

Ezample 1: Solve the equation% = b for z.
z
-i =35
z
-,' 1= 5§-8
z =15
Ezample 2: Solve the equation §+ -; =
4 for 2.
Multiply both sides of the equa-
tion by 9.
; b
z z
GD+G 1) =20
8242z = 36
4z = 86
z2 =09

d. Dividing Both Members of Equation by
Same Quantity. Both sides of an equation may

be divided by the same quantity.
Ezample 1: Solve the equation 8z = 12 for z.
8z =12
3 _12
8 — 38
z =4
Ezample 2: Solve the equation PV = RT for
T.
PV =RT
PV _ KT
T =
PV .
T =%

82. Solving More Difficult Equations

a. Transposition. The process of adding to or
subtracting from both members of an equation
(par. 81a and b) can be shortened by shifting a
term or terms from one side of the equation to
the other and changing the signs. This opera-
tion is called transposition.

Ezample 1: Solve the equation 6z +4 =2 —
16 for z.
6z +4=2z—16
62—z =—16—4
bz = —20
z=—4



Ezample 2: Solve the equation 8¢ — 7 =
2a 4 2 for a.

8 —7T=2a+2
a—2a=24+17

8a =9

a=3
b. Equations With Fractions. In solving a
fractional equation, first find the LCD and
multiply both members of the equation, term by
term; then perform the operations in paragraph

81 or a above.

Ezample 1: Solve the equation %-4-_; =10

for z.
z, z
-§+-~§=10
Szj:zz 10
5 =
5z _10
6 — 1
5z = 60
z =12
Ezample 2: Solve the equation -xT_l— =8
+ z for z.
z—1
3 =8+4=z
z—1 8+z
2 1
1(z—1) =2(3 4+ 2)
z—1=6+422
z—22 =641
—_— =17
z ="

Ezample 8: Solve the equation +
2 __4 forz z—2
z4+4 z2z—8 ’

2 2 4
z—2+z+4=z—3
2(z+4) 4+ 2(z—2)_ 4

(z—2)(x+4) ~— z2—38
2z +84+2r—4 4
(z—2)(zx+4)  x2—38

4z 4+ 4 __ 4
(z—2)(z+4)  z—3

4z + 4)(z —3) =4(z —2)(z 4+ 4)
4zt — 82 — 12 = 4(2? 4 22z — 8)
4zt — 8z — 12 = 42t 4 8z — 82
Ae® — 42 — 82 — 8z = —32 4 12

—16z = —20
16z = 20
’—m‘%_l
41
X = lr

83. Written Equations

Many practical problems are stated in words
and must be translated into symbols before the
rules of algebra can be applied. There are no

‘specific rules for the translation of a written

problem into an equation of numbers, signs, and
symbols. The following general suggestions may
be helpful in developing equations:

a. From the worded statement of the prob-
lem, select the unknown quantity (or one of the
unknown quantities) and represent it by a let-
ter, such as z. Write the expression, stating
exactly what z represents and the units in
which it is measured.

b. If there is more than one unknown quan-
tity in the problem, try to represent each un-
known in terms of the first unknown.

Ezxample 1: In simple problems, an equation may be written by an
almost direct translation into algebraic symbols; thus,
Seven times a certain voltage dlmlmshed by 3

———— N —

7 X

——

E 3

gives the same result as the voltage igcreased by 75,

v

Solving the:quation :

J A
v v ——

+ 75.

T7E —3 =E 4+ 756
7 —E=176+38

6E =178
E =13



Check: 7(13) —3 =18 4+ 76
91 —3=13+4+176
88 — 88

Ezample 2: A triangle has a perimeter of 30 inches. The longest side is
7 inches longer than the shortest side, and the third side is 6
inches longer than the shortest side. Find the length of the
three sides.

Let z = length of shortest side.
z + 7 = length of longest side.
z + 5 = length of third side.
24+ (x+6)+(x+7) =30

Solving the equation:
z+2+54+24+T7=30
3z + 12 =30
8z =380 — 12
3z =18

z = 6 = shortest side.
‘6 + 5 = 11 = third side.
6 + 7 = 18 = longest side.

84. Simultaneous Equations

a. Definition. Simultaneous equations are
two or more equations satisfied by the same sets
of values of the unknown quantities. They are
used to solve a problem with two or more un-
known quantities.

b. Example. Assume that the sum of two
numbers is 17, and that three times the first
number less two times the second number is
equal to 6. What are the numbers? In setting
up equations for this problem, let = equal the
first number and y equal the second number.
The first equation is z 4+ y = 17, and the second
equation is 3r — 2y = 6. This problem can be
solved in three ways: by substitution, by addi-
tion, or by subtraction. All three methods are
explained below.

(1) Substitution.
z4+y=1Torz=17T—y
Substitute 2 = 17 — ¥ in the second
equation:
3z —2y=6
3(17T—y)—2y=6
Remove the parentheses:
51 —8y—2y =6

Transpose:

—by = 6 — 51
—by = —45
by =46
yv=9

Substitute ¥y = 9 in the first equation
and solve for z:
z24+y=1Torxz+9=17
Transpose:
r=17T—9
z=28
(2) Addition.
z4+y=17
3z —2y =6
Before adding, change the y in the
first equation to 2y so that the y terms
drop out when added; thus, the first
equation must be multiplied by 2.
2z + x =34
3x—2§= 6
bz , =40
z= 8
Substitute £ = 8 in the first equation
and solve for y:
z4+y=1To0r8 4+y=17
y=17—8
v=29
(3) Subtraction.
Before subtracting, multiply the first

equation by 3 so that the z terms drop
out when subtracted.

3z 4 3y =51
3z —2y = 6

Subtract the second equation from the
first equation:
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4 8y =51

—38x42y=—6
by =46
yv=29

Substitute y = 9 in the first equation
and solve for z: Refer to (1) and (2)
above.

e. Additional Examples. If the coeflicients of
the unknowns differ (for example, 3z and z and
2y and 4y), multiply one or both equations to
establish equal coefficients for one of the un-
knowns (z or y).

Ezample 1: Solve for z and y if 83z + 2y =
Tand z 4 4y = 9.
8z 4+2y=17
z4+4y=9
Multiply the first equation by 2
so that 2y will become 4y:
6z +4y=14
z i 4! =9
Subtract the second equation
from the first equation:

6z + 4y =14
—_— — 4& =—9
5z =5b
z=1
Solve for y by substituting 2 =
1 in either equation.

Ezample 2: Solve for z and y if 2z 4 8y =
24 and 32z — 4y = 2.

2z 4+ 8y =24
z—4y= 2

Multiply the first equation by 4
to change 3y to 12y; multiply the
second equation by 8 to change
4y to 12y; then add the two

equations:
8z 4+ Ry = 96
92 — 120 = 6
172 = 102
z2=6

Solve for y by substituting z =
6 in either equation.

85. Solving Formulas

a. The Formula. A formula is a rule or law
that states a scientific relationship. It can be

AQGO S88A

expressed in an equation by using letters,
symbols, and constant terms. For example, a
formula in electricity (par. 184) states that the
voltage across any part of a circuit is equal to
the product of the current and resistance of that
part of the circuit. In formula form, this is
expressed as E = IR, where E is the voltage or
difference in potential expressed in volts, I is the
current expressed in amperes, and R is the
resistance expressed in ohmas.

b. Solving the Formula. To solve a formula,
perform the same operations on both members
of an equation until the desired unknown can be
isolated in one member of the equation. If the
numerical values for some variables are given,
substitute in the formula and solve for the un-
known as in any other equation.

Example 1: Solve the formula T =
12(D

——l——d) for D.

_12(D—4d)

- l

T— 12D l— 12d

Multiply both sides by I:
Tl = 12D — 12d

Transpose and change signs:
12D =Tl 4 12d

Divide both sides by 12:
D _T Vi
w2t
_n
D=15+4d

Ezample 2: Given the formula for electri-
cal power, = I!R, find the
value of P in watts when I =
15.4 amperes and R = 25.7 ohms.

P =DIR
Substituting the given numerical
values for I and R:
P = (15.4)% x 25.7
= 237.16 X 25.7
= 6,095 watts

Ezample 8: Given the formula for the total
resistance of two resistors in

T

parallel,
Ry = Enlﬁ-szz' solve for Rz in
ohms when



ohms, 8
— PaRs (5) 3R+ (2R—4) =6R —10(R—2)
= RAR 52 3+2
Substitute the given numerical 6 =+ 22 =—5——12
values for R, and R,: 5(2 — 2)
40 X 60 (7) —(62416) =62+ 21 ———5——
F= w0160 11y—18 , 1y 4+4 , 19y 48
2,400 (8) =+ s 4 S S =
= 7100 1 5y—254
= 24 ohms 287+
86. Review Problems—Equutions (9 = %5‘-
a. Solve fox: the unknown quantity in each of (10) (z—1)(z +1) + z(1 —z) = 4z(22
the following:
+1) —8z(z —2)
(1) y +12=15 )
1 d. Solve the following sets of simultaneous
2 2 g linear equations:
3) 0.638 = 58.55 (1) 6z2—2y =10 ‘
82— y= "1
(4) 472 — 17 = 2385 — 8Tz ) 6a + 16b — 69
(5) (6;(')m+§),— (11 — 15m) = 14m + 6o b — 14
6 z+ y= 8 3 z—8y=-—17
8z+4+2y= 1 2z + 6y =50
(7) a—8 = 0 (4) 6z—8y =20
ba —4b =11 3z 4+ 2y =—14
(8) Tz—b6y= 1 (5) 4z + y=18
bz4+ y=19 82 — b5y = —29
(9) dm—2n= 2
Sm+ n=14 (6)21+22322 30
(10) 8r — 98 =156 —
6r — Ts = 41 51—4—15+GZ=108
b. Solve the following formulas for the quan- 2
tity indicated: (7) 7+ y=1
(1) Fd = Wh ford 1
(2) vt = vt 4 2gh for g ;7 Tv=1
(3) F‘=—;’-afora (8) g.*.% =1
DN e, b _
(4)H_2534forN 5+2_—§
_ 225 Bl 5 2
(6) F ===r—forl @ +5 =—1
¢. Solve the following linear equations for the 3 +1_
unknown quantity : 2Ty = i
(1) 7(2z—6) —8 =10z + 10 (10) Solve for 7 and s:
(2) 10(z—2) —10(2—=z) =4z —40 (@ —b)r+ (a + b)s =at — b?
(3) 98¢ —94 =6.8a + .6 (a+4+b)r— (a—b)s =2adb
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¢. Solve the following problems:

(1) Three times a voltage (E') diminished
by 2 is equal to that voltage. What is
the voltage?

(2) The sum of two resistances in series is
R ohms. One resistance is 20 ohms.
Give the algebraic expression for the
other.

(8) If a certain voltage (E) is tripled and
the result is diminished by 220 volts,
the remainder is equal to the original
voltage. What is the voltage?

(4) When two resistors are connected in
series, the total resistance (R) is the
sum of the two resistances. If one re-
sistor is 25 ohms and the total resist-

ance is 100 ohms, what is the value of
the other resistor?

(58) The current (I) from a battery is
divided among three circuits. The first
circuit draws 20 milliamperes more
than the second circuit, and the second
circuit draws 20 milliamperes more
than the third circuit, If the total cur-
rent drawn is 240 milliamperes, what
is the current in each circuit?

(6) Solving by the formula I = 'IE? how

\much current (I) does an electric cir-
cuit having a resistance (R) of 20
ohms take if the voltage (E) is 110
volts?

Section IX. QUADRATIC EQUATIONS

87. General

A quadratic equation is one which can be re-
duced to the form az?® 4 bz 4 ¢ = 0 where a, b,
and ¢ are known and z is the unknown quantity.
In other words, a quadratic equation contains
the square of the.unknown quantity, such as z%,
but no higher power. For example, 322 4 5z —
2 = 0 and 2t — 4z 4 8 = 0 are quadratic equa-
tions. The form az® 4 bz 4 ¢ = 0 is called the
general quadratic equation.

88. Pure Quadratic Equations

A pure quadratic equation is obtained from
the general quadratic equation when b is equal
to zero and the middle term (bz) does not ap-
pear. The equation then becomes az? 4+ ¢ = 0.
The pure quadratic equation has two roots that
are equal in absolute value but have opposite
signs. As discussed in paragraph 49, all num-
bers have two square roots. The equation 2zt —
36 = 0 is a pure quadratic equation since there
are two numbers which, when substituted for
z, will satisfy the equation. Thus (+4-6) — 36 =
0 since 36 — 36 = 0; also, (—6)* — 86 = 0
since 36 — 36 = 0. Therefore, x = *6.

Ezample: Solve the equation 22 — § = 20

for z.
t—5=20
=25
z= =5

Check:
(x5)2—5=20
256 —65=20
20 = 20

89. Solution by Factoring

a. Quadratic equations are found in many
applications of even the simplest nature. For
example, suppose that a sheet of metal is to be
cut so that it has an area of 30 square inches,
and that the length of the piece will be 1 inch
longer than the width. With z representing the
unknown width and 2 +4 1 the unknown length,
z(z + 1) equals the area; therefore, the equa-
tion that must bé satisfied is z(z 4+ 1) = 80.
By performing the indicated multiplication and
subtracting 80 from each side, the equation now
can be written in the form of a quadratic equa-
tion,as 2z 4- 2 — 30 = 0.

b. To solve this equation, factor the left-hand
side into the equivalent equation: (z — 8) (z +
68) = 0. The product of two factors is zero if
either of the factors is zero (par. 58). Thus,
each factor is set equal to zero and solved for
the unknown. The equation is satisfled if + —
5 = 0 or z = 5. Note that the equation also is
satisfied if z + 6 = 0. This illustrates an im-
portant fact concerning quadratic equations:
Every quadratic equation has two solutions.
Only one solution, however, may be appropriate
when quadratic equations are used to solve



actual problems. The quadratic equation only
gives two possible solutions—the actual solution
must be determined by referring to the facts in
the original problem.

Ezample 1: Solve the equation z? — 2z =

0 for z.
2t —22 =0
Factoring:
z(z—2) =0
z=0
or z—2=0
z=2
Thus, 0 or 2 are the roots of the

equation 22 — 22 = 0.
Example 2: Solve the equation 222 — 3z —

5 = 0 for z.
222 —3z—6=0
Factoring:
(2x—5)(zx+1)=0
80 z4+1=0
and r=—1
or 22 —56=0
22 =5
r 1
and x_gorzi

Thus, —1 and 2% are the roots

of the equation 222 — 3z — § =
0.

90. Solution by Completing the Square

In solving quadratic equations, the method of
factoring described in paragraph 89 usually is
best if the factors are immediately apparent by
inspection. When the values of the unknown are
not whole numbers or rational fractions, a quad-
ratic equation can be solved more easily by the
method of completing the square. This method
also is used to derive the quadratic formula
(par. 91). For example, to solve the equation
222 — x — 2 = 0 by completing the square, pro-
ceed as follows:

a. Transpose all terms involving z to the
left-hand side of the equation and all other
terms to the right-hand side. The equation is
now in the form 222 — x = 2, or 22 — Kz = 1.
When using this method, the coefficient of the
squared term must be unity (one).

b. Add a number to both sides of the equa-
tion so that the left-hand side will be a perfect
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trinomial square. To determine this number,
divide the coeflicient of the middle term (—14)
by 2 and square the resulting number.

z’—%x: 1

1 1 1
rt — E z + ﬁ =14 1—6-

¢. Replace the trinomial square on the left-
hand side of the equation with the square of a
binomial.

1
C—2"'=1%

d. Extract the square root of both sides of

the equation.

Thus,

91. The General Quadratic Equation

a. General. Another method of solving quad-
ratic equations consists of substitution in a
formula derived from the general quadratic
equation (b below). The general quadratic equa-
tion is in the form ax® 4 bz 4 ¢ = 0, and any
quadratic equation can be written in this form
(par. 87). Thus, in the equation 2r* 4 65r —
3=0,a=2b=5,and ¢ = —3. Similarly, in
the equation 922 — 25 = 0,a = 9, b = 0, and
c = —25.

b. Deriving Formula for Solving any Quad-
ratic Equation. Since the general quadratic
equation, ax?2 4+ bz 4+ ¢ = 0, represents any
quadratic equation, the roots of this equation
will represent the roots of any quadratic equa-
tion; then, if the general quadratic equation is
solved for the unknown values, the roots ob-
tained will serve as a formula for finding the
roots of any quadratic equation., The formula is
derived from the general form by the method of
completing the square; thus, given the general
equation axt 4 bz 4 ¢ = 0, proceed as follows:

(1) Divide through by the coefficient a.
bz ¢
zt 4 e + rie 0

(2) Subtract the term % from both sides
of the equation.




This operation prepares the equation
for the addition of a quantity to both
sides of the equation that will make
the left-hand side a perfect square.
This quantity is obtained by dividing
the coeflicient of the z term by 2, and
squaring the quotient. Since the co-

efficient of the z term is % , the quan-
tity to be added to both sides of the

. b bt
equation is (-2;)’, or el
(8) Add % to both sides of the equation.
bz b2 _ b ¢
Pt et W T w T

(4) Factor the left-hand side of the equa-
tion, and add the fraction on the right-
hand side.

b bt — dac
(z+5.)="—73m

(6) Take the square root of both sides of

the equation.

b
T+t = T 2a

(6) Subtract -2 from both sides of the
equation.
g b VB —dac
%a 2a

(7) Collect the terms on the right-hand
side of the equation.

—b = /b —4dac

2a
This equation is known as the gquad-
ratic formula. The two roots of any
quadratic equation can be obtained by
substituting in the formula the par-
ticular values of a, b, and c.

r =

92. Solution by the Quadratic Formula

In practical problems, pure quadratic equa-
tions (par. 88) are seldom found, and solution
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by factoring (par. 89) can be used only occa
sionally. However, any quadratic equation can
be solved by the method of completing the
square (par. 90)—the method used to derive the
quadratic formula (par. 91). This method is
unnecessary, however, when the values for a, b,
and ¢ for any quadratic equation can be substi-

tuted in the formula z = —b = VZaE — 4ac

Ezample 1: Solve the equation 22t —8z 4 8
= 0 by using the quadratic formula.

222 —6z4+3=0
a=2;b=—6;¢c=38

Substituting in the formula:
—_—b = —
x = %a
— =V =@ )3
z = (=6) = r} —_—
_8=xvI2
- 4
_8=\3
- 2
Thus, z = sﬁzé orz = 3;23&
Check: z = i’—‘%\@
xr = -3—-*-21—'@-2- = 2.366

Substituting in the equation:
2(2.366)2 —6(2.366) +3=0
11.20—14.20483=0
1420 — 1420 =0

a—

-= 2
z = 8—;.732 — 634

Substituting in the equation ;
2(.634)2—6(.634) +3=0
2(.40) —380+8=0
3.80 —380 =0



Ezample 2: Solve the equation 822 4 bz — 2
= 0 by using the quadratic formula.

822 462 —2=0
ea=8;b=56;c=—2
Substituting in the formula:
z = — b=t/ —Zac

= 2a
z_-s: — —
- @ ®)
_—=b6=1
_—T—
Thus, z = % orz = —2.
Check: x:%

Substituting in the equation:

() v (1) 2=

343 —2-0
1,6 o_
gtg—2=0
1 6 6
gt3—3="
6 6
3—3="0

= -—2
Substituting in the equation:
8(—2)t +6(—2)—2=0

12—10—2=0

12—12=0

93.. Character of the Roots
a. The values for unknowns that are not

whole numbers or rational fractions are called
trrational roots. A rational number is a number
which can be expressed as the ratio of two

integers. For example, 9, %., —;-, and \/16 are

rational numbers. Any whole number is rational
since it is the quotient of itself and unity; thus,
9 — % Numbers such as % and % are often
referred to as rationai fractions. A radical is
rational if it can be expressed as the quotient of

two whole numbers. Thus \/16 is rational since
VvVIie =4 = 1‘1- . A number such as \/3 which

cannot be written as the ratio of two whole
numbers is called irrational. Rational and irra-
tional numbers, taken together, make up the
system of real numbers. Any number, such as
8 + /3, which contains a radical sign that can-
not be removed also is considered irrational.
Roots of quadratic equations are real if a minus
sign does not occur under a radical. For exam-
ple, x = b is a real root—roots such as z =

i-:%\@or = 8—'-%3é are real, but irrational.

b. One important fact to be remembered
when using the quadratic formula is that the
expression under the radical sign, b* — d4aec,
must be regarded as a whole before the square
root can be taken. The quantity b* — 4ac is
called the discriminant of the quadratic equa-
tion. Many things can be learned about a quad-
ratic equation merely by inspecting the dis-
criminant. If the value of the discriminant is
positive, real roots will be obtained when the
equation is solved. These roots are either ra-
tional or irrational—rational when the dis-
criminant is a perfect square, irrational when
it is not. The roots are-equal only when the
value of b* — 4ac is zero. When b2 — 4ac is
negative, the square root will be that of a nega-
tive number and the roots will be imaginary.
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¢. In summary, a guadratic equation always
has two solutions. The solutions will be:

Real and equal______. if b2 - dac equals 0.

Unequal but real____. if b2 - 4 ac is positive.

Real and rational____. if b2 — 4ac is a perfect square.
Imaginary_____._____ if b2 - 4ac is negative.

94. Review Problems—Quadratic Equations

a. Solve by factoring.
(1) 222 48z =0
2) (z—4)z=0

38) (z+3)F =0

4) 224+ j2=0
(6) 222 — 128 =0
(6) z2—2=1
(7) 822 —256 =2
(8) 8z(z—2) +22(8—=z) =16
9) 2t —2—42=0
(10) 22— 13z + 12=10
b. Solve by completing the square.
(1) 22 4+32—1=0
(2) »4+6y—10=0
(3) E*—4E +1=0
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(4) 2E* +-8E —8=0
(6) 8H* —8H =5

(6) 5L — 5 =2L*—10L
(7) 14r* —28r—42=0

8 5 —2-2
9 r—56=2y

(10) 82t —82 =8

¢. Solve by using the quadratic formula.

(1) a*+23+1=0
(2) 122 —6+y=0
(8) 0 =1+ 5E + SE?
(4) 62 +1—12=0
(5) 2¢t +4c—6=0
(6) 16R* = 22R + 5

(7) 2;2 =1—-2

(8 riz =1+ rf-3
o EEE =2t

10 0=6— 533 + 53T



CHAPTER 6
GRAPHS

Section |. BASIC CHARACTERISTICS OF GRAPHS

95. General

A graph is a pictorial representation of the
relation between two or more quantities. In
many instances, problems are more clearly
understood when solved graphically than when
solved by other methods. Numerical data taken
from an experiment or calculations derived
from a formula require interpretation, and a
curve on a graph depicting such data will pro-
vide a picture that shows at a glance how one
factor or function depends on another.

96. The Number Line

a. In figure 15, on a straight line of indeter-
minate length, a point 0 has been chosen from
which to measure distances. The point 0 is
called the origin. A unit of measurement also
has been chosen, and positive and negative in-
tegers have been marked off and labeled. The
usual choice for a positive direction is shown
by the arrow. On the number line, Z, corre-
sponds to —4, Z, corresponds to 3}, and Z,
corresponds to 5.2.

b. Consider a number z as corresponding to
a point a distance of z units from 0. If z is
positive, the point will be in the direction of
the arrow from 0; if z is negative, the point
will be in the opposite direction from 0. The
relative size of two numbers is indicated graph-
ically by the relative positions on the number

4 -3 -2 - T 442 43 44
1] llllL

-G-l
R I L B P4

+35 +6
>

h
2,

o 1 2
W= UNIT OF MEASUREMENT

TM884-21

Figure 15. The number line.

line of points corresponding to the two num-
bers. For example, if z is greater than w, the
point corresponding to z will be to the right
of the point corresponding to w; if = is less
than w, the point corresponding to 2 will he to
the left of the point corresponding to w. The
number of units from the origin to the point
representing a certain number, regardless of
direction, is the absolute value (par. 85) of the
number.

97. Rectangular Coordinates

a. In the preceding paragraph, a relation-
ship was given between numbers and points
on a straight line. A similar relationship can
be established between a pair of numbers and
a point on a plane. In figure 16, two number
lines are drawn perpendicular to each other
at their origins for form a set of axes. The
horizontal axis is commonly called the z axis;

Y AXIS
'}
8(-8,8) .
re—————— -
| B A(3,8)
| T
o . 1
| R
| ——3 '
[} [}
H -2 '
| |
-6 -5 -4 -3 -2 -1=—! '
' =1 2 3 4 5 &
1
' PP R 4
0(s,-2)
: o -3 g n
| S, ==
C(-4,-4)
-8
- @
TME84-22

Figure 16. Rectangular coordinates.
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the vertical axis is commonly called the y axis.
Any point on the plane can be located with
reference to the two axes: It must lie a certain
number of units to the left (negative) or to
the right (positive) of the y axis; and it must
lie a certain number of units above (positive)
or below (negative) the z-axis. To locate a
point with reference to the set of axes, it is
necessary only to know the z value and the y
value of the point. These two values are known
as the coordinates of the point. The z value,
called the abscissa, is written first; the y value,
called the ordinate, follows. The two numbers
are separated by a comma and are usually in-
closed in parentheses. Thus, in figure 16, the
correct notation for the coordinates at point A
is (8,5), because the z value is 3 and the y
value 5.

b. The axes divide the graph into four sec-
tions, or quadrants, identified by the Roman
numerals I, II, III, and IV in figure 16. The
signs of the abscissa and the ordinate in each
of the quadrants are given in the chart below.

Quadrant Abecissa Ordinate

1
11
111
v

+1 1+
| ++

98. Plotting Points

The procedure for locating points by their
coordinates is called plotting the points. To
plot the point D (5, —2) in figure 16, for ex-
ample, erect a perpendicular on the z axis five
units to the right of the y axis; then erect a
perpendicular to the y axis two units below the

z axis; the point of intersection of these two
perpendiculars is the point D (5,—2).

99. Review Problems—Plotting Points
a. Plot each of the following points and state
the quadrant, if any, in which each lies:
(1) (42)
(2) (4,—2)
3) (—1,3)
(4) (6,—1)
(5) (3,0)
(6) (0,—3)
(7) (~—16,—27)
(8) (84,4%)
(9) (6.6,—6.5)
b. Plot the points in the following chart and

connect them by straight segments in the order
of increasing values of z:

z | —8| —2|~1| 0 | 1 | 2 3| 4

¥ 18 8 2|1 0 2 18 | 32

¢. Plot the points in the following chart and
sketch a smooth curve passing through them
in the order of increasing values of z:

z | —8| —2 | —1 2 | 3

]
0 l 1
8 7

v |—811 8| & 7]17

[]

d. If y = 2z — 3, plot the points for which
z=421,0 —1, —2, and —4 after finding
the corresponding values of .

e. Draw the triangle of which the vertices
are (—2’6)' (8'2), and (0,'-3)0

f. Draw the quadrilateral of which the ver-
tices, connected in the order given, are (1,3),
(—'3v4)' (——2,—5). and (3,—2).

Section ll. GRAPHING EQUATIONS

100. Graphing Linear Equations

a. General. An equation in the first degree
in two unknowns is called a linear equation
since its graph is a straight line. For example,
z24+y=52x+4+y=12 and z — 6y = 6 are
linear equations. An equation is said to be of
the first degree in two unknowns if only the
first power of either unknown is involved and
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if neither of the unknowns appears in a denomi-
nator.

b. Plotting Graphs of Linear Equations.
(1) The first step in plotting the graph of
a linear equation (or of any other
equation or formula) is to set up a
table of values for both unknowns that
will satisfy the equation. In the equa-
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(2)

tion 2 4+ y = b, for example, it is
apparent that there are a number of
values for z and y that will satisfy the
equation. For any number assigned
to z, there is a corresponding number
for y which will satisfy the equation.
Consider that 4 and —4 will be the
maximum plus and minus values for 2.
Using the values 4, 8, 2, 1, 0, —1, —2,
—3, and —4 for z, the equation is
solved for y at each value of z. These
are arranged in tabular form as
shown on figure 17.

Each of these pairs of values gives a
point on a graph. Consider each of
the corresponding points as coordi-
nates—the value of z the abscissa and
the value of y the ordinate. The line
joining these points (fig. 17) is the
graph of the equation z 4 y = 5. Note
that the coordinates for any two
points are sufficient to determine its
graph. Therefore, plotting the coordi-
nates for any two points is sufficient
to determine the graph of a first de-
gree equation, Plotting a third point,
however, will serve as a check, for if
the three points are not on the same
straight line, one of them is in error.

) X4ysl
x|s]3]2]i o}t }2]-3]-4]
yli]2]3[e]s]e]7]s]0]

(-49)
-3,8)
2,7)
£1,8)

TME4-23

FMigure 17. Graph of linear equation.

101. Graphical Solution of Simultaneous Linear
Equations

a. When two independent linear equations
contain the same two related unknowns, there
will be an unlimited number of solutions for
each equation. However, there can be only one
set of values that will satisfy both equations.
Determining the one set of values is known as
the simultaneous solution of the two independ-
ent equations.

b. Graphically, the two equations can be
solved simultaneously by plotting them on the
same graph and locating their point of inter-
section (if there is one). For example, consider
the graphical solution of the equations 8z — 2y
= 0 and 3z 4 2y = 6. Selecting 6 and —6 as
the maximum plus and minus values for z and
using z = 4 as a checkpoint, the coordinates for
both equations are determined. For the equa-
tion 8z — 2y = 0, these coordinates are (6,9),
(4,6), and (—6,—9); for the equation 3z +
2y = 6, (6,—6), (4,—3), and (—86,12). These
coordinates are plotted on an axis and a line
is drawn joining the plotted points of each
equation (fig. 18). The graphs of the two in-
dependent linear equation cross at point P,
where z = 1 and y = 1.5. To check the graph-
ical solution of the equations, substitute these
values for z and y in the original equations.
Since they satisfy both equation, the graphical
solution is correct.

¢. If two dependent equations are plotted on
a graph, their lines will coincide. For example,
the equations z + y = 4 and 2z 4+ 2y = 8

4

3x+2vie (0,9 %7270 3X-2Y10

(4,0) Xjejaj-¢

P(1,1.8)

g 3X+2Vs@
(423
Xje|ej-¢
l6,-¢) v [-o]-3] 12

TME84-24

Figure 18. Graphieal solution of simultaneous
linear equations.
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o, 1004 X4Ysa
x[e]a]s
v |-2[ o]0

N\ oo

- 2X +2v:8
X+Y24 (8,-2)
AND X|e|a|-s
X +2Y:0
Y |-2jo |0
TME84e-25

Figure 19. Graph of dependent simultaneous
linear equations.

are dependent, since they can be reduced to
identical forms. Selecting the same plus and
minus values for x and the same checkpoint as
in b above, the coordinates for both equations
are found to be (6,—2), (4,0), and (—8,10).
Plotted on a graph, both equations form a sin-
gle line (fig. 19).

d. Simultaneous equations that have no com-
mon solution are called inconsistent. No solu-
tion is possible for the equations z + y = 8
and z 4 y = 5, because there are no values for
z and ¥ which, when added together to make 3,
will also equal 5, Using 6 and —6 as maximum
plus and minus values for z, and using z = 4
as a checkpoint, the coordinates for equation
z 4+ y = 3 are found to be (6,—3), (4,—1),
and (—6,9); the coordinates for x + ¥y = 6
are (6,—1), (4,1), and (—86,11). Plotted on a
graph, these equations form parallel lines (fig.
20).

102. Graphing Quadratic Equations

a. The Dependent Variable. In graphing a
quadratic equation, only two values, or points,
for plotting the equation can be obtained by
finding the roots of the equation (par. 88).
These values do not give a complete picture
of the equation. To get a continuous graph, a
dependent variable is introduced. This vari-
able, usually identified by the letter y, gets its
name from the fact that it depends on another
quantity for its value. For example, in the
equation y = 22 — 6z 4 5, the value of y de-
pends on the value of z; therefore, y is a de-
pendent variable. The quantity on which y de-
pends is called the tndependent variable. A
more accurate designation for the dependent
variable is f(x), meaning function of x. Using
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Figure 20. Graph of inconsistent simultaneous
linear equations.

this designation, the equation given above
would be written f(z) = 22 — 6z + 5. If the
independent variable in the equation were z,
the equation would be written f(z) =
## — 6z 4 6.

b. Graphical Solution of Quadratic Equa-
tions. In the original equation f(z) =
2 — 6z 4 5, di™erent values are substituted
for the unknown to find the corresponding
values of the function ; thus if z equals —1, the
equation becomes f(—1) = (—1) — 6(—1) +
5 = 12; if z equals zero, the equation becomes
f(0) =0—0 4 8 = 5; if z equals 1, the equa-
tions becomes f(1) = (1)t — 6(1) 4+ b6 = 0,
ete. Compile a table of enough values to make it
possible to plot the equation, as shown in figure
21. The graph of the function crosses the z-
axis at two points, 1 and 5, which give a graph-
ical solution of the equation 22 — 6z 4+ 5§ = 0.
The equation also may be solved by factoring,
as follows:

(x—1) (z—6)=0
z—1=0andz2—5=0
z=1landz=2"56

Thus, the solutions or the roots of the equation
are obtained when f(z) = 0. These roots repre-
sent the points where the graph of f(z) =
z? — 6z 4 b crosses the z-axis.

¢. Properties of Functions. In addition to

the original equation, f(z) = 2 — 6z 4 5, con-
sider three equations that differ in one respect
—their constant terms are not the same. For
example:

f(z) =22 — 6z 4 8

f(z) =22 —62 4+ 9

f(z) = 2t — 62 4+ 12

()]
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Figure 21. Graph of function of guadratic equation.

The graphs of the four corresponding functions
have interesting properties and can be studied
more advantageously when plotted on the same
graph, as shown in figure 22.

(1) The function of 22 — 6z 4 5§ crosses
the horizontal or z-axis at two points,
1 and 6. These points indicate that
the roots of the equation are,z = 1
and z = 5. To compare this informa-
tion with the discussion on quadratic
equations in chapter 5, the discrimi-
nant of the equation must be investi-
gated. The discriminate of
22 — 62z 4 b6 is (b* — dac) =
(36 —4-1-5) =86 — 20 = 16.
Referring to the summary of the
character of roots in paragraph 98,
the roots are real and rational. To
prove this, substitute the value of the
discriminant in the quadratic formula.

—b + /B —dac

z = %
z_—(—e):\/ﬂ

- 2

_6+4 6—4
z_-—2 = bor 3 =1

Thus, the discriminant is a perfect
square and the roots are real and ra-

(b* — 4ac) = (36 — 4 - 2 - 2) =
36 — 382 — 4. Thus, the discriminant
is a perfect square and will give real
and rational roots.

(3) The function of 22 — 6z + 9 touches

the z-axis at only one point, 3. Thus,
both roots of the equation are z = 8.
Calculating the discriminant,
(bt —4dac) = (86 — 4 - 9) = 0, which
indicates that the roots are real and
equal. Check the graph of this equa-
tion (fig. 22) ; it will be seen that the
curve just touches the z-axis at one
point. Thus, the root x — 8 must be
counted twice and may be called a
double root.

(4) The equation f(x) — 2 — 6z + 12

has a discriminant equal to (36 — 4 -
12) or —12. Solving for the roots of
this equation,
z = ﬁ—Ezﬂ =3+ \/j

This is imaginary, but the meaning
becomes apparent when the graph of
the function of the equation is in-
spected. The plot does not cross the
z-axis and, therefore, both roots must

tional. be imaginary.
(2) The function of 2zt — oz + 8 crosses d. Minimum Value of a Quadratic.
the horizontal axis at 2 and 4, indicat- (1) The minimum value of a quadratic

ing that the rootsarez = 2and z = 4.
Calculating the discriminant,

function will occur at z = —%b when
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Figure 22. Properties of functions.
the general quadratic equation f(x) = axt 4 bxt ¢
ezt 4+ bz + ¢ = y (par. 91) defines _ (—b)\? 5 —b
the coefficients a and b. This relation = a(ﬁ) + (W) toe
can be checked by calculating the b2 be b:  2b2
value of z at which the minimum =% et =g~ t°¢
value of the function 2* — 6z + 5 —p
occurs and comparing this calculated = o + c

value with the plot of the equation
(fig. 21 or 22). Thus,

xr = W = — ?(-1—)- = i = 9,

and the minimum value of the func-
tion 22 — 6z + 5 occurs at z = 3.
Checking the graph verifies this state-
ment. The minimum value of the
functions z* — 6z + 8, 22 — 6z + 9,
and 22 — 6z + 12 also occurs at z = 3.

To find the value of the function
at the minimum point, substitute for

. The minimum occurs at z = —;;b;
therefore, substitute = for z in the

2a
funetion of the general quadratic
equation.

Thus, to find the value of the function
f(x) = 22 — 6z + 5 at the minimum
point:

—b —36

2
f(z) =—4a + c 2—4 + 6=
—94+5=—4

This method can be used to find the
minimum value of the function if the
value of z at which the minimum oc-
curs is not known. However if it is
known that the minimum value occurs
at 2 = 3, merely substitute this value
for z in the original equation.

f(x) = 22—6x+5
=9—6-3+5
= 14 —18
f(z)min = —4



(8) Note that in all cases where the word b. Plot the graphs of the following sets of
minimum is used, the word mazimum  simultaneous equations:
is applicable if the equation y =f(z) 1) 2 3y =12
is such that its graph has a maximum (1) 2z + 3y

instead of a minimum. If the equation 8z—y=17
were f(z) = 8 + 62 — z%, the minus @2)z+y=9
sign preceding the term z® would in- bz +y=117
dicate that the curve has a maximum. (8) z + by =22
e. Practical Application. The methods of 8z —2y =2
analysis presented in ¢ and d above can be used (4) 82 —2y =0
for some very important relationships in ap- z—6y=18
plied electricity and electronics. It may be used,
for example, to find the load resistance of a (6) 6z + 2y = 12
circuit in terms of the circuit components nec- v+2y=10
essary to obtain maximum power transfer 6) z—2y=0
(par. 216). y=14z
103. Review Problems—Graphs c¢. Find the roots of the following quadratic
a. Plot the graphs of the following linear S1u2tions to the nearest tenth by plotting their
equations: graphs:
(1) 2z2—6=y 1) »—2y—2=0
(2) 6—2z =y 2) z2*—14+2=0
8) y =562 8) 9—1s
(4) 8z +2y =18 (4) 2*—224+2=0
(6) 6z — 6y = 20 (6) 2*—b5z2+8=0
(6) 8z4+y+14=0 (6) 10 —8z —22=0
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CHAPTER 7
POWERS OF 10

104. General

The technique of using powers of 10 can
greatly simplify mathematical calculations. A
number containing many zeros to the right or
to the left of the decimal point can be dealt with
much more readily when put in the form of
powers of 10, For example, .0000037 X
.000021 can be handled more easily when put
in the form 3.7 X 10— X 2.1 X 105,

105. Table of Powers of 10

The table below gives some of the values of
the powers of 10. In a whole number, the ex-
ponent is positive and equals the number of
zeros following the 1; in decimals, the exponent
is negative and equals one more than the num-
ber of zeros immediately following the decimal

point.

106. Expressing Numbers in Scientific Notation

Any number written as the product of an
integral power of 10 and a number between
1 and 10 is said to be expressed in scientific
notation.

Ezample 1: 81,000,000 = 8.1 X 10,000,000 =
8.1 X 107

Ezample 2: 600,000,000 = 6 X 100,000,000
=6 X 10*

Ezample $: .000,000,000,9 = 9 X .000,000,-
000,1 = 9 x 10 —w0

107. Addition and Subtraction of Numbers in
Scientific Notation

Numbers expressed in scientific notation can
only be added or subtracted if the powers of 10
are the same. For example, 3 X 105 can be added
to 2 X 10% to get 5 X 10%; however, 3 X 10%
cannot be added to 2 X 108 because the powers
of 10 are not the same. The number 8 X 102
can be changed to 30 X 105 however, and it
can then be added to 2 ) 10% to obtain 32 X 108,
The answers to problems solved by using scien-
tific notation can be left in the exponential
form. In the examples below, however, the an-
swers are converted to the decimal form to aid
in understanding this technique.

450,000 + 763,000 = 45 X 104 4 76.3 X 10¢

121.3 X 10¢
1,213,000

Ezxample 2: Add .000,068,25 and .000,007,54.

.000,068,25 + .000,007,54

6825 X 10—* 4 754 x 10—
7579 x 10—
.000,075,79

Ezxample 8: Subtract .000,004,33 from .000,05.

.000,05 — .000,004,33

5000 x 10—* — 433 x 10—
4567 X 10—
.000,045,67

Number Power of 10 Number Power of 10

000001 10—¢ ' 1 100
00001 108 10 101
0001 10— 100 102
001 103 1,000 103
01 10—2 10,000 104
1 101 100,000 108

1,000,000 108

Example 1: Add 450,000 and 763,000.
AGO $88A
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108. Multiplication of Numbers in Scientific Notation

The general rules covering the multiplication of radicals (par. 74) also apply in the multiplica-
tion of numbers that are expressed in scientific notation.

Ezxample 1: Multiply 100,000 by 1,000.
100,000 X 1,000 = 10® X 10® = 10%+3 = 10® = 100,000,000
Ezxample 2: Multiply 25,000 by 5,000.
25,000 X 5,000 = 2.5 X 104 X 5 X 102 = 2.6 X 5 X 104+3
= 12.5 x 107
= 125,000,000
Example 8: Multiply 1,800, .000015, 300, and .0048.
1,800 X .000015 x 300 x .0048
1.3 X 108 X 1.5 % 10—5 X 3 X 10t X 4.8 X 108
1.8 % 1.5 X 8 X 4.8 X 10%-8+2—3
38.88 x 10—
.03888

109. Division of Numbers in Scientific Notatior

The general rules covering the division of radicals (par. 75) also apply in the division of num-
bers that are expressed in scientific notation.

Ezample 1: Divide 75,000 by .0005.
'f{‘,z,%? = '5’5XX1;2: = 7?5 X 10%+¢ = 15 X 107 = 150,000,000

Ezxample 2: Divide 14,400,000 by 1,200,000.
14,400,000 _ 144 X 10* _ 144
1,200,000 — 12 x 108 — 12
Ezample 8: Divide 98,100 by .0025, 180, and 1,090,000.

98,100
0025 x 180 x 1,090,000

= 12

_ 9.81 X 10¢

— 2.5 X 10— % 1.8 X 102 XX 1.09 x 10¢
_ 9.81 X 104

— 2.5 % 1.8 X 1.09 X 10—3+2+6

9.81 X 10¢

4.905 x 10®

2 X 10—

2

110. Finding the Power or Root of a Number in Scientific Notation
The general rules covering powers and roots (pars. 71 and 72) also apply to numbers expressed
in scientific notation.

Ezxzample 1: Find the square root of 144,000,000.

= 12 X 103
= 12,000
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Ezample 2: Find the cube root of .000,008.
V000,008 = 8 X 10—
= 2% 103
= .02
Ezample 8: Square 15,000.
(15,000)2 = (15 X 10%)*
= 225 X 10¢
= 225,000,000

Ezample 4:

Find the square root of (160,000)3.

¥160,000° = (160,000)%2
= (16 X 10¢)%2

Ezxample 5:

\/ 3, 560 000 —

111. Review Problems—Powers of 10

In the following problems, leave the answer
in powers of ten:

a. Convert the following numbers to powers
of 10 and add:
(1) 1,245,000 4 368,000
(2) 79,000 4 421,000
(3) .000,007,66 + .000,054
b. Convert the following numbers to powers
of 10 and subtract:
(1) 333,400 — 22,500
(2) .00C,068 — .000,049
(3) .000,004,89 — .000,000,398
¢. Convert the following numbers to powers
of 10 and multiply :
(1) 446,000 x 200

AGO 588A

64 X 10¢
64,00Q,000

86,900

Find the square root of g&3050.

8.69 X 10¢

3.56 X 10
V24T X 101
1.56 X 10—
156

(2) 7,700 x .003,2
(3) .000,096 x .000,33
(4) .003,66 X 4,000,000
d. Convert the following numbers to powers
of 10 and divide:
(1) 668,000 — 4,000
(2) 88.445,000 — .000,55
(3) .000,963 — .000,009
(4) .006,93 — 21
e. Convert the following numbers to powers
of 10 and perform the indicated operations:
(1) /64,000,000
(2) +/.000,169
(3) .0032
(4) 27,0002



CHAPTER 8
LOGARITHMS

112. General

Many lengthy mathematical operations may
be accomplished more easily through the use of
logarithms. With logarithms (also called logs),
multiplication of numbers is reduced to a simple
process of addition, division becomes a process
of subtraction, raising a number to a power
becomes simple multiplication, and extraction
of roots is done by simple division.

113. Definition

The logarithm of a given number is the
power to which another number (called the
base) must be raised to equal the given number.
The word “logarithm” has the same meaning
as the word “exponent.”

Ezxample: Find the logarithm of 1,000 to
the base 10.
From the definition, the loga-
rithm of a number (1,000) is the
power (z) to which another
number called the base (10)
must be raised to equal the given
number (1,000).
Thus, 10= = 1,000. Since 10* =

1,000, then:
10 = 102 and by inspec-
tion:
r =38

Therefore, the logarithm of
1,000 to the base 10 equals 3 or
log,, 1,000 = 3.

114. Types of Logarithms

a. Common Logarithms. Common loga-
rithms use the number 10 as a base. They are
so universally used that the 10 usually is
omitted; the answer in paragraph 113 could
be log 1,000 = 3. Some values of common loga-
rithms are included in the table below. The
common loga~‘hm of any number between

these values consists of the logarithm of the
smaller number plus a decimal. For example,
the log of a number between 100 and 1,000,
such as 157, consists of the log of the smaller
number (10) plus a decimal. The log of 167
is 2.1959.

log 1 =0 log .1 = -1
log 10 =1 log 01 =-—2
log100 =2 log .001 = —3
log 1,000 =3 log .0001 = —4
log 10,000 = 4

b. Natural Logarithms. Natural logarithms
are based upon the irrational number e, and are
written both as log., and In. Natural loga-
rithms are used in special applications and as
such are not explained further in this text.

115. Parts of Logarithms

a. Logarithms are divided into two parts,
the integral and the decimal. The integral part
is known as the characteristic, and the decimal
part is called the mantissa.

(1) The characteristic of any number is
one less than the number of digits to
the left of the decimal point. Thus, the
characteristic for the number 8 is 1 —
1 or zero, since there is one number
to the left of the decimal point. The
characteristic for 30, with two num-
bers to the left of the decimal point,
is 2 — 1 or 1. Similarly, the character-
istic for 300 is 2, and the characteris-
tic for 3,000 is 3. The characteristic of
the log of a decimal is negative and is
based upon the position of the first
rational number to the right of the
decimal point. If there are no num-
bers to the left of the decimal point,
the characteristic is negative. In the
number .327, for example, the first

AGO BSA

~



rational number is in the first decimal
place and the characteristic is —1;
in the number .08, the first rational
number is in the second decimal place
and the characteristic is —2. Simi-
larly, the characteristic for .003 is —3,
and the characteristic for .0008 is
—a,

(2) The mantissa is always the same for
a given sequence of integers, regard-
less of where the decimal point ap-
pears among them. Thus, the man-
tissa is the same for 1570, 157, 15.7,
1.57, .157, and .0157, and the logs of
these numbers differ only in respect
to their characteristics. Their loga-

rithms, respectively, are 8.1959,
2.1959, 1.1959, 0.1959, —1.1959 and
—2.1959.

b. The mantissa is always positive—even
when the characteristic is negative. This fact
poses a problem of notation, and also compli-
cates the addition and subtraction of loga-
rithms.

(1) In the notation of logarithms, to say
that log .157 is —1.1959 is not strictly
true, for what we mean to say is —1
plus .1959. To overcome this problem,
the minus sign is generally written
above the characteristic, and is made
long enough to cover the entire nega-
tive portion of the logarithm. More
properly, therefore, log .157 is writ-
ten 1.1959.

(2) In the addition and subtraction of
logarithms, the complication can be
removed by expressing the negative
characteristic in a positive manner;
more precisely, by adding a large
enough number to the characteristic
and by subtracting the same number
from the entire logarithm. Thus, the
log of .157 is written 9.1959-10, and
the log of .0157 is written 8.1959—10.

116. Finding a Logarithm

A table of common logarithms is given in
appendix III. Note, however, that the table
contains only the mantissas of logarithms. The
characteristic must be obtained, in each in-
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stance, by following the rules given in para-
graph 115a(1).

Ezample 1: Find the logarithm of 333.

Determine the characteristic of
333. The characteristic is 3 —1,
or 2.

Determine the mantissa of 333.
In the table of common loga-
rithms, look down the N col-
umn for the number 33. The
mantissa for 338 is in this
horizontal row in the column
headed by the number 3. The
mantissa is .5224.

Log 333 = 2.5224.

Ezample 2: Find the logarithm of .127.

Determine the characteristic of
.127. The characteristic is —1

Determine the mantissa of .127.
In the table of common loga-
rithms, look down the N col-
umn for 12. The mantissa for
127 is in this horizontal row
in the column headed by the
number 7. The mantissa is
.1038.

Log .127 = 9.1038—10.

117. Logarithmic Interpolation

The table of common logarithms given in
appendix III is adequate if the given number
has three or less integers. If it has four or
more integers, however, it is necessary to in-
terpolate—that is, to find the proportional part
of the difference between the logarithms shown
in the table.

Ezxample 1: Find the logarithm of 2.369.

Step 1. The characteristic of 2.369 is 0.
Since the mantissa for this num-
ber cannot be found in the table,
it is necessary to interpolate.
Look for the mantissas of the
numbers next lower and higher
than 2369. The mantissa of the
number 2360 is .3729 and the
mantissa of the number 2870 is
3747. Since 2369 lies between
2360 and 2370, the mantissa of

69



Step 2.

Step 3.

Step 4.

Example 2:
Step 1.

Step 2.

2869 must lie between .3729 and
.3747. This may be written:

log 2860 = .3729
log 2869 = 8729 + =z
log 2870 = .3747

Set up the proportions. The dif-
ference between 2369 and 2360
is 9. The difference between
2870 and 2360 is 10. Therefore,

the desired mantissa is 395 of

the difference between these
two. Let the difference between
the mantissa of 2369 and 2360
equal z. The difference between
3747 and .3729 is .0018. The

_ z
proportion is 0018

Solve the problem.
9 _ _=z
10 — .0018
10z = .0162
z = .0016

Since the value of z is .0016, the
mantissa of 2369 is .3729
.0016 or .3745. Therefore, log
2.369 = 0.3745.

Find the logarithm of .017234.

The characteristic of .017234 is
—~2o0r8 ________ —10. The
numbers in the table lower and
higher than 17234 are 17200 and
17300. The mantissa of 17200
is .2355; the mantissa of 17300
is .2880. The difference between
17284 and 17200 is 84; the dif-
ference between 17300 and
17200 is 100; the difference be-
tween .2380 and .2355 is .0025.
This may be written:

log 17200 = .2855

log 17234 = .2355 + =

log 17300 = .2380
Let the difference between the
mantissas of 17284 and 17200
equal . The equation is as fol-
lows:

84 =
100 — .0025
100 = .0850
z = .00085 = .0009

Step 8.

Since the value of z is .0009, the
mantissa of 17234 is .2856 <+
0009 or .2364. Therefore, log
017284 = 8.2364—10.

118. Reading Antilogarithms

The process of finding the antilogarithm (also
called antilog), consists of determining the
number from which the logarithm was derived.
This process is essentially the reverse of finding
the logarithm (par. 116). Consequently, the
location of the decimal point is determined
from the characteristicc and the numerical
value of the number is determined from the

mantissa.

Example 1:
Step 1.

Step 2.

Step 3.

Ezxample 2.
Step 1.

Step 2.

Step 3.

Find the antilog of 1.8954.

Since the characteristic of the
logarithm is 1, there will be two
digits to the left of the decimal
point in the number.

Look in the table for the man-
tissa, .8954. The number given
for .8954 is 786.

Count off two digits from the
left and insert the decimal point.
The antilog of 1.8954 is 78.6.

Find the antilog of 7.0828—10.

Since the characteristic of the
logarithm is —3, the first sig-
nificant figure will be .in the
third decimal place.

Look for the mantissa .0828 in
the table. The number given for
0828 is 121.

Add two zeros to the right of the
decimal point and before the
first significant figure. Thus,
the antilog of 7.0828—10 is
.0021.

119. Antilogarithmic Interpolation

If the mantissa of a logarithm does not ap-
pear in the table, it is necessary to interpolate.

Example 1:
Step 1.

Step 2.

Find the antilog of 2.7654.
Since the characteristic of the
logarithm is 2, there will be
three digits to the left of the
decimal point in the number.
The mantissa in the table lower
than .7654 is .7649. The num-
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Step 8.

Step 4.

Step 6.

Step 6.

Ezample 2:

Step 1.

Step 2.

Step 8.

Step 4.

ber with .7649 as a mantissa is
582.

The mantissa higher than .7654
is .7657. The number with .7657
as a mantissa is 583.

Set up the proportions. The dif-
ference between .7654 and .7649
is .0005; the difference between
7657 and .7649 is .0008. The
.0005
.0008

The difference between

proportional difference is gz

or 2
8

583 and 582 is 1. This can be
written:

antilog .7649 — 582

antilog .7654 = 582 4 z

antilog .7657 = 588
Iet z equal the difference be-
tween the number represented
by the mantissa .7654 and the
number 582. The equation is as
follows:

5_«
8 1
8 =5
r = .625

The number is 582 4 .625. Since
there are three digits to the left
of the decimal point, the antilog
of 2.7654 is 582.625.

Find the antilog of 6.7166—10.

Since the characteristic of the
logarithm is —4, the first ra-
tional number will be in the
fourth decimal place.

The mantissa in the table lower
than .8166 is .8162; the number
with .8162 as a mnatissa is 655.
The mantissa in the table higher
than .8166 is .8169; the number
with .8169 as a mantissa is 656.
The difference between .8162
and .8166 is .0004 ; the difference
between .8169 and .8162 is
.0007. The proportional dif-
ference is :—g%‘i or 3. The dif.
ference between 656 and 655 is
1. This may be written:

Step 5.

Step 6.

antilog .8162 = 655

antilog .8166 = 655 4 =

antilog .8169 = 656
Let x equal the difference be-
tween the number represented
by the mantissa .8166 and the
number 655. The equation is as
follows:

4 _ =z
771
Tz = 4
z = .57

The number is 6565 + .57. Since
the first rational figure is in the
fourth decimal place, the antilog
of 6.7166—10 is .00065557.

120. Addition and Subtraction of Logarithms

Logarithms are added and subtracted arith-
metically. Since every mantissa is positive
(par. 115b), however, every negative charac-
teristic should be expressed as a posiitve (par.

115b).
E‘xample 1:

Ezample 2:

Example 8:

Ezxample 4:

Add the logarithms 3.7493 and
2.4036.
3.7493
+2.4036
_ 6.1529

Add the logarithms 3.4287 and
6.3982.

3.4287
+4.3982—10

7.8269—10

Add the logarithms 8.9324—10,
7.2812—10, 5.4138—10, and
9.9918—10.

8.9324—10

7.2812—10

5.4138—10
4+ 9.9918—10

31.6192—40
—(30 —30)

1.6192—10

Subtract the logarithm 9.1245
from the logarithm 6.3058.

To subtract a larger logarithm
from a smaller logarithm, add
10 or a multiple of 10 to the
smaller logarithm, and subtract
the same number from the loga-
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rithm by writing that number
with a minus sign to the right
of the logarithm. The number
chosen for this purpose should
be the least that will cause the
smaller logarithm to exceed the
larger.
16.3058—10
— 9.1245
7.18183—10

Ezample 5: Subtract the logarithm 8.7980—
10 from 2.8686. When subtract-
ing a negative logarithm from
a positive logarithm, where that
part of the characteristic of the
negative logarithm to the left of
the mantissa is larger than the
characteristic . of the positive
logarithm, add 10 or a multiple
of 10 to the characteristic of the
positive logarithm, and subtract
that same amount from the
right of the positive logarithm.
12.8686—10

3.7980—10

T9.0706

121. Multiplication by Use of Logarithms

The logarithm of the product of two numbers
is equal to the sum of the logarithms of the
numbers. Thus, log (2 X 6) = log 2 + log 6;
and log (12 X 8) = log 12 + log 8.

Ezxample 1: Multiply 68.2 by 40.8 by using

logarithms.
log (68.2 X 40.8) = log 68.2 4
log 40.8.
log 68.2 — 1.8338
log 40.8 = 1.6107
log (68.2 X 40.8) = 3.4445
antilog .4440 = 278
antilog .4445 = 278 + =z
antilog .4455 = 279
5 _=z
16 — 1
16r = 5
r = .33
antilog .4446 — 2788
68.2 X 40.8 = 2,783

Ezample 2: Find the product of 2.11 and
41.3 by using logarithms.

log (2.11 X 41.3) = log 2.11 4

log 41.3.
log 2.11 = 0.8248
log 41.3 = 1.6160
log (2.11 X 41.3) = 1.9403
antilog .9400 — 871
antilog 9408 = 871 + «
antilog .9405 = 872
$_=z
6§ 1
5z = 8
z = .6
antilog 1.9403 — 87.16
2.11 x 413 = 87.16

122. Division by Use of Logarithms

The logarithm of the quotient of two num-
bers is equal to the difference between the loga-
rithms of the numbers. Thus, log (75 — 83) =
log 756 — log 83, and log (8 =— 2) = log 8
— log 2.

Ezample 1: Divide 785 by 829 by using loga-

rithms.
log (786 < 829) = log 7856 —
log 329.
log 7856 = 2.8949
log 329 = 2.5172
log (786 — 829) = 0.8777
antilog .3766 — 238
antilog 3777 = 238 4+
antilog .3784 = 289
11 =z
18— 1
18z = 11
r = .611
antilog 0.8777 = 2.386
785 — 329 = 2.386

Ezxample 2: Find the value of % by using

logarithms.

log 3 =log3 —log 7.

log 8 = 0.4771

log 7 = 0.8451

Since the logarithm of 7 is
greater than the logarithm of 3,
it is necessary to add 10. ______
—10 to the logarithm of 3 before
subtracting the logarithm of 7.

AQO 838A
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log 8 = 10.4771—10
log 7T = 0.8451
log (8 = 7) = 9.6320—10
antilog .6314 — 428
antilog .6320 = 428 4 z
antilog .63256 = 429
8 _z
1~ 1
11z = 6
z = .56
antilog 9.6320—10 = .42855
8 =— 7 = .42855

123. Finding the Power of a Number by Loga-
rithms

The logarithm of a number raised to a power
is equal to the logarithm of the number multi-
plied by the power.

Ezample 1: Evaluate (18.7)3.

log (18.7)% = 3 log 18.7
= 8 X 1.2718
= 3.8154
antilog .8149 = 653
antilog .8154 = 653 + x
antilog .8156 = 654
5_1z
771
Tx = b
z = .7
antilog 3.8154 = 6537
(18.7)% = 6,537

Ezxample 2: Evaluate (.03625)4.

log (.08625)¢ = 4 log .03625
log 3620 = .5587
log 3625 = 5587 4+ z
log 3630 = .5599
5 =z
10 — 0012
z = .0006
log (.03625)¢ = 4 (8.56593—10)
= 34.2372—40
(Subtract) 30.0000—30
= 4.2372—10
antilog .23556 = 172
antilog 2372 = 172 4 z
antilog .2380 = 173
17 _ =z
25 1
252z = 17
z = .68=.7

AGO 558A

antilog 4.2872—10 = .000001727
(.03625)¢ = .000001727

Ezxample 8: Evaluate (2.13)1.

log (2.13)! = § log 2.13
= § X 0.3284
= 0.2189
antilog .2175 = 165
antilog .2189 = 165 + =z
antilog .2201 = 166
4z
26 1
262 = 14
T =.
antilog 0.2189 = 1.655
(2.13) = 1.655

124. Finding the Root of a Number by Loga-
rithms

The logarithm of the root of a number is
equal to the logarithm of the number divided
by the root.

Ezample 1: Evaluate /34987.

log /34987

log 34900
log 34987
log 35000
87

100

100z

z

antilog .1335
antilog .1360
antilog .1367
25

32

32z

z

antilog 1.1360
3

log 76.24

log 7620
log 7624
log 7630
4
10

log 34987
4
5428
5428 + z
5441

- X
— .0013

.1131

.0011

4.5439
4

1.135975 = 1.1360

136

136 4+ z

137

x

1

25

.18

13.678

13.678

Ezample 2: Evaluate \/76.24.

log 76.24
3
.8820
8820 4 .
.8825

= -z _
— .0005
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10z = .0020

z = .0002

__ 1.8822
- 8

= 0.6274
antilog 0.6274 = 4.24
WV76.24 = 4.24

Example $: Evaluate \V.0073573.
log \/O0TSETS — log .0073573

- 3

log 73500 = .8663
log 73573 = .8663 + z

log 73600 = .8669

3 _ =

100 — .0006

100z = .0438

z = 0004
__ 1.8667—10

- 3

The quotient of 7.8667—10 di-

vided by 3 is 2.6222—3}. By

adding 20.0000—20 to 7.8667—

10, the sum, 27.8667—30, can be

divided by 3 and the quotient
will be a workable logarithm.
log .0073573 = 7.8667—10
add 20.0000—20
27.8667—30

27.8667—30

3 = 9.2889-—10
antilog .2878 = 194
antilog .2889 = 194 4 z
antilog .2900 = 195
n_z
22 T 1
22z = 11
= .
antilog 9.2889—10 = .1945
W.0073673 = .1945

125. Cologarithms

The cologarithms of a number is the loga-
rithm of the reciprocal of the number. For ex-

ample, colog N = log%,—. However,

log ILV = logl—1log N
=0—log N
log 1:,— = —logN
Therefore, colog N = log %: — log N. Thus

the cologarithm of a number is the logarithm
of the number subtracted from the logarithm
of 1 (0.0000 or, to avoid a negative mantissa,
10.0000—10).

Example 1: Evaluate the cologarithm of 378.

colog 373 = log 3—,17§

log 1 10.0000—10
log 373 = 2.5717
colog 373 = 7.4283—10

2.37
Ezxample 2: Evaluate 36l
log % = log 2.37 — log 3.61
= log 2.37 4 colog 3.61
log 1 = 10.0000—10
log 3.61 = 0.5575
colog 3.61 = 9.4425—10
log 2.37 = 0.3747
9.8172—10

antilog 9.8172—10 = .65643
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126. Computation by Logarithms

In performing logarithmic computations, follow the principles given in paragraphs 117 through
126. When negative quantities are involved (in multiplication and division), disregard the minus
sign when making logarithmic calculations. After calculating the antilog, the sign is determined
in accordance with the algebraic law of signs for multiplication and division.

T4 N¥ (00789)
Ezample 1: Evaluate \y m)— .

log (94.7)% = 2log 94.7
= 2 X 1.9768
= 8.9526
log (.00789) = 17.8971—10
log (94.7)% 4 log (.00789) = 11.8497—10 = 1.8497
log (8.71)* = 8log 38.71
= 8 X 0.5694
= 1.7082
log (.845) = 9.5878—10
log (8.71)% 4 log (.845) = 11.2460—10 = 1.2460
log (94.7)* (.00789) = 1.8497
1.2460
log (8.71)% (.845) = 0.6087
1 \y_zgymwm _ 0.6087
8 \/ (871)" (346) — 8
= .2012
antilog .2012 = 1.5892
Ezample 2: Evaluate ‘/ (6.484:% YT.867 .
(12.36)5 3007
log (6.484)% = 2log 6.484
= 2% 0.8118
= 1.6286
log Y/TEET = log 7:67
__ 0.8846
- 8
= 0.2949
log (6.484)* + log ¥/7.687 = 1.6286 4 .2949
= 1.9186
log (12.835)* = 2log 12.86
= 2% 1.0917
= 2.1834
log Y3007 = 1283007 §°°7
_ 8.4782
= 8
= 1.1594
log (12.37'8 4 log /3007 = 2.1834 4 1.1594
= 8.3428
log (6.484)% ¥/7.667 = 11.9185—10
8.3428
log (12.86)2 Y3007 = 8.5757—10
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log ‘/(6.484)" ¥T.661 _ 88.5757—40
(12.35)* /3007 4

= 9.6439—10
antilog 9.6439—10 = .4406

127. Review Problems—Logarithms
a. Find the logarithms of the following num-

(8) 149 =874
(4) 47.38 = 63.29

c.. Using logarithms, find the products of

the following to four significant figures:

bers to the base 10: (5) 1.06
(1) 786 435
(2) 8.87 . Using logarithms, evaluate the following :
(3) .0345 (1) (.0298)¢
(4) .000476 (@) (1756)"
(5) 49.6 (3) (7.958)!
(6) 273.5 (4) (69.87)"
(7) 760.1 5) (27.98)%
(8) 7.234 bl
(9) .009875 (6) ¥.01325
(10) 00005254 g; \434

i, tI;;m:":md the antilogs of the following loga- ®) m" :.E 98
(1) 4.8457 (10) /000079911
(2) 2.4330 f. Using logarithms, compute the following:
(3) 9.545683—10 - 3.8 % 2.6
(4) 6.8299—10 43
(5) 0.6010 @) s/ BT X 413
(6) 2.5690 vV T 0157
(7) 5.4343—10 (8) 441182
(8) 5.6994 10.27 X .82
(9) 0.2018 (4) 35:21 X 4651
(10) 4.5872—10 46.82 % 6.280

® (am)

(1) 6.93 x 23.7 © 3 /(BT 20)%
(2) 186 X 215 \/ (31.42)3
(3) 643 X 214 ) /08162 X 1.988
(4) .089 X .076 \' 95.27
(5) 135 X 423 (8)
d. Using logarithms, find the quotients of 9327 61 52
the following to four significant figures: 9) 48.19 X \/5376.2
(1) 148 = 297 4316x\%'6'2'5x\/1'6'31
251
2) 848 (10 \/ 01234 X e’ 09156
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CHAPTER 9
PLANE GEOMETRY

128. Introduction

Plane geometry is that part of geometry
which deals with plane figures. In electronics,
as in many other fields, it is necessary to know
how to deal with areas of common plane figures.
This chapter presents the formulas for finding
the areas of triangles, quadrilaterals (plane
figures having four sides and four angles), and
circles. No effort has been made to cover the
entire field of geometry. Only those principles
and proofs are presented that are of value in
practical work.

129. Definitions

6. Lines. A line has length, but no width
or thickness. What is drawn on paper and
called a line has thickness and breadth because
of the material used to draw it—however, this
mark only represents the actual line.

b. Angles. An angle, such as ABC in A, fig-
ure 238, is formed by the intersection of two
lines. An angle, therefore, is the measure of
the difference in direction of two straight lines
that meet. The lines which form the angle, AB
or BC, are called the sides of the angle, and the
point of meeting, B, the vertex. The symbol
£ is used to indicate angles. Angles usually are
measured in degrees. A complete circle or rota-
tion consists of 360 degrees. The symbol ° is
used to indicate degrees; it is written to the
right and slightly above the number. For ex-
ample, 30 degrees is written 30°. Each degree
consists of 60 minutes, and each minute is
further broken down into 60 seconds. The sym-
bol ’/ is used to indicate minutes; the symbol ”
indicates seconds. For example, 20 minutes is
written 20’; 15 seconds is written 15”.

(1) When one straight line is perpendicu-
lar to another straight line, the angle
formed is a right angle (90°) (B, fig.
23).

-\

7

Figure 23. Angles.

(2) Two right angles, added together,
form a straight angle. A straight
angle, therefore, is an angle of 180°.

(8) Any angle less than a right angle is
an acute angle (C, fig. 23).

(4) Any angle greater than a right angle
and less than 180° is an obtuse angle
(D, fig. 23).

(5) Two angles whose sum is one right
angle are called complementary angles
(E, fig. 28).

{6) Two angles whose sum is a straight
angle are called supplementary angles
(F, fig. 28).
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130. Basic Principles of Geometric Construction

a. Reproducing Angles. To draw an angle
equal to a given angle BAC (fig. 24)—

(1) Draw a line, A’C".

(2) With A as the center, use a compass
to strike an arc that cuts the sides of
the given angle at X and Y. Using the
same radius, strike a similar are,
X'Y’, on the line, A’C'.

(3) Measure the opening of the given
angle by setting one point of the com-
pass at Y and the other at X. With
the compass at this distance and with
Y’ as the center, strike an arc as
shown in figure 24. This will cut the
first arc at point X”.

(4) Draw a line, A’B’, through X’. The
new angle, B’A’C’, is the same size as

angle BAC.
x~® x”®
.4(; ‘4@

TME84-30

Figure 24. Reproducing an angle.

b. Finding the Midpoint of a Straight Line
Segment. To find the midpoint of any straight
line segment, such as AB in figure 26—

(1) Use a radius greater than half the
length of AB. Using point A as the
center, draw arcs CD and C’D’. With
point B as the center, and using the
same radius, draw arcs EF and E'F".

(2) Draw a straight line to connect the
points where the arcs intersect. Point
X, where this line intersects AB, is
the midpoint of straight line segment
AB.

¢. Constructing a Perpendicular. To con-
struct a perpendicular to a straight line at a
given point—
(1) On the straight line, such as AB in
figure 26, mark point P at which the
perpendicular is to be constructed.

(2) Set a compass for a radius less than
the shorter of the two segments, AP

TME84-3I

Figure 25. Bisecting a straight line segment.

or PB. With P as a center, draw arcs,
cutting line AB at points X and Y.

(8) Set the compass for a radius greater
than PX. With X as a center, draw an
arc above point P (fig. 26). Keep the
compass at the same setting and, with
Y as a center, draw another arc in-
tersecting the one drawn with X as
a center. (The two arcs may be
drawn to intersect below point P in-
stead of above.)

(4) Draw a straight line from the point

where the two arcs intersect to point
P. The line is perpendicular to AB.

(58) To construct the perpendieular bi-
sector of a straight line segment, first
find the midpoint of the line segment
(b above), and construct the perpen-
dicular at that point.

TME84-32

Figure 26. Constructing a perpendicular to a straight
line at a point o the line.

d. Constructing a Perpendicular to a Straight
Line from a Point Not on the Line. To draw a
perpendicular to a straight line from a point
outside the line, such as point P in figure 27—

(1) With point P as the center, draw an
arc cutting line AB at points X and Y.

AGO S5sA
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Figure 87. Constructing a perpendicular to a straight
line from a point not on the line.

(2) Using a radius greater than one-half
the distance between X and Y and,
with points X and Y as centers, draw
arcs that intersect.

(3) Draw a straight line from point P,
through the point where the two arcs
intersect, to line AB. The line is per-
pendicular to AB.

e. Finding the Center of a Circle.

(1) Draw any two chords, such as AB
and AC in figure 28.

(2) Construct the perpendicular bisector
of each chord (¢ above). Point X,

where the two perpendicular bisectors
meet, is the center of the circle.

TME84-34

Figure 28. Finding the center of a circle.

f. Bisecting an Angle. Any angle, such as
angle CAB in figure 29, can be divided into two
equal angles. An angle, thus divided, is said
to be bisected. To bisect an angle—

(1) Using A as a center, draw an arc
cutting the sides of angle CAB at X
and Y.

(2) With X and Y as centers, draw inter-
secting arcs.

(8) Draw a straight line from A through
the point where the arcs intersect.
The line divides angles CAB into two

8
Aﬁv c

TME84-38

Figure 29. Biseoting an angle.

equal angles and is called the bisector
of angle CAB.

131. Triangles

a. General, A triangle is a plane figure
bounded by three straight lines. There are
several different kinds of triangles.

(1) An equilateral triangle (A, fig. 80)
has three equal sides and three equal
angles; each angle equals 60°.

(2) An tsosceles triangle has two equal

ALTITUDE
L
(4

—————

|
|

ALTITUDE

BASE
0

TME84 - 36

Figure 30. Triangles.



sides and two equal angles. The equal
angles are opposite the equal sides.

(3) A right triangle (B, fig. 30) has one
right angle.

(4) An oblique triangle (C and D, fig. 80)
is one that does not contain a right
angle. Thus, all except right triangles
are oblique triangles.

b. Base. The base of a triangle is the side
on which the triangle is supposed to stand.
However, any side of a triangle may be used
as the base.

¢. Altitude. The altitude is the perpendicular
line distance from the vertex of the triangle
to the base or the base extended. In B, figure
80, the altitude of a right triangle is shown, in
C, figure 80, the altitude of an acute triangle,
and in D, figure 80, the altitude of an obtuse
triangle. Note that in an obtuse triangle, it is
necessary to extend the base of the triangle to
find the altitude.

d. Area. The area of a triangle is the entire
surface within the perimeter.

e. Hypotenuse. The side opposite the right
angle of any right triangle is the hypotenuse
(B, fig. 80).

132. Law of Angles of Any Triangle

The sum of the angles of any triangle is
equal to 180°. When given any two of three
angles of a triangle, the third angle can be
found by subtracting the sum of the given
angles from 180°

Exzample 1:
If two angles of a triangle are 90° and 45°,
what is the size of the third angle?

90° 4 45° = 185°

180° — 1385° = 45°

Therefore, the third angle is 45°.

Ezample 2:

Angle A of triangle ABC is 100°; angle B is
80°. What is the size of angle C?

LA + LB + (C = 180°

LA = 100°
LB = 30°
LA+ (B = 130°
,LC = 180° —130°
.£.C = 50°

133. Law of Right Triangles

a. The Pythagorean Theorem. This theorem,
which applies to any right triangle, states that
the square of the hypotenuse 18 equal to the
sum of the squares of the other two sides. The
Pythagorean theorem is of prime importance
in trigonometry (ch. 10) since the value of one
side of a right triangle can be found if the
other two sides are known. Thus, in figure 81:

t=at+4 bor26=16+ 9
ad=ct—blorl16 =25 —9
b*=ct—ator9 =25—16

Ezxample 1: Find the hypotenuse of a right

triangle if the sides are 3 and 4
inches long, respectively.

a
bc /C=5
c2:z25
b=4
b2:=16 az+b2=c2
9+16 =25
TM684-37

Figure 31. The Pythagorean theorem.
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Ezample 2:

Ezample $8:

Ezample 4:

Nllu

&<

o % %%
© g
§g++

o
5
&
8

The nypotenuse of a right tri-
angle is 138 inches long and one
side is 5 inches long. Find the
length of the other side.

et = at 4 b
18t = 5® 4 b®
b* = 169 — 25
b = 144

b = \/m

b = 12 inches

Given the right triangle ABC
(fig. 81),find cifa = 7 and
b =8. 9 .22
¢t =at 4 b? V 8“1.66 00
ct =49 4 36 22
. + 182 400
ct =85 364
¢ =V8 1842 3600
c =9.22— 3684
Given the right triangle ABC
(fig. 31), find b if a = 9 and
c =12, 7.98
b! =ct—at \/g.-co_m
bt = 144 —81 9 _
149 1400

bt =63 1341
b =63 1588 ~ 5900
b =17.98+4 4749

Ezample 5: Given the right triangle ABC
(fig.81),finda if b = 6 and

¢ =18. 1 1.5 8
/01 33.00 00
at =ct—d? 1
at=169—36 21 33
21
a* =133 225 1200
- 1125
o =VIB .00 7500
a = 1153+ 6909

b. Special Right Triangles. The two right
triangles in examples 1 and 2 of a above are
special right triangles with sides that have
whole numbers. These triangles are called the
83-4-5 right triangle and the 5-12-13 right tri-
angle, although their sides may also be mul-
tiples of these numbers. For example, a tri-
angle having sides of 6, 8, and 10 inches is also
a 3-4-5 right triangle, because its sides are
multiples of 8, 4, and 5. When determining the
unknown side of a right triangle, the process
is greatly simplified if the triangle is a 3—4-5
or 5-12-18 right triangle. In these cases, the
unknown side can often be determined by in-
spection.

Ezxample 1: The hypotenuse of a right tri-
angle is 15 inches long, and one
side is 12 inches long. Find the
other side.

Since 15 and 12 can be divided
by 3 to give 5 and 4, the tri-
angle is a 3-4-6 right tri-
angle. The third side, there-
fore, is equal to 3 times 8, or



9 inthes. The answer can be
checked by the Pythagorean
theorem.

Ezample 2: The two sides of a triangle are
10 and 24 feet long. Find the
length of the hypotenuse.

Dividing 10 and 24 by 2 gives
5 and 12, the two sides of a
6-12-13 right triangle. There-
fore, the hypotenuse is 2 times
18, or 26 inches.

134. Area of Any Triangle

The area of any triangle is equal to one-half
the product of its base and altitude. The for-
rula for finding the area is A = 5 where b

is the base of the triangle and A is the altitude.

Ezample 1:

What is the area of a trianele with a base of 15
inches and an altitude of 1: inches?

b
2
_ 16 X 10
=2
— 160
=72

= 76 square inches

A=

Ezxample 2:

Find the area of a right triangle if the base
measures 7 feet and the hypotenuse 25 feet.

=gt
et =26 — 7* = 625 —49
at = b76
a = /876 = 24 feet altitude
a=2
_ T Xx 24 168
- 2 - 2
= 84 square feet

135. Quadrilaterals

A quadrilateral is a plane figure bounded by
four straight lines.

a. A parallelogram (A, fig. 32) is a quadrilat-
eral having both pairs of opposite sides parallel.

b. A rectangle (B, fig. 32) is a parallelogram
that has four right angles.

¢. A square (C, fig. 32) is a rectangle, all
four sides of which are equal.

d. A trapezoid (D, fig. 32) is a quadrilateral

with two sides (called bases) parallel and un-
equal.

136. Area of Any Parallelogram

The area of any parallelogram is equal to the
product of the base by the altitude. The for-
mula for finding the area is A = bk where b
is the base and A is the height or altitude.

Ezxample 1: Find the area of a square, each
side of which is 15 inches.

A = bh
=16 X 16
= 225 square inches

Example 2: What is the area of a rectangle
with a base of 12 inches and an
altitude of 7 inches?

A = bh
12 X 7
= 84 square inches *

137. Area of Trapezoid

The area of a trapezoid is determined by
multiplying one-half the sum of the bases by
the altitude of the trapezoid.

Thus, A = (B—'zi'—b)h
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Figure 82. Quadrilaterals.

Ezample: Find the area of a trapezoid the
bases of which are 16 and 10
inches long and the altitude is
8 inches.

A= (-B—-sz)h
_ (16 + 10)8
- 2

4
-2—6
=3 X#

104 square inches

138. Circles

a. General. A circle is a plane figure bounded
by a closed curve, every point of which is equi-
distant from the center.

b. Circumference. The circumference is the
curved line that bounds a circle (A, fig. 33).

¢. Chord. A chord is'» straight line drawn
through a circle and terminated at its intersec-
tions with the circumference (B, fig. 88).

d. Diameter. The diameter of a circle is a
chord that passes through the center of the
circle (A, fig. 33).

e. Radius. The radius of a circle is a straight
line from the center to a point on the circum-
ference (A, fig. 33). All radii of the same circle
are of equal length, one-half of the diameter.

f. Arc. An arc is any part of the circumfer-
ence of a circle.

g. Segment. A segment is that area of a
circle bounded by a chord and the arc subtended
by that chord (C, fig. 88).

R. Sector. A sector is the area between an
arc and two radii drawn to the ends of the arc
(C, fig. 88).

i. Tangent. A tangerit is a straight line that
touches the circumference of a circle at only

one point and is perpendicular to the radius
drawn to the point of contact (B, fig. 33). This

TMEB4-39

Figure 38. Circles.



point is called the point of tangency or the point
of contact.

j. Concentric Circles. Concentric circles are
circles having a common center (D, fig. 88).

k. Pi(x). The Greek letter « is used to repre-
sent the relationship of the circumference of
any circle to its diameter. Roughly, it equals

% . More approximately, it equals 8.1416. In
many applications, it is rounded off to 38.14.

139. Circumference of Any Circle

The eircumference of any circle is » times
the diameter ; therefore, C = »D.

Ezample 1: Find the circumference of a
circle if the diameter is 6}

inches.

C =«D
= 8.14 X 6.6
= 20.42 inches

Ezample 2: Find the diameter of a circular
tank having a circumference of
813 inches.
When the circumference of a
eircle is given, the diameter is
calculated by dividing the cir-

cumference by r — D = g
p=2=C¢
L 4
_ 815
— 8.1416
= 10.08 inches

140. Area of Any Circle

a. The area of any circle is equal to » multi-
plied by the radius squared ; therefore, a = m2.
Ezxample 1: Find the area of a circle having

a diameter of 5 feet 6 inches.

A=

5.6\
(%)
»(2.75)2
8.14 X 1.56
23.76 square feet
Ezample 2: What is the diameter of a circle

the area of which is 78.64 square
rods?

A= n‘andr:%
D\?
4=(3)
wD?
A=
Transposing
Y

Substituting and solving for D:

2 /854
D=/ 31416
D = V%
D=2x8
D = 10rods

b. The area of any circle also is equal to one-
half the product of the circumference and the
radius.

Ezample: If the diameter of a circle is 10
inches, and the circumference of

the circle is 81.416 inches, what

is the area of the circle?
A = {Cr
r=¢4Dorr=56
A = }(81.416 X 5)

_ 157.08

= 2

= 78.54 square inches

141. Area of Ring

A ring is the area between the circumfer-
ences of two concentric circles. The area of a
ring may be found by subtracting the area of
the small circle from the area of the large circle.
If R is the radius of the large circle and r is the
radius of the small circle, a simplified formula
for the area of the ring can be developed as
follows:

Area of ring = area of large circle — area of
small circle
= wR? — «1?
= w(R2—1?)
By factoring (R* — 72) into (R 4 r) (R — r),
the formula also can be written:

A=«(R+r)(R—17)




Find the area of a ring

an inside diameter of 8

and an outside diameter of

inches.

A=«(R+ r)(R—1)
= 8.14(6 4 4)(6 — 4)
=814 X 10 X 2
= 62.8 square inches

142. Review Problems—Plane Geometry
a. Find the area of a rectangle having a base
of 12 inches and an altitude of 8 inches.

b. What is the area of a square, each side of
which is 6 inches?

¢. Find the area of a triangle of which the
altitude is 8 inches and the base is 10 inches.

d. Find the area of a triangle having an alti-
tude of 15 inches and a base of 2 inches.

e. What is the hypotenuse of a right triangle
the sides of which are 12 and 8 inches?

/. Find the third side of a right triangle if
ons side is 7 inches and the hypotenuse is 9
inches.

g. ldentify the following figures, give the
formulas, and solve for the required quantity.

Ezample:

A

>

11" FIND AREA

1) FIND AREA AND
CIRCUMFERENCE

(B}

]

FIND AREA

FIND AREA

TMES4-40

A. What are the perimeters of the following
figures?

¥
s ""\.
3/4 INCH
% vl
1-1/2 INCH 8
3INCHES o
2.8
INCHES
62
c
1-3/4 INCHES
L
uv, ¢
3/4 INCH
- I b
TMG84-41

1. Find the area of the largest circle that can
be cut from a square piece of sheet metal with
sides of 10 inches.

j. If the height of an antenna is 80 feet, how
far from its top is an object on the ground 60
feet from the base of the pole?



k. How many square feet of lumber are l. A metal plate is

needed to build 10 boxes 18 inches by 16 inches lateral triangle. If the

by 9 inches? what is the perimeter

-9




CHAPTER 10
TRIGONOMETRY

Section |. BASIC TRIGONOMETRIC THEORY

143. Introduction

a. Definition. Trigonometry deals with the
relationships between the sides and angles of
triangles. It uses the theories of basic mathe-
matics—the numbers of arithmetic, the equa-
tions of algebra, and the theorems of geometry
—to aid in the measurement of the sides and
angles of triangles.

b. Application. The ability to use angles and
their trigonometric relationships in electrical
calculations is especially important in the study
of alternating current (ac). Most effects of ac
circuit components can be studied or described
only in terms of the part of a cycle by whieh
a current lags behind a corresponding voltage,
or vice versa. A large percentage of the prob-
lems relating to the analysis of ac circuits and
communication networks involves the solution
of the right triangle in some form. Certain
facts about right triangles are familiar (ch 9)
—namely, that the square of the hypotenuse is
equal to the sum of the squares of the other
two sides (c* = at 4 b?), that the sum of the
acute angles of a right triangle is 90°, and that
the sum of the interior angles of any triangle
is 180°. However, it would be impossible to
solve certain problems with only this informa-
tion. After learning other relationships be-
tween the sides and angles of triangles, it will
be found that trigonometry is an easy and ac-
curate method of solving many problems in ac
electricity (ch 15).

144. Trigonometric Functions

a. General. Trigonometry is based on the
six trigonometric functions involved in the
study of the right angle. If the value of one
quantity depends on the value of a second quan-
tity, the first quantity is said to be a function
of the second. The six trigonometric functions
—sine (sin), cosine (cos), tangent (tan), co-

tangent (cot), secant (sec), and cosecant (esec)
—are derived from the ratios of the sides of a
right triangle to each other.

b. The Right Triangle. Figure 34 shows a
right triangle, with the angles labeled A, B,
and C; C is the right angle. The sides of the
triangle are labeled a, b, and ¢, with the side
opposite each angle given the same letter as
the angle. The following are the trigonometric
ratios of the sides of a triangle:

sin opposite side

=hypotenuse
cos __adjacent side
~ hypotenuse
tan opposite side

“adjacent side

cot __adjacent side
~opposite side

hypotenuse
sec “adjacent side
csc = hypotenuse
— opposite side
¢. Angle A. Refer again to figure 84. Using
the acute angle A, a is the opposite side, b is
the adjacent side, and ¢, which is the side oppo-

site the right angle, is the hypotenuse. There-
fore,

ainA:-:-
cosA:-g
tanA:%
cotA:%
oecA:%
cecA:-:



d. Angle B. Using the acute angle B in fig-
ure 84, b is the opposite side, a is the adjacent
side, and ¢ is the hypotenuse. Therefore,

s B = 2
cosB:L:
tan B = 2
cot 8=%
secB:%
cscB:-;

e. Angle C. Right angle C is the angle which
establishes the relationship between the other
sides and other angles and thus may be called
a constant. Although it is possible to obtain
functions for angle C, they are not covered
here because they are not needed in solving
problems of this type.

Ezample:

Determine the values of the trigonometric func-
tions of a right triangle with sides as follows:
a=38,b=4,c=0>5 (fig. 35).

Functions of angle A:

in 4 =2 =%
cosA:%:%
m 4=} =
cotA:%:-g
secA:%:%
w 4=}

Functions of angle B:
PR
.
o
o 5=t =
SERTRT
Rt

]
] €

I~
L3 :
b TMES4-42

Figure 84. Trigonometric functions of the
right triangle.

ck’t A

TME84-43

Figure 85. Right triangle with sides known.




1435. Reciprocal Relations of Trigonometric Func-
tions

From the definitions of the six trigonometric
functions (par. 144), the reciprocal relations
(listed below) can be determined. The cosecant,
secant, and cotangent should always be thought
of as the reciprocals of the sine, cosine, and
tangent, respectively.

. a 1 1
sin 4=%=¢ @A
a
b 1 1
cos A—?=§"’secA
b
a 1 1
tan A"?"E"cotA
a
[ 1 1
cac A_;_E"sinA
c
[ 1 _ 1
sc A=% =7 cs4
c
b 1 1
cot A—'E_Ei_—ta—nA
b

147. Solving for Unknown Functions

146. Functions of Complementary Angles

a. The function of an acute angle is equal to
the cofunction of its complementary angle.
Apply the definitions of the trigonometric func-
tions (par. 144) to angles A and B to obtain the
following relations:

sinB:%:cosA
tanB:%:cotA
eecB:%:cscA
cocB:Z—:sinA
cotB=§=tanA
cscB:%:secA

b. With angle B equal to 90° — A, these re-
lations may be written:

sin (90° — A) = cos 4
tan (90° — A) = cot A
sec (90° — A) = csc A
cos (90° — A) = sin A
cot (90° — A) = tan A
csc (90° — A) = sec A

If one trigonometric function of a right triangle is known, the other trigonometric functions can
be determined. This is done by using the Pythagorean theorem (par. 1838).

Ezample 1: Given the right triangle ABC (fig. 23) : side a is 4; gide C
is 9. Since sin A = %, find the other trigonometric func-

tions of angle A.

Sin 4 = %;also,sinA =
Therefore,a = 4,¢c =9

bt — ¢t —at
b*=81—16
bt =66

b =88

b =8.06

ol

8.06
1/65.00 00
64
10000
9636

1606



_4 _ 8.06

sinA_9 cotA._—4
_ 8.06 _ .9

cos =9 seCA"S_.OG
4 9

Ezample 2: Given the right triangle ABC (fig. 28) : side A4 is \/3; side

b is 7. Since tan A = 375 or-%\/ﬁ, find the other trig-

onometric functions of angle A.
a 1 v3
Tan A = s-;also,tanA= 7\/§= .

7
Therefore,
a=\/3,b=7
ct = at 4 b?
ct = 3449
2 = 62
c =82
c=vV4- V18
c=2\/1'3
)_/_g 7
sinA = cot4d = —
2\/13 V3
B _ 2vi8
cosA_z\/m secA = 7
_\3 _ 2V/18
tan A = 7 csc A = V3

148. Solving for Sides and Trigonometric Functions When One Side and One Function Are Given

When one side and one function of an angle of a right triangle are given, the two other sides and
the remaining trigonometric functions of the given angle can be found. These are determined by
use of the Pythagorean theorem.

Ezxample 1: Given the right triangle ABC (fig. 34) : if the hypotenuse
is 30 inches and sec A = 5, solve for sides a and b and the
trigonometric functions of angle A.-

Sec A = %;also,secA: i—o;butsecA=50r -?
30 5

Therefore, =1
6b = 30
b = 6 inches

at = ct—b?

at = 900 — 36

at — 864

a = \/8'62

a = \/'IZZ \/‘

a = 121/6 inches, b = 6 inches, ¢ = 30 inches




12 12 2

sind = 5= =35 VE=§V8
1

csd =35 =3
tanA:%ﬁzz\/G
otAc 8 L . VE_ B _\B_1 o

128 28 VB (2)(6) T 12 T 12
mA=-8T0=

_.8 _ 5 8_ 5/8 _5/8_ 5
xA=NRB -2 VB @(® — 12 =zV8

Ezxample 2: Given the right triangle ABC (fig. 84) : solve for sides b and
¢ and the trigonometric functions of angle A when side a

is 212 inches and sin 4 = 7.
Sin A = %; also, sin a = %, but sin A = %—
212 4
Therefore, ~ =7
4c = 1484
¢ = 387.1 inches
bt = et —at
bt = 1376.41 — 449.44
b = 926.97
b = \/52'5.5'7
b = 30.4/[11660. a = 21.2 inches, ¢ = 87.1 inches
sind =22 _ 4 cotd = o4 _ 18
- 871~ 17 — 212 T~ 58
80.4 _ 811
cos A = 371 secA = 304
21.2 5.8 817.1 7
tan A4 = m = ﬁ csc A = m = -;
149. Constructing an Acute Angle of Right Tri- Step 4. Join A and B, thus forming the
angle When One Trigonometric Function right triangle ABC (B, fig. 36).
Is Known Step 5. Tan A = }; therefore, A is the
required angle. Measuring angle
When the trigonometric function of an acute A with a protractor shows it to
angle is given, the angle may be constructed
geometrically. Use the definition given for the s
given function.
Ezample: Construct the acute angle A of

right triangle ABC if tan A = §.

Step 1. Let a = 1 unit and b = 4 units. } \ ;
Step 2. Erect perpendicular lines AC Sttt c""" ry 2 c
and BC. Use cross-sectional « oNITS
paper if available. TME0e- 44
Step 8. Measure off 1 unit along BC and Fi 26. Constructi le wh
4 units along AC (A, fig. 36). T rmetion ia knorome e
AGO SS8A
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be an angle of approximately
14°,

150. Common Trigonometric Functions

a. General. There are two special-case right
triangles that are commonly used in solving
mathematical problems. These are the right
isosceles triangle (par. 181a) with equal acute
angles of 46° (fig. 87) and the right triangle
with acute angles of 80° and 60°. The func-
tions of these angles are tabulated in appendix
III1.

b. Trigonometric Functions of 45°. Draw
the right triangle ABC (fig. 87) with angle A
equal to 46°. Because the acute angles of a
right triangle are complementary, angle A plus
angle B equals 90°. Thus, angle B is also 45°.
Since sides opposite equal angles are equal, side
a is equal to side b.

Leta=1and b =1.
at + b!

141

2
V2
sin 45° =

Il
oS oS
Il I
%o—- t%u

cos 456° =

sk sk
| R

tan 456°

cot 46°

|
L
Il

sec 4b5°

o -fS
"o
SN

csc 46° =

¢. Trigonometric Functions of 30° and 60°.
Draw the equilateral triangle ABX (fig. 38).
The angles of any equilateral triangle are 60°
and the sides are equal (par. 131a). Drop a
perpendicular BC to the center of the base AX.
Right angles ACB and BCX are formed by the
perpendicular and the base. The angles ABC
and XBC are 30° angles. Since the sides of the
equilateral triangle are equal, the perpendicular
bisecting the base makes the base AC of the
right triangle ABC one-half the length of the
base AX of the equilateral triangle. Thus, the
side opposite the right angle in a right triangle

ase
c - $ A
TMES4-48

Figure 87. Right isoscsles triangle—trigonometric
Junctions of 45°.

is twice the length of the side opposite the 80°
angle.
Letb=1andec=2.

at = ct — bt
¢’=4—1
=3
=\/3'
sin 60°—32@=%\ﬁ
o 1
cos 60 -—?
tan60°=31@=\/8
cot 60°=-\>—g-3\%=38@=%\/8
sec60°=%=2
m60°=%-£=%@=-§-\ﬁ
sin 80° =1
o 1
cos 80 _%_E\/g
tan80°=\/L3,=-\—;§\5%_=53@=%\/3
cot 80°=#=\/§
sec80°=% %:g%:%\/s

[~
(=]
o
Il
=N
Il
[ 3]




|
|

|

v

|

|

|

X [

Figure 38. Eguilateral right triengle—irigonometrio
Junctions of & right triangle with angles of 20° and 80°
151. Solving for Sides of 45°—45°-90° or 30°-60°-90° Triangles When One Side Is Given

In special cases, right triangles can be solved when only one side is given. These are the 456°~
45°-90° isosceles triangle and the 30°-60°-90° triangle.

Ezample 1: Solve for the unknown sides of right triangle ABC if angle
A = 060° and b = 4 inches.

Tan 60° =%— = %;however,unw“ =/8.

Therefore,

a_ V8

4= 1

e =4 .inchel
Cos 60° =-£- =-£-;however,eos60°=%.
Therefore,

4_1

c - 2

¢ = 8inches

Thus, s = 4/8 inches, b = 4 inches, ¢ = 8 inches.

Ezxzample 2: Solve for the unknown sides of right triangle ABC if angle
A = 45° and ¢ = 6 inches.

Sin 45° = % = %;however. sin 46° = 32@
Therefore;

o Vo
nu
SR

Cos 45° = % = %;however,eoa45° = 32@
Therefore,
b_ V2
6~ 2
2b = 6\/2
b = 8\/2inches
Thus, a = 8\/2 inches, b = 8\/2 inches, ¢ = 6 inches.



152. Calculations Involving Angles

a. Addition. To add angles, arrange the degrees, minutes, and seconds in separate columns and
add each column separately. If the sum of the seconds column is 60 or more, subtract 60 or a multi-
ple of 60 from that column, and add 1 minute or the same multiple of 1 minute to the minutes
column. If the sum of the minutes column is 60 or more, subtract 60 from that column and add
1° to the degree column.

Ezxample 1: Add 20° 40’ 25”7, 8° 385’ 6”, and 30° 658’ 51”.
20° 40 25”
80 35/ 50
80° 58 517
58° 1383’ 81”
Subtract 60”” from 81” and add 1’ to 138’.
58° 183" 81”7
+ 1” —60”
658° 184’ 217
Subtract 120’ from 134’ and add 2° to 68°.
68° 134’ 21”
4+ 2° —120’
60° 14’ 217
Ezxample 2: Add 16° 44’ 36” and 12° 38’ 36”.
16° 44’ 36”
12° 38’ 36”
27° 82’ 71”7 = 27° 83’ 11”7 = 28° 28’ 117,

b. Subtraction. To subtract angles, arrange the degrees, minutes, and seconds in separate col-
umns with the larger angle on top. Then, subtract the individual columns. If the upper number
in a column is too small to allow subtraction, one unit must be taken away from the preceding
column and 60 units added to the insufficient number to make subtraction possible.

Ezxample 1: Subtract 14° 51’ 30” from 86° 45’ 10”.
86° 45 10”
—14° 51’ 30”

Subtraction cannot be performed in either the seconds or
minutes columns. Subtract 1’ from 45’ leaving 44’, and add
60 to 10” for a total of 70”.

86° 44’ 70”
—14° 51’ 80”

Subtraction still cannot be performed in the minutes col-
umn. Subtract 1° from 86°, leaving 85°, and add 60’ to 44’
for a total of 104’.
86° 104’ 70”
—14° 51’ 30”
T1° 53’ 40”
Ezainple 2: Subtract 10° 35’ 42” from 19° 20’ 20”.
19° 20’ 20”
—10° 35’ 42”
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Subtraction cannot be performed in either the minutes or
seconds columns. Therefore, change 19° 20’ 20” to 18° 79’

80” and subtract.
18° 79’ 80”

—10° 85’ 42”
8° 44’ 88”

¢. Multiplication. To multiply an angle by a given number, multiply each column by the num-
ber. If the answer in the seconds or minutes column is greater than 60, reduce as in the addition

of angles (a above).

Ezample 1: Multiply 16° 21’ 40” by 8.

16° 21’ 40~
8

45° 63’ 120” = 46° 65’ 0” = 46° &
Ezample 2: Multiply 12° 14’ 36” by 5.

12° 14’ 86~
]

60° 70’ 1807 = 60° 78’ = 61° 18’

d. Division. To divide an angle by a given
number, divide each column by the number (be-
ginning with the degrees column). Change the
remainder in degrees, if any, into minutes and
add it to the minutes column; then, perform
division on the numbers in the minutes column.
Change the remainder in minutes, if any, to
seconds and add it to the seconds column; then,
perform division on the numbers in the seconds
column.

Ezample 1: Divide 71° 22’ 21” by 8.
23° 47 27"

69_
T = 12v
142’
141
1’ = 60”
81”
81~

Ezample 2: Divide 166° 17° 36” by 6.
27° 42’ 56"

w188° 17 38”7
1620

T = u
257’
252

¥ = 3007

336"

33 4

153. Review Problems—Basic Trigonometry
Note. In the following problems, angle C is the right
angle and equals 90°.
a@. Find the third side of each of the follow-
ing right triangles ABC, if two sides are:

(1) a=56b="17
(2) b =18,c=19
8)a=17,c=43
(4) a = 8

(5) a =2mc=mt+1

b. Given the right triangle ABC, solve for
the trigonometric functions of angle A in each
of the following cases:

(1) sin A =%
(2) tan A =§
(3) cos A = 32@
(4) esc A = 24
(6) cot A -‘1;

(6)secA=2-§-

¢. Solve each of the right triangles (ABC)
for the two unknown sides:
(1) sin A=%,a=17

]

(2)tanA=Z,b=l2

95



_4 d. Solve éach of the following right triangles
(8) cos A = 5'°= 20 (ABC) for the unknown sides:
(4) csc A=-17—5'.c=87.5 8;‘;=::°':=13
p— o -_—
(5)cotA=§-.a=1o (8) A =60°¢c= 8
9 (4) B=80°,a= 9
(6)800A=‘4-.b=18.4 (5)B=eoo'c=25

Section . NATURAL TRIGONOMETRIC FUNCTIONS

154. Tables and Their Uses

For convenience in computing, trigonometric functions are arranged in tables similar to the
tables of logarithms. The ratios themselves are called natural sines, cosines, tangents, cotangents,
etc. The tables in appendix III give the sines and cosines, the tangents and cotangents, and the
secants and cosecants of the angles from 0° to 90°. Angles less than 45° are read down the page;
the degrees are at the top of the page and the minutes are on the left. Angles greater than 45°
are read up the page; the degrees are at the bottom of the page and the minutes are on the right.
As with logarithms, it is necessary to interpolate to find the function of an angle which does not
reduce to an integral number of minutes. When working with the sine and tangent, which are
increasing in size from 0° to 90°, it is necessary to add in interpolation. When working with the
cosine and cotangent, which are decreasing in size from 0° to 90°, it is necessary to subtract.

155. Finding the Function of an Angle From the Table

To find the function of an angle from the table, proceed much the same as with the table of log-
arithms. This is illustrated by the following examples:

a. When an Angle Is Given in the Table.
Ezample 1: Find the cosine of 44° 27

Step 1. Turn to the table of sines and cosines.

Step 2. Locate the 44° column at the top of the page.
Step 8. Locate the 27’ at the left of the page.

Step 4. Read .71386 in the column headed Cosin.
Step b. Cos 44° 27’ = .71386.

Ezample 2: Fine the tangent of 86° 18’.

Step 1. Turn to the table of tangents and cotangents.
Step 2. Locate the 86° column at the bottom of the page.
Step 8. Locate the 18’ at the right of the page.

Step 4. Read 15.4638 in the column headed Tang.

Step b. Tan 86° 18’ = 15.4638.

b. When an Angle Is Not Given in the Table.
Ezample 1: Find the sine of 82° 46’ 36”.

sin 82° 46’ = .54122
sin 82° 46’ 86”7 = .64122 4 ~
sin 82° 47’ = .54146
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sin 82° 46’ 86~ 82’ 47

—82° 4¢ —32° 46’
86” ll - w
86 6 8

ratio =?6=ﬁ=-5-
54146 — .54122 = .00024

x
ratio = 55634
8 _=z
5 = 700024
Bz = .00072
z = .000144

8in 82° 46’ 36” = .54122 4 .000144 = .54136
Ezample 2: Find the tangent of 56° 48’ 27”.

tan 56° 48’ = 1.52382
tan 56° 43’ 27” = 1.52882 + =
tan 56° 44’ = 1.52429
LA I
60 20 — .00097
20z = .008738

z = .000436 or .00044
tan 56° 43’ 27" = 1.52882 { .00044 = 1.52876

156. Finding an Angle When the Trigonometric Function Is Given

The procedure for using the table to find an angle corresponding to a function is similar to that
of logarithms. This is illustrated in the examples in a and b below.

a. When the Function Is Given in the Table.

Ezample: Find the value of angle A if sine A = .27284.

Step 1. Find .27284 in the Sine column of the Sines and Cosines
table.

Step 2. Reading 16° at the top of the column and 50’ in the minutes
column on the left, angle A = 15° 50".

b. When the Function Is Not Given in the Table.

Ezample 1: Find the value of angle A when sine A = .78112.
78098 = sin 51° 21’
78112 = sin 61° 21’ 4 =z
78116 = sin 51° 22’

78112 78116
—.78098 —.78098
00014 00018
. 00014 14 1
ratio = 00018 = 18=9
61° 22’ — 51° 21’ = 1’ = 60”
tio = ==
ratio = 60
1_z
9~ 60
9r = 420
z = 47

angle A = 51° 21’477



Examps. ‘ind the value of angle A when cot A = .33820.
33848 = cot 71° 18’
38820 = cot 71° 18’ 4 =2
33816 = cot 71° 19

28 T _ =z

32°T8 = %0

8z = 420

z = b8
angle A = 71° 18’ 63"

157. Solving a Right Triangle When an Acute Angle and the Hypotenuse Are Given

To solve for the unknowns in a right triangle when an acute angle and the hypotenuse are given.
proceed as in a and b below. In both examples, angle C is the right angle; therefore, angle C = %0°.

Ezample 1: Find the unknown sides a and b, and the value of angle B
in right triangle ABC (fig. 89) if angle A is 33° 15’ and the
hypotenuse, ¢ is 9 inches.

LA + (B 4 (C = 180°
LB = 180° — LA — (£C
LB = 180° — 88° 15’ — 90°

LB = b56° 45’
sin 4 = 2
c
sin 33° 15’ = ¢
a = 9s8in 33° 15’
a = 9 X .54829 = 4.98461
a = 4.93461
b
Cos A = —c-
, b
cos 38° 15’ = 9
b = 9cos 33° 15’
b = 9 x .83629
b = 7.562661
Therefore, /A = 88° 15’ a = 4.98461 inches
(LB = b56° 45’ b = 7.562661 inches
LC = 90° ¢ = 9 inches

c:=
9 INCHES

c

A
b TME84-47

Figure 39. Solving a right triangle when ax asute
angle (38° 15°) and the hypotenuse are given.
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Ezample 2: Solve for the unknown sides a and b, and the value of angle B in right
triangle ABC (fig. 40) if angle A is 24° 35’ 36” and the hypotenuse, ¢,
is 12 inches.

LB = 180° — (A — (C
LB = 180° — 24° 85’ 36” — 90°
ng = 65° 24’ 24”

[
sin A = ry
X T-{ - _!_
sin 24° 35’ 86” = 12
a = 12 sin 24° 85’ 36”
sin 24° 35’ = .41602
sin 24° 85’ 86” = .41602 + =z
sin 24° 86’ = .41628
60 6 — .00026
6z = .00078
z = .00016

sin 24° 85’ 86”

.41602 4 .00016 = .41618
a = 12 X 41618 '

a 4.99416
b
cos A = z
4 ([ B b
cos 24° 35’ 86” = 7]
b = 12 cos 24° 35’ 36”
cos 24° 85 = .90936
cos 24° 85’ 836” = .90936 — z
cos 24° 36’ = .90924
36 8 _ =z
0 °F 5 = ~00012
bx = .00036
z = .00007
cos 24° 35’ 36” = .90936 — .00007 = .90929
b = 12 X .90929
b = 10.91148
Therefore, /A = 24° 35’ 36” a = 4.99416 inches
LB = 6b6° 24’ 24” b = 10.91148 inches
LC = 90° ¢ = 12 inches

c=
12 INCHES

24°38' 36"

A
b TME84-48

Figure 40. Solving a right triangle when an acute angle
(24°85’36"’) and the hypotenuse are given.
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158. Solving a Right Triangle When an Acute Angle and the Adjacent Side Are Given

To solve a right triangle when an acute angle and the adjacent side are given, proceed as shown
in the example below. Angle C is the right angle.

Ezample:

100

Find the unknown sides a and ¢ and the value of angle B in the right tri-
angle ABC (fig. 41) if angle A is 37° 42’ 42” and the side adjacent to
angle A is 8 inches.

LB = 180° — 90° — 37° 42’ 42"
/LB = b2° 17" 18”
b

cos A = —
¢

cos 37° 42’ 42" =
¢ (cos 37° 42’ 42”) = 8

o oo

cos 37° 42’ = .79122
cos 37° 42’ 42”7 = 79122 — =z
cos 37° 43’ = .79106
2 1 __z
60 10 .00017
10z = .00119
z = .00012
cos 37° 42’ 42”7 = 79122 — .00012 = .79110
.79110c = 8
c = —8
79110
¢ = 10.11
a
tan 4 = 3
tan 37° 42/ 427 — %
a = 8tan87° 42/ 42"
tan 37° 42’ = .77289
tan 37° 42’ 42” = .77289 + =z
tan 37° 43’ = .77386
42 7 z
80 °F 10 = 00046
10z = .00322
z = .00032
tan 37° 42'42” = 77289 4 .00032 = .77321
e = 8 X .77321
a = 6.18568
Therefore, /A = 37° 42’ 42" a = 6.18568 inches
LB = 52°°17" 18" = 8 inches
LC = 90° = 10.11 inches




37°42' 42"
4 A
bz 8 INCNES -
TMSR4-49
Figure 41. Solving & right triengls when en acute angle
and the adfacent side are given.

159. Solving a Right Triangle When Hypotenuse and One Side Are Given

Given the hypotenuse and one other side of a right triangle, solve for the unknown angles and
side as illustrated in the example below.

Ezample: Find the unknown angles A and B, and side ¢ of right tri-
angle ABC (fig. 42) if the hypotenuse is 12 inches and the

side opposite angle A is 8 inches.
B=ct—a
b = 128 — 8
bt = 144 — 64
bt = 80
b= VB0
b = 894
e
lillA:-;
-8 _2
sind =7 =3
sin A = .66667

66658 = sin 41° 48’
66667 = sin 41° 48’ 4+ 2
66676 = sin 41° 49

4 =z
22 = 60
22z 840
840
z=-2-2—=88
66667 = sin 41° 48 388”
angle A = 41° 48’ 38"
LB = 180° — /C — (A

(B = 180° — 90° — 41° 48 88~
(B = 48° 11’ 22"

Therefore, /A = 41° 48’ 38” e = 8 inches
LB = 48° 11’ 22” b = 8.94 inches
LC = 90° ¢ = 12 inches



as cs
INCHES 12 INCHES

A
[ TME84-350

Figure 48. Solving @ right triangle, when the
Aypotenuse and one side are given.

160. Solving a Right Triangle When Two Sides Are Given -
When two sides of a right triangle are given, solve for the unknown angles and the hypote-
nuse as shown in the example below.

Ezample: Find the unknown angles A and B and side ¢ in right tri-
angle ABC (fig. 48) if side a is 8 inches and side b is 10

inches.
ct = at 4 bt
¢t = 64 4 100
¢t = 164
c = vI&d
c = 128
tanA:%
tanA:i%
tan A = .80000
79972 = tan 88° 389
.80000 = tan 88° 39’ 4 2z
80020 = tan 88° 40’
28 7 z
BT12T 60
122 = 420
z = 86

.80000 = tan 88° 39’ 86”
angle A = 38° 89 85”
LB = 180° — /C — (A
LB = 180° — 90° — 38° 3¢ 85”
LB = b61° 20" 256”

Therefore, /A = 38° 89 85~ a = 8 inches
LB = B1° 20/ 25” b = 10 inches
LC = 90° ¢ = 12.8 inches
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b= 10 INCHES

Figure 43. Solving a right triangle when twe
oides are given,

161. Solving a 30°-60°-90° Triangle When One Side Is Given

In a 30°-60°-90° triangle, the side opposite the 80° angle is equal to one-half the hypote-
nuse. Refer to paragraph 150c for the derivation of the trigonometric functions. Solve for the
unknown sides as shown in the example below.

Ezample: Find the unknown sides b and ¢ of 80°-80°~90° triangle
ABC (fig. 44) if the side opposite the 60° angle is 6 inches.

sin 60° = )g;also,ainew == 8
c c
vi _ 8
2 T ¢
Vi = 12
12
C = ———
V3
12 V8.
Eliminate /8 in the denominator by multiplying —= by X=:

V2 RV
—.l_z.ﬂ_l_ﬂz _lizs—
c‘\/3 v~ V8~ 8 = 4/8
c = 4/8 = 4 X 17821 = 6.9284

tan 60° = 51@;allo,tan60°=' % =-§-
3_6
1 — b
V30 = 6
6 . v8_6/8_6/8 _
= mET s -

b =28 = 2 x 1.7321 = 8.4642

Therefore, a = 6 inches
b = 8.4642 inches
¢ = 6.9284 inches



¢
6  Tmese-s2

Figure 44. Solving & 20°-60°-90° triengle when
one side is given.

162. Solving a 45°—45°-90° Triangle When One Side Is Given

In a 45°-45°-90° triangle, the sides opposite the equal angles are equal. Refer to paragraph
1500 for thé derivation of the trigonometric functions. Solve for the unknown sides as shown in
the example below.

Ezample: Find the unknown sides a, b, and ¢ of 45°-45°-90° triangle
ABC (fig. 45) if the side opposite acute angle A is 5§ inches.

sin 45° =%;also.sin4=%=%
1 _8
v e
¢ = 8\/2
c =06 X 14142 = 7.0710
tan 45° = -};ﬂm,t&nA:%:%
1

~

Qt b
o
N ojon

Therefore, a = b5 inches
b = B inches
¢ = 7.071 inches
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Figure 45. Solving a 45°-45°-90° triangle when one
side is given.

163. Angles of Elevation and Depression

When an object is higher than the observer’s
eye, the angle between the horizontal and the
line of sight to the object is called the angle of
elevation (A, fig. 46). When an object is lower
than the observer’s eye, the angle between the
line of sight to the object and the horizontal is
called the angle of depression (B, fig. 46).

Example:

A television antenna mast is 450 feet high (fig.
47). Find to the nearest second the angle of
elevation to its top at a point 200 feet from the
base of the mast.

a
tan A = ?
450
tan A = 300
tan A = 2.2500
2.2496 — tan 66° 2’
2.2600 — tan 66° 2’ + «z
2.2513 = tan 66° 3’
4_ 2
17 — 60
17r = 240
r= 14
2.2500 = tan 66° 2’ 14”
A = 66° 2" 14”7
AQGO S88A

OBJECT

ANGLE OF
ELEVATION

== = HORIZONTAL
A

== = = HORIZONTAL

OBVECT B
TMGO4-84

Figure 46. Angles of elevation and depression.

164. Review Problems—Natural Trigonometric
Functions
a. Find the sine, cosine, tangent, and co-
tangent of the following angles:
(1) 1° 30
(2) 15° 25’
(8) 32° 10¥
(4) 36° 39
(5) 44° 59
(6) 44° b9 456”
(7) 86° 12’ 16”
(8) b54° 27’ 32”
(9) 48° 25’ 37”
(10) 67° 33’ 42”
b. Solve for the values of the following angles
in degrees, minutes and seconds:
(1) sin A = .25737
(2) cot A = .43279



A

lo———— 200 FEET—————iC

TME84-38

Figure 47. Finding the angle of elevation to top of

106

an antenna mast.

(3) cos A = .94000

(4) tan A = 47287
(6) cot A = 1.17629
(6) cos A = .36243
(7) sin A = 37778

(8) tan A = .67676
(9) tan A = 1.29000
(10) cot A = .795563

¢. Solve for the following (angle C = 90°):

(1)

(2)

(3)

(4)

Angle A in right triangle ABC when
a=19and ¢ = 27.

Side a in right triangle ABC when A
= 37° 16’ and ¢ = 17.

Side ¢ in right triangle ABC when A
= 42° 37’ 16” and a = 22.

Side B in right triangle ABC when
A = 37° 456’ 42” and ¢ = 26.

(6) Side c¢ in right triangle ABC when
A = 14° 85’ and b = 12.

(6) Angle A in right triangle ABC when
b="Tand c = 12.

(7) Side a in right triangle ABC when
A = 47° 22’ 52” and b = 81.

(8) Side b in right triangle ABC when
A =56° 31’ 25” and a = 25.

(9) Angle A in right triangle ABC when
a =17 and b = 23.

(10) Side b in right triangle ABC when
A=17°32"64"and a = 17.

(11) Side ¢ in right triangle ABC when
a=15and b = 27.

(12) Angle A in right triangle ABC when
a=15and b = 27.

d. Solve the following problems:

(1) Over a distance of 300 feet, the angle
of elevation of a road is 8° 24’ 80”.
What is the rise in feet?

(2) The angle of elevation to the top of
an antenna mast is 84° 17° 507, If
the distance from the transit to the
center of the mast is 110 feet, how
high is the mast? The transit is 5 feet
high.

(8) If a ladder 15 feet long just touches
the top of a wall and subtends an
angle of 36° 24’ 16” with the ground,
how far is the lower end of the ladder
from the wall and how high is the
wall?

(4) A captive balloon is anchored by 950
feet of cable. A man observes that the
angle of elevation from his point of
observation to the bottom of the bal-
loon is 16° 47’ 12”. How far is he
from the balloon anchor?

(5) An excavation is 33 feet wide. The
angle of depression from the top of
one side to the bottom of the other
side is 19° 34’ 24”. How deep is the
excavation?

(6) The angle of elevation from a given

AGO S38A_-
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point to the top of a tower is 17° 87’
15”. Moving back 40 feet in a direct
line, the angle of elevation from this
point to the top of the tower is 15°
85’ 20”. Find the height of the tower.

(7) To determine the height of a tower,
two sights are taken on a straight line
perpendicular to the tower. If the
distance between the points of obser-
vation is 60 feet and the angles of ele-
vation are 32° 30’ 15” and 28° 15’ 30”,
respectively, what is the height of the
tower?

(8) From a point in an open fleld a man
sights on two mileposts along the side
of a highway. The angles formed by
an imaginary line perpendicular to
the highway and the sights on the
mileposts are 33° 20’ and 89° 17’ 80”.
How far is the man from the closest
point on the highway?

(9) An airplane is flying between two
towns at an altitude of 5,000 feet.
Measured with respect to the horizon-
tal, at a given moment, the angle to
the outskirts of one town is 50° 26’
14”7, while the angle to the outskirts
of the other town is 64° 44’ 12”. How
far apart, in a direct line, are the two
towns?

(10) A radio antenna on top of a building
is 10 feet high. The angle of elevation
to the base of the pole is 37° 17’ 20”;
the angle of elevation to the top of the
antenna is 40° 80’ 15". How high is
the building?

(11) In a 45°-45°-90° right triangle the
hypotenuse is 2 inches long. Find the
length of the other two sides.

(12) In a 30°-60°-90° right triangle the
hypotenuse is 6 inches long. Find the
length of the other two sides.

Section lll. TRIGONOMETRIC LAWS

165. Solving Oblique Triangles

An oblique triangle is one in which one of
the angles is a right angle. The formulas in
this section are used primarily to solve oblique
triangles, but may also be used to solve right
triangles. In the solution of triangles by trig-
onometric laws, the four following cases arise:

a. When any side and any two angles are
given.

b. When any two sides and the angle opposite
one of them are given.

Ezample:

¢. When any two sides and the angle in-
cluded between them are given.

d. When the three sides are given.

166. Law of Sines

In any triangle, the sides are proportional
to the sines of the opposite angles.
Thus, =2+ = —2= = —S—
'sinA ~ sinB ~ sinC’
a. Two Angles and One Side Given.

Solve for the unknowns in oblique triangle ABC (fig. 48) when

angle A = 385° 47’ 36”, angle B = 68° 42’ 27”, and the side oppo-
site angle A is 15 inches.

C = 180° — /A — /B

£C = 180° — 85° 47’ 86” — 68° 42’ 27~
LC = T6° 29’ 57"

e __b_
sinA ~ sinB
bsin A = asinB
b = a sin B
= Tsind
b = 15 sin 68° 42’ 27”

sin 86° 47” 86~

o7
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sin 68° 42’
sin 68° 42’ 27~
sin 68° 48’

9
or—=
20

202

z

sin 68° 42’ 27~
sin 35° 47

sin 85° 47 36”
sin 85° 48’

%'g or % =

bz

z

sin 386° 47 86” =

15 X .98174
58486

13.97610
58486

b = 28.89

8 _ _ _°
sinA ~ sinC
¢sin A =asinC

_asinC
sin A

15 sin 75° 29’ 57”7
sin 85° 47’ 36”

sin 75° 29
sin 76° 29’ 577
sin 76° 8¢

57 19

60 or 56 =
20z =

x

sin 76° 29’ 57” =

16 X .96815
58486

1452225
~58486

cC = 24.83
Therefore, /A = 35° 47’ 36”
LB = 68° 42’ 271”7
LC = 75° 29 87"

8l%
o

c =

88169
98169 4+ =
98180

—_—

00011

00099

.000049 = .00005
98169 .4 .00006 = .98174
58472

58472 + =z

58496

z
00024

00072
00014
58472 + .00014 = .58486

96807 4 =
96815

00008

00162
.000076 = .00008
96807 + .00008 = .96815

a = 15 inches.
b = 28.89 inches
¢ = 24.88 inches

-



68°42' 27"
4

8
TME84-56

Figure 48. Solving an oblique triangle by the law of
sines when two angles and a side are given.

b. Two Sides and One Angle Given.

Ezample: Find the unknowns in oblique triangle ABC (fig. 49) when angle
A = 538° 856’ 40”, the side opposite angle A is 10 inches, and the
side opposite angle B is 12 inches.

e __b
sinA ~ sin B
asinB = b sin A
sin B = -'L-'?—A
sin B = 12 sin 1508° 36’ 40~
sin 58° 85’ = .80472
sin 58° 85’ 40” = .80472 4 7
sin 63° 36’ = .80489
40 or 2__=z
60 3 — .00017
8z = .00084
z = .00011
sin 58° 85’ 40”7 = .80472 4 .00011 — .80483
6
sinB = 1}____)(1 80483
[
sin B = 482898

sin B = .965796 = .96580
96578 = sin 74° 58’
96580 — sin 74° 58 + =z
966886 = sin 74° 59

2_ 2
7 60
Tz = 120
z =17
965680 = sin 74° 58 177
LB = T4° 58’ 177
C = 180° — /A — (/B
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167. Law of Cosines

LC = 180° — 58° 85’ 40”7 — 7T4° 58’ 177
LC = B1° 26’ 87
a _ ¢
sinA ~— sin C
¢csin A = asin C

¢ — 8.8in Cc
— sin A
¢ = 10 sin 51° 26’ 3”
— sin 53° 385’ 40”
sin 51° 26’ = .78188
sin 51° 26’ 3”7 — .78188 + «z
sin 51° 277 = .78206
8 .1 _ =z
80 °F 20 = 700018
20z = .00018
z = .000009 = .00001
sin 51° 26’ 8” = .78188 4 .00001 = .78189
¢ = 10 X ..78189
.804838
¢ = 7.8189
— .80488
c = 9.7
Therefore, /A = B58° 35’ 40”7 a = 10 inches
LB = T4° 58 17~ b = 12 inches
LC = 51° 26’ 3” ¢ = 9.71 inches

A

[
TME84-87

Figure 49. Solving an obligue triangle by the law of
stnes when two sides and an angle are given.

In any triangle, the square of any side equals the sum of the squares of the other two sides minus
twice the product of these two sides times the cosine of the angle between them.

Thus, at
b2
et

bt 4 ¢® — 2bc cos A
at 4 c¢® — 2ac cos B
a® 4 0% — 2ad cos C




Ezample: Find the unknowns in oblique triangle ABG (fig. 50) when angle
C = 56° 45’ 24”, the side opposite angle A is 6 inches, and the

side opposite angle B is 8 inchea.
¢t = at 4 b* — 2ab cos C v
¢t = 6 4 8t — 2(6)(8) cos 56° 45’ 24"
¢t = 86 4+ 64 — 96 cos 56° 45’ 24”
¢ = 100 — 96 cos 56° 45’ 24”7

fee22

=
5
»

¢csin A
sin A

sin A

sin A

sin A
sin A

LA
LB

cos 56° 45’ = .54829
cos 56° 45’ 24” = .54829 — z

cos 56° 46° = .54805

4 2 _z

60 °F § = 700024

5z = .00048

z = .000096 or .00010
cos 56° 45’ 24” = .54829 — .00010 = .54819
100 — 96(.54819)
100 — 52.62624
47.87876

6.882
¢
sin C
a sin C
a sin C
¢
6 sin 56° 48’ 24~
6.882
sin 56° 45’
sin 56° 45’ 24”
sin 56° 46’
24 2
0T
bz

.83629
88628 + =z
.88645

-z _

00016

00082

000064 = .00006

.88629 4 .00006 = .83635

8
i

sin 56° 45’ 24”
6(.88636)

6.882
5.01810

6.882
72916
72897 = sin 46° 48’
72916 = sin 46° 48’ 4 2
72917 = sin 46° 49

9 _ =
20 — 60
20z = 1140
z = 87

72917 = sin 46° 48’ 57"
46° 48’ 57"
180° — (C — LA

m



LB = 180° — b56° 456’ 24” — 46° 48’ 57~
LB = T6° 25" 89”

Therefore, /A = 46° 48’ 57” @ = 6 inches
LB = 76° 25’ 89” b = 8 inches
LC = B6° 45’ 24” ¢ = 6.882 inches

6 INCHES 6 INCHES

A

Figure 80. Solving an oblique triangle by the law of
oosines when an angle and two sides are given.

168. Law of Tangents
The law of tangents is expressed by the formula“ T : = m :2: T F) where a and b are
any two sides and A and B are the angles opposite these sides.

Ezample: Find the unknowns in oblique triangle ABC (fig. 51) when two sides of the
triangle are 9 and 11 inches, respectively, and angle C, the angle included
hetween these two sides, is 40° 40’ 40”.
LA + (B 4+ (C = 180°
LA 4+ (B + 40° 40’ 40” = 180°
LA 4+ (LB = 180° — 40° 40’ 40”
LA + (B = 189° 19 20”

189° 19’ 20”
i(-4+3)—-——§——
1(A + B) = 69° 8% 40~

a—b _tan }(A — B)
a+ b~ tan }(A + B)

11—9or2 tan $(4A — B)
11 + 9 2 20 — tan 68° 39’ 40”
20 tan §(A — B) 2 tan 69° 39’ 40”

10 tan §(A — B) = tan 69° 3% 40”
(-] 4
tan §(4 — B) = B0 69139' 40
tan 69° 39’ = 2.69612
tan 69° 39 40" = 2.69612 + z
tan 69° 40’ = 2.60858
0 2 __z
60 °' 3 = "00241
8z = .00482
z = .00161
tan 69° 39 40”7 = 2.69612 + .00161 = 2.69778
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tan §(A — B) = z’%’”

tan }(A — B) = .26977
26951 = tan 15° 5’

26977 = tan 16° 6’ + =
26982 = tan 15° 6’
2 _ =z
81~ 60
81z = 1560
z = 50

26977 = tan 15° 6’ 50~
(A — B) = 15° & 50~
$#(4 + B) = A + {B = 69° 8% 40~
(A —B) = }JA — }B = 15° b 50"
(add) A = 84° 44’ 90"
LA = 84° 45’ 30”
(A + B) = }A + {B = 69° 38 100"
}(A — B) = }A — }B) = 15° & §0”

(subtract) B = 54° 88’ 50”
LB = B54° 38’ 50”
a _ ¢
sinA ~ sine
csinA = a 8in C
c—as8inC
— sin A
¢ = 11 sin 40° 40’ 40”
—  sin 84° 46’ 30”
sin 40° 40’ = .66166
sin 40° 40’ 40” = .66166 + =z
sin 40° 40’ 41”7 = .65188
40 2 =z
60 °F 3 = 700022
8z = .00044
z = .000146 = .00015
sin 40° 40’ 40” = .65166 + .00016 = .65181
sin 84° 45’ = .99580
sin 84° 45’ 30” = .99580 4 z
sin 84° 46’ = .99583
30 1 z
60 °F 2 = 700008
2z = .00003
z = .000015 = .00002
sin 84° 45’ 307 = .99580 4 .00002 = .99582
¢ = 11 sin 40° 40’ 40”7
— sin 84° 45’ 80”
¢ — 11 X 65181
- 99582
¢ = 7.16991
- .99582
c =12



Therefore, /A = 84° 45’ 80”7 ¢ = 11 inches
/. B =B4° 383’ 50” b = 9 inches
LC = 40° 40’ 40”7 ¢ = 7.2 inches

"
INCHES INCHES

[
TME84- 89

Figure 51. Solving an oblique triangle by the law of
tangents when an angle and two sides are given.

169. Finding an Angle When Three Sides Are Given

The following formulas are used to find the angles of a triangle when three sides of the triangle
are given:

sin {4 =\//—G.—-b§?—mc7
sin;B:v/('—a:u(;_c)
sin iC:Vﬂ'_aL?_b)

In these formulas, a, b, and c are the sides of the triangle, and s = {(a 4 b 4 ¢).

Ezample: Find the angles of an oblique triangle if a = b inches, b = 8
inches, and ¢ = 11 inches.

8 = §(a+ b+ c)

s = §(64+8+411)

s = }(24)

s = 12
sin §A = \/(’ — b},? —¢)
. =Bz =10
sin }A = Vv ®an
sin }A = V 881
sin }4 = \/% = \/;—-2-

sin A = /0454545




sin 44 =

1A
LA

sin {B
sin }B =
sin §B

sin }B =

sin B
sin }B

Therefore,

21819
21308 == sin 12° 18’
21319 = sin 12° 18" 4 2
21331 = sin 12° 19’
16 4 =z
28 T7T=%0
Tx = 240
z = 84
21319 = sin 12° 18’ 84~

= 12° 18" 34”7

= 24° 36’ 68” or 24° 37’ 8”
- \/ (s — a) (s —¢)
\/ (5) (11)
= \/ 55
56
= -.36676
35674 = sin 20° 54’
35676 — sin 20° 64’ 4+ =z
36701 = sin 20° 56’
1_z
27 — 60
27z = 60
z =2
366756 = sin 20° 54’ 2”
= 20° 54’ 2”
= 40° 108’ 4” or 41° 48 4”

= 180° — LA — (B
= 180° — 24 ° 37’ 8” — 41° 48’ 4”
= 180° — 66° 25’ 12"
= 118° 34’ 48”
LA = 24° 37" 8"
LB = 41° 48" 4"
LC = 113° 34’ 48”

170. Finding the Area of a Triangle When Two Sides and the Included Angle Are Given
The formula for finding the area of a triangle when two sides and the included angle are given

is S = } ab sin C where S is the area
cluded angle.

of the triangle, a and b are the given sides, and C is the in-

Erample: Find the area of oblique triangle ABC (fig. 62) when two

sides are 7

and 8 inches, respectively, and the included angle

is 50° 50’ 50”.
= ;ab sin C
S = 1 XT7X8Xsin50° 50’ 50”
sin 50° 50’ = .77581
sin 50° 50’ 50" = .77631 + =z
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sin 50° 51 = 77550
80 5 __=z

60 °" & = 00019

6z .00095

z 00016

sin 50° 60’ 50”7 = .77681 4 .00016 = .77547
S = § X7X8X.77647 = 21.71316
S = 21.71816 square inches

A

TME84-00

Figure 53. Solving for the area of an obligus triangle
when two sides and the included angle are given.

171. Finding the Area of a Triangle When Two Angles and a Side Are Given
The formula for finding the area of a triangle when two angles and a side are given is S =
p'lz_in.:i_;in_c where S is the area of the triangle, B and C are the given angles, and a is the

given side.

Ezample Find the area of oblique triangle ABC (fig. 68) when the two
angles are 38° 42’ 48” and 68° 52’ 42 and the side is 10 inches.

LA = 180° — (B — (C
LA = 180° — 38° 42’ 48” — 68° b2’ 42~
LA = 180° — 107° 385’ 30”
LA = T2° 24 30”
S = a? sin B sin C
- 28in A

102 sin 38° 42’ 48" sin 68° 52’ 42"
2 sin 72° 24’ 30"

sin 38° 42’ = .625624
sin 38° 42’ 48” = .62524 + =z
sin 88° 43’ = .625647
8 4 _z_
60 °F 5 = 00023
52 = .00092
z = .00018
sin 38° 42’ 48" = .62524 4 .00018 = .62642
sin 68° 52’ = .98274
sin 68° 52’ 42” = 98274 + 2
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sin 68° 538’ = .98285
2 1T__2z
60 °F 10 = 00011
10z = .00077
z = .000077 or .00008
sin 68° 58’ 42" — .98274 + .00008 — .93282
sin 72° 24’ = 95819
sin 72° 24’ 80” = .95319 + =z
sin 72° 25’ = .95828
80 or 2 = &
60 2 — .00009
22 = .00009
z = .000045 or .00005

sin 72° 24’ 80”

96319 4 .00006 = .95824

100 X .62542 X .93282

2 X 96324
50 X .62642 X .93282
. 96324
= log 50 4- log .62642 + log .98282 — log .96324
log 50 = 1.6990
log .62600 = 9.7969—10
log 62842 = 9.7969—10 4 =z
log .62600 = 9.7966—10
42 2z
100 — .0007
100z = .0294
z = .000294 or .0008
log .62642 = 9.7959—10 + .0008 = 9.7962—10
log .83200 = 9.9694—10
log 93282 = 9.9694—10 4 z
log .98300 = 9.9699—10
82 2z
100 — .0006
100z = .0410
z = .00041 or .0004
log 93282 = 9.9694—10 4 .0004 — 9.9698—10
log .956300 = 9.9791—10
log 96824 = 9.9791—10 + =z
log .96400 = 9.9796—10
A _ =z
100 — .0004
1002z = .0096
z = .000096 or .0001
log .96324 = 9.9791—10 4 .0001 = 9.9792—10
1.6990 4 9.7962—10 + 9.9698—10 — 9.9792—10
1.6990
9.7962—10
+ 9.9698—10
21.4660—20
— 9.9792—10
11.4868—10 or 1.4858



antilog 1.4857 = 80.6

antilog 1.4868 = 80.6 + =z
antilog 1.4871 = 80.7
1l_z
47 1
14z = 1
z = .007
antilog 1.4858 = 80.6 4 .007 = 80.607

S = 80.607 square inches

10 INCHES

“'Ot'Qt'

c A
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Figure 53. Solving for the area of an obligue triangle
when two angles and a side ere given.

172. Finding the Area of Triangle When Three Sides Are Given
To find the area of triangle when three sides are given, use the formula

S =+\v8(8 —a)(s — D)(s — ¢)

where a, b, and c are the sides of the triangle and s = §(a + b + ¢).

ns

Ezample: Find the area of an oblique triangle when the sides are 8,
11, and 15 inches, respectively.

H(a+d+e¢)

$(8 + 11 4 15)

$(34)

17
Ve(s—a)(s—0b)(s—c¢c)

o

U !t ! 2 & & @ o
i

42.84 square inches




173. Review Problems——Trigonometric Laws

a. In an oblique triangle ABC, angle A =
42° 16’ 127, angle B = 76° 28’ 10”, and side b
measures 21 inches. Solve the triangle for
angle C and side a.

b. In an oblique triangle ABC, angle C =
62° 80, side b = 46 inches, and side ¢ = 38
inches. Solve for angle B.

¢. In an oblique triangle ABC, sides a, b, and
¢ opposite angles A, B, and C have lengths of
9, 16, and 21 inches, respectively. Find the
three angles of the triangle.

d. In an oblique triangle where a and b are
any two sides and A and B are the angles oppo-
site these sides, angle C = 67° 20’ 457, a =

9.78 inches, and b = 6.47 inches. Find angles
A and B.

e. The three sides of a triangle are 40, 87,
and 18 inches, respectively. Find the area of
the triangle.

f. Two sides of an oblique triangle measure
12 and 18 feet, respectively. The angle between
the two sides is 115°. Find the area of the
triangle.

g. In a triangle ABC, angle A = 80° and
angle B = 60°. The side opposite angle C =
16 inches. Find the area of the triangle.

h. In an oblique triangle ABC, angle C =
62° 50’, The side opposite angle A measures
9.66 inches, and the side opposite angle B meas-
ures 17.86 inches. Find angles A and B and
the length of the side opposite angle C.
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CHAPTER 11
RADIANS

174. Angular Measurement Using Radians

a. Definition. A radian is a unit of angular
measurement equal to that angle which, when
its vertex is upon the center of a circle, inter-
cepts an arc that is equal in length to the radius
of the circle. Thus, in figure 54, central angle
AOB is equal to 1 radian because arc AB is
equal to radius OA.

(1) The system that makes use of the
* radian is called the natural system of
angular measurement because it has
no arbitrary unit, such as the degree,
but is founded upon the observation
that the absolute size of any angle is
the ratio of its arc to the radius of
that arc. Where the arc and radius
are equal, the ratio is 1, and this unit

is the radian.
(2) The natural system of angular meas-
urement—also called the circular sys-
tem and the radian system—is used

TME84-62

Figure 54. The radian or circular system of
measurement.

extensively in electrical formulas
(part II).

b. Finding Any Angle. To find any angle,
such as angle AOC in figure 54, when the length
of arc AB is known, determine the number of
times that radius r will go into arc length ABC,
thus determining the number of radians in the
angle.

Thus,
arc
radius
or, if angle AOC is denoted by the Greek letter
0 (Theta) and arc ABC by s,

0 = % radians
A circle has a radius of 6 inches.

Find the angle subtended at the
center of the circle by an arc 9

Angle =

Ezample:

inches in length.
8
0= r
-9
]
= 1.5 radians

¢. Finding Length of Arc. To find the length
of an arc intercepted by a central angle when
the radius of the circle and the number of
radians in the angle are known, use the formula
in b above in the form—

8 =1

A circle has a radius of 5 feet.
How long is the arc intercepted
by a central angle of 1.6

Ezample:

radians?
8 = 16
=6X 156
= 7.6 feet




175. The Relation Between Degrees and Radians

a. General. It is often necessary to convert an angle from degrees to radians or from radians
to degrees. If the angle is one complete revolution, the arc is one complete circumference of a
circle; thus, it is 2» times the radius. Therefore, the angle is equal to 2«r divided by r—that is, 2«
radians (» = 3.1416).

Therefore,
1 revolution = 2« radians
also 1 revolution = 3860°
Thus, 2 » radians = 3860°
1 radian = 380 180° _ 57095780
L 4
and since 360° = 2 » radians
o 2 _ x_
1° = 360 — 180 = 0.017463 radians

To change radians to degrees, accurate to seconds, use figures accurate to at least five decimal
places.

b. Changing Degrees to Radians and Radians to Degrees.

Ezample 1: Change 2.74 radians to degrees, minutes, and seconds.
1 radian = b57.29578°

2.74 radians = 2.74(57.29578)
= 156.99044°
1° = 60’
99044° = .99044(60)’
= 59.4264’
4264’ = .4264(60)”
= 25.6”

2.74 radians 166° 59’ 25.6”

Example 2: Change 57° 15’ 18” to radians.

Step 1. Change the minutes and seconds to decimals of a degree:
1’ = 60”
o _ 18
18" = &0
= .3
, _ 163
156.3' = o0
= .265°
57° 15’ 18” = b57.256°
Step 2. Change to radians:
1° = .017463 radian
57.255° = 57.265(.017458)

= .99927 radian
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¢. Expressing Angles in Radians as Multiples
of =». It is often convenient to express angles
in radians as multiples of ». Since 360° = 2«
radians, 90° = }r radians, 40° = }» radians,
etc. It is necessary only to multiply the degrees

by 1;—0 to change to radians.
Example: Express 1356° in radians as a

multiple of .

o — = _
185° — 135(180)

= ij» radians

176. Review Problems—Radians

a. Find the angle 6 for the following arc
lengths and radii:
(1) r = b6 inches, 8 = 2 inches.
(2) r = 8 feet, 8 = 12 feet.
(8) r = .8 miles, 8 = 6.4 miles.
(4) r = 27 meters, 8 = 75 meters

b. Find the arc lengths for the following
angles and radii:

of »:

(1) 6 = b radians, r = 7 inches
(2) 6 = 8 radians, r = 2.2 feet
(8) 6 =2.1 radians, r = 9 miles
(4) 60 = .08 radians, r = .066 inch

. Express the following angles in radians:

(1) 80°

(2) 268° 12/

(8) 158° 33’

(4) 336° 24’ 22~

. Express the following angles in degrees:

(1) © radians
(2) <6 radians
(8) 3.46 radians
(4) 8x radians

. Express the following angles as multiples

(1) 80°
(2) 60°
(8) 2256°
(4) 720°



CHAPTER 12
VECTORS

177. Plane Vectors

a. A line segment used ta represent a quan-
tity that has direction as well as magnitude is

called a vector. The length of a vector is pro-
portionate to the magnitude, and the arrow, or

head, of the vector indicates the direction of
the quantity represented.

b. The quantity represented by a vectar is
called a vector quantity. This is the directed
magnitude itself. Electrical quantities, such as
current and voltage, are vector quantities in
ac circuits (par. 194).

Ezample: An airplane is flying northeast
at 120 miles per hour. Its speed
is represented on figure 55 by
line OA. The direction in which
the airplane is traveling is rep-
resented by the direction of the
line.

178. Vector Notation

Because a vector quantity has direction as
well as magnitude, the methods of denoting a
vector are different from_the methods of de-

¢Q¢
)
45°

48°
€
o TME84-63

Figure 85. The velocity of an airplane desoribed
by a veetor.

noting a scaler quantity. A vector may be de-
noted by two letters, the first indicating the
origin, or initial point, and the other indicating
the head or terminal point. For example, a
vector may be represented by the letters AB,
indicating that the quantity went from 4 to
B. A small arrow sometimes is placed over the

->

letters for emphasis; for example, AB. Another
method of notation is A /6, where A represents
the magnitude of the quantity, and /¢ repre-
sents the angle the vector makes with some
reference line. For example, if line OF in figure
656 were used as the reference line, vector OA
could be represented by the notation 120/46°,
where 120 represents the magnitude of the
quantity, and /46° represents the direction
with respect to line OE. With respect to line
ON, vector OA, would be represented by the
notation 120 /—46°.

179. Addition of Vectors, Parallelogram Method

The addition of vectors by the parallelogram
method is shown in figure 56. To add vector
OA to OC, draw a vector OC with its initial
point located at the initial point of vector OA,
and complete the parallelogram with these
vectors forming two sides. The diagonal vectar
OB, with its initial point at the same initial
point of OA and OC and its terminal point at
the opposite vertex of the parallelogram, is the
sum of OA and OC. Thus, two vectors (O4 and
0C) acting simultaneously on a point or object
may be replaced by a single vector called the
resultant (OB). The resultant vector will pro-

TME84-64

Figure 56. Adding vectors, parallelogram method.
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A
v
8
c
TME84-200

Figure 57. Resolution of three vectors.

duce the same effect on the object as the joint
action of the two vectors.

180. Addition of More Than Two Vectors

a. In determining the resultant (par. 179) of
vectors when more than two quantities are
represented, proceed as follows:

(1) Find the resultant of two of the vector
quantities,

(2) Determine the final resultant between
the third quantity and the resuitant
obtained from (1), above.

b. Assume three forces U, V, and W are act-
ing on point O as shown in A, figure 57. Force
U exerts 150 pounds at an angle of 60°, V
exerts 100 pounds at an angle of 135°, and W
exerts 150 pounds at an angle of 260°. Find
the resultant of forces on point O.

(1) The resultant of any two vectors, such
as U and W, are determined graph-
ically by the line R, (B, fig. 57). To
solve this problem first draw the vec-
tors to scale at the designated angles;
then construct the parallelogram
OUTW with adjacent sides WT and
UT. The resultant R, of OW and OU
will be the diagonal OT.

(2) Combine the resultant R, with force
V, then construct another parallelo-
gram ta scale as in (1), above. The
final resultant R, is similarly deter-
mined by the line SO (C, fig. 67).

TME84-183

Figure 58. Horizontal and vertical components
of vector.
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This, then, is the resolution of all
three forces U, V, and W acting on
point O.

181. Components of a Vector

a. A vector may be resolved inta components
along any two specified directions. If the di-
rections of the components are chosen so that
they are at right angles to each other, the com-
ponents are called rectangular components.

b. By placing the initial point of a vectar at
the origin of the X and Y axes, the rectangular
components are readily obtained either graph-
ically or by computation. In figure 58, a vector
with a magnitude of 5 and a direction of 58° 6’
is shown broken down into a horizontal compo-

nent of 8 and a vertical component of 4. This
is done by using the sine and cosine function
as follows:

sin 53° 6’ = %‘-
79968 = %A
BA = 6 X .79968
= 4 (approx)
cos 53° 6’ = %§
60042 = %
OB = b X .60042
= 8 (approx)
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PART N
APPLICATIONS OF MATHEMATICAL PRINCIPLES TO COMMON
COMMUNICATIONS-ELECTRONICS PROBLEMS

CHAPTER 13
INTRODUCTION

182. Series Circuits 16 | G

. . C:— C,C, C,C,

In a geries circuit, electrical energy is sup-

plied to a number of devices in series; that is 1_6G6+C
the same current passes through each device C C\C:
in completing its path to the source of supply. C = g,C;
Figure 59 shows a resistance, an inductor, and "7 C, + C,

a capacitor connected in series with a voltage
source.

a. The current is the same in all parts of a
series circuit.

b. The total voltage drop (E,) in a series
circuit is equal to the sum of the voltage drops
across individual loads:

E'=E1+E3+Es+...

c. The total resistance (R,) of a series circuit
is equal to the sum of all individual resistance:

Re=Ri+R:+Rs+...

d. The total inductance L, of a series circuit
is equal to the sum of the individual induct-
ances:

Li=L,+Ly +Ls + ...

e. The reciprocal of the total capacitance
(C,) is equal to the sum of the reciprocals of
the separate capacitances. The total capacitance
is also less than the capacitance of any one of
the capacitors, and is expressed as follows:

1 1 1 1
=ttt
If only two capacitances are in series, a simpli-
fied formula can be derived by combining frac-
tions over an LCD, and taking the reciprocal:

1 1
¢ te

1
C:

If two or more capacitors of equal value are
placed in series, the total capacitance is equal
to the value of one capacitor (¢) divided by the
number of capacitors used (n) :

c =S

n

This equation can be derived as follows (assum-
ing 3 equal-value capacitors) :
1 _ 1.1 1

c=cate t Cs
1 1 1 1
c=ctctcT
1 _3
c.— C
C( = %
R~
b AYAY:
VOLTAGE p
SOURCE p
. Y
/1 _ T™E84-T

Figure 59. Example of a series circuit.
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183. Parallel Circvits

Figure 60 is an example of a simple parallel
circuit, with two resistors connected in parallel
across a generator. As indicated by the arrows,
the current from the generator separates into
two parts, each resistar receiving a part of the
total current. The larger fraction of current
flows through the branch of less resistance, and
the smaller fraction of current flows through
the branch of greater resistance. The two parts
of the current join again upon leaving the re-
sistors.

a. The total current (I,) in a parallel circuit
is the sum of the currents in the separate
branches:

I'=Il +13+13+ .............

b. The voltage (E) across each branch of a

parallel circuit is the same:
El = Ez = Eg .........

¢. The reciprocal of the total resistance (R,)
of all resistors in a parallel circuit is equal to
the sum of the reciprocals of the separate re-
sistance. The total resistance is also less than
the resistance of any one of the resistors, and
is expressed as follows:

If only two resistors are in parallel, a simplified
formula can be derived for the total resistance
as for total capacitance in a series circuit (par.
182¢) :

If two or more resistors of the same value are
placed in parallel, the total resistance is equal
to the value of one resistor (R) divided by the
number of resistors used (n), as for capaci-
tances, in series (par. 182¢):

R,=£
n

AGO S88A

— —
—_— —_—
—_— —_—
()
\/- TME84- T3

Figure 60. Ezample of a parallel cireuit.

d. The reciprocal of the total inductance
(L) in a parallel circuit is equal to the sum of
the reciprocals of the separate inductances, as
with resistances (¢ above) :

1 1 1 1
L=L vt tg -
The rules covering the calculation of resistances
in parallel (¢ above) also apply to inductances
in parallel.

e. The total capacitance in a parallel circuit
is equal to the sum of the individual capaci-
tances, as for resistances and inductances in
series (par. 182c and d) :

C.=Cl +Cz+C3 +....
The rules covering the calculation of resistances

and inductances in series also apply to capaci-
tances in parallel.

184. Series-Parallel Circuit

A series-parallel circuit is simply a combina-
tion of a series circuit and a parallel circuit.
The rules covering series circuits (par. 182)
apply to the series portion of the circuit, and
the rules covering parallel circuits (par. 183)
apply to the parallel portion of the circuit. The
examples given in chapters 14 through 18 more
clearly illustrate the various types of circuits.
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CHAPTER 14
PROBLEMS IN DC ELECTRICITY

185. General

In circuits using constant-value dc elec-
tricity, only the effects of the resistance in the
circuit are significant, because inductance and
capacitance depend on varying current or volt-
age. Consequently, the examples given in this
chapter involve only resistances.

186. Ohm's Law

a. An important relationship between cur-
rent (I), voltage (E'), and resistance (R) in a
circuit is given by Ohm’s law which states that
the current in an electrical circuit varies di-
rectly as the voltage and inversely as the resist-
ance. Expressed in a formula, the relationship
is:

E
I=E

The formula may also appear in the following
forms:

E = IR
E
R=T

b. The following example illustrates Ohm’s
law:

KEzample: Solve the following problem:
A voltmeter (voltage measur-
ing device) connected directly

187. Solving Series Circuits

across a resistance reads .65
volts (fig. 61). An ammeter
(current measuring device) con-
nected in series reads 5.3 am-
peres. What is the value of the
resistance in ohms?
E =65I=53R="?
E
R = T
— 8
R=33
= 12.26 or 12.3 ohms.

€=G8 VOLT®

Rep ONMS

(+)
\_/

T5.3 AMPERES

THESe-TO

Figure 61. Simple circuit with unknown resistance.

The following example illustrates the method of using Ohm’s law and the principles of series

circuits (par. 182) to solve series dc circuits.

Ezample: Solve the following problem:

Resistors R,, R,, and R; are connected in series across a
110-volt generator (fig. 62). If resistor R; = 6.5 ohms,
resistor R, = 10.8 ohms, and resistor B3 = 7.6 ohms, what
is the total current in the circuit? What is the voltage drop

across each resistance?
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Step 1.

Step 2.

Step 3.

Step 4.

Step 6.

Check:

Find the total resistance in the circuit.
Ry = Ry + Ry + Ry
= 65410383+ 17.6
= 24.4 ohms total resistance

Find the total current in the circuit.
E = IR
110 = 1(24.4)
24.4] = 110

I = 4.508 amperes total current

Find the voltage drop across R;.

E = IR
= 4.508(6.5)
= 29.302 volts across R,
Find the voltage drop across R..
E = IR
= 4.508(10.3)
= 46.432 volts across R,
Find the voltage drop across R;.
E = IR
= 4.508(7.6)
= 84.261 volts across R,

84.261 4 46.432 4 29.303 = 109.996 or 110 volts.

8.5 OHMS
V v v
"o 2
G"‘ voLTS éno.s oHmMS
<
"y
RS s TMEB4-T2

Figure 62. Series circuit with unknown current,

188. Solving Parallel Circuits

The following example illustrates the method of using Ohms’ law and the principles of parallel
circuits (par. 183) to solve parallel de circuits.

Ezxample:

Solve the following problem:

In figure 63, a resistor of 200 ohms (R,), a resistor of 600
ohms (R.), and an unknown resistor (R;) are connected in
parallel across a source of emf. The voltage across R, is 40
volts. The current through the resistor of unknown value
(R;3) is 0.40 ampere. Find (a) the value of R;, (b) the total
resistance of the circuit, and (¢) the total current, in the
circuit.



Step 1. Find the voltage across R;.
E 1 = Eg = Ea
Since the voltage across R, is 40 volts, the voltage across
Ry is also 40 volts.
Step 2. Find the resistance of Rg.
Rs — EII
3
_ 10
- 4
= 100 ohms
Step 8. Find the total resistance of the three resistors.

1 1 1
R=FB*tE TR

1 1 1
R =200 " 800 T 100
3 1 6
R, =600 T 00 * 800
1_ 10
R, = 600
10R, = 600
600
R' = To-
= 60 ohms
Step 4. Find the line current in the circuit.
1 = E:
t — Rg
_ 40
— 60
= 0.667 ampere
R12200 ONMS

—AAA—

R2:600 OHMS

N e —

R3:p OHMS

il

TMES4-T4

Figure 63. Parallel circuit with three resistances,
one unknown.

189. Solving Series-Parallel Circuits

A simple series-parallel circuit, with series-connected resistors R, and R, connected in paral-
Jel with resjstor R, and the combination connected in series with resistors R, and R;, is shown
in A, figure 64. The following example uses B through D, figure 64, to illustrate the method of
selving series.parallel dc circuits.
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Ezample:

Step 1.

Step 2.

Step 8.

Step 4.

Step 5.

Step 6.

.Find the current through each resistance and the voltage

drop across each resistance in A, figure 64.

Since R, and Rg are in series, their total resistance is the
sum (B, fig. 64) of the two resistances.

R,, R. + Rg
5 4+ 16
20 ohms
R.s is in parallel with R,. Find the total resistance of the
combination (C, fig. 64).

1 1 1
R:si = Ras + R,
1 1 1

Rise — 20 + 30

1 3 2
Foee — 60 T 80
1 _ s
Riss — 60
5Rz.a.o = 60
0
Rz.u = %

Rz'a,g = 12 ohms
R, R34 and R; are in series. Their total resistance is the
sum (D, fig. 64) of the resistances.

Ri234s = Ri+ Rasu+ Rs
3+12410
25 ohms
Find the total current sent through these resistances by
a voltage of 100 volts.

- E
I, = R,
— 100
- 2b
= 4 amperes
Find the voltage drop across R, s 4.
Ez.m = le.u
= 4 X 12
= 48 volts

Analyze the parallel circuit.
The voltage across R, is 48 volts. Find the current.
E
I, = 'I_f:
_ 48
- 30
= 1.6 amperes
The voltage across R, and Ry also is 48 volts, and the re-
sistance R., is 20 ohms. Find the current.

= 2.4 amperes (I, = I)
131



Step 7. Find all voltage drops.
E, LR,

4 X3

12 volts

IR,

24 X b6

12 volts

24 x 16

36 volts

IR,

1.6 X 80

48 volts

IsR;

4 X 10

40 volts

:\./-v\'mt
S

\ 4

LIS

iy

O T T T T A T

Es

€100 VOLTS

1"lF A

*MF c
."W:.” onus

€°100 VOLTS
Al

1]
TME04-T5

Figure 64. Solving a series-parallel circuit.

190. Solving More Complex Electrical Problems
by Using Kirchhoff's Laws

a. General. The more complex series-
parallel problems are often more readily
solved by using Kirchhoff’s laws. A full treat-
ment of the electrical phenomena embodied
in Kirchhoff’s laws is not within the scope of

this manual. For a complete treatment of elec-
trical theory on this subject, see TM 11-661.
The basic principles of Kirchhoff's laws are
as follows:
(1) The algebraic sum of the currents at
any junction of conductors is zero.
(2) The algebraic sum of the electromo-
tive forces and voltage drops around
a closed circuit is zero. .

b. Understanding Kirchhoff's Laws. The
first of Kirchhoff’s laws simply means that
there is just as much current flowing away
from a point as there is flowing to it. The
second law simply means that the voltage
source is equal to the sum of the voltage drops
around any closed circuit. For example, start-
ing at point X (fig. 66) and going around the
circuit clockwise, the following equation is
obtained :

E—IR, —IR; —IR; =0
Substituting the values of resistance as indi-
cated in the figure, the equation becomes:

87T — 181 — 91 — 111 =0
Collecting like terms and solving for I gives:

37 — 831 =0

331 = 37
I = 1.121 amperes
To prove that this is correct, use Ohm’s law
as follows:

E, = IR; = 1.121 X 18 = 14.58 volts
E, = IR; = 1.121 X 9 = 10.09 volts
E; = IR; = 1121 X 11 = - 12.88 volts

Thus, the sum of the voltage drops equals the
applied voltage and the second law is verified.

¢. Solving Series-Parallel Circuits Using
Kirchhoff's Laws. Problems involving series-
parallel circuits are readily solved by using
Kirchhoff’s laws and simultaneous: equations
(par. 84). The example below illustrates such
a problem.

WV—W‘VV‘

ISA .A ll.ll.
X (scn)
— -\ —
TV Tiess-03

Figure 65. Example of Kirchhoff’s second law.




Ezample:

Step 1.

Step 2.

Step 8.

Step 4.

Step 6.

Step 6.

AGO 588A

Solve for the current in each branch of the circuit shown
in figure 66.

Assume a direction for the current flow in each branch, as
shown in the figure. (It will be shown that the direction
assumed does not affect the accuracy of the result.) Accord-
ing to Kirchhoff’s first law, the current I, flowing through
the 6-ohm resistor plus the current I, flowing through the
7- and 8-ohm resistors equals the current I; 4 I, flowing
through the remainder of the circuit, which includes the
5-ohm resistor.

Considering the first part of the circuit, from point B
through the generator and around the circuit back to point
B through the 6-ohm resistor, the application of Kirchhoff’s
second law yields the following equation:
10—6(,+1;) —6I, =0
10 —56l, —6I;, — 6I; = 0
10 — 111, — b6I; = 0 (equation 1).

Considering the path from point B through the generator
and through points A, X, and Y back to B, the application
of Kirchhoff’s second law yields the following equation:

10—=58U, +1;) —TU;— 8, =0
10—51‘—'512 — 713— 812 =0
10 — 61, — 201, = 0 (equation 2).

Using the methods of solving simultaneous equations de-
scribed in paragraph 116, solve for I, by multiplying equa-
tion 1 by 4 and subtracting equation 2 from the new equa-
tion:

40 — 44/, = 20I, = 0
10 — b6I, — 20, = 0
30 — 391, =0
— 391, = —30
I, = 0.769 ampere

Solve for I, by substituting the value of /, in either equa-
tion 1 or equation 2, or by eliminating I, in solving the
simultaneous. . equations, Substituting I, in equation 2
yields the following:

10 — 5(0.769) — 20/, = 0
10 — 3.8456 — 20/, = 0
— 201, = —8.155
1; = 0.308 ampere

The current in the left-hand side of the circuit is I, 4 I,
or 1.077 amperes.
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Figure 66. Solving series-parallel circuits, using
Kirchhoff’s laws.

d. Direction of Current Flow. If the direc-
tion of current flow is assumed incorrectly,
the computed value for the current will have
a negative sign; however, the magnitude of
the current will be the same. Therefore, to
correct the error, simply reverse the assumed
direction of current flow on the diagram.

e. Facts to Remember When Working Prob-
lems. The solution of problems involving
series-parallel circuits by the above method
normally is relatively simple. The important
facts to remember when working such prob-
lems are:

(1) Assume any direction of current flow
in the beginning.

(2) Take any path around any portion
of the circuit, as long as the path is
a complete circuit.

(3) Observe the polarities. of the circuit,
both voltage sources and voltage
drops.

(4) Be sure to have as many equations as
there are unknowns.

191. Dc Power

In dc circuits, the amount of power absorbed
by a resistor or the resistance of a circuit is
easily determined by Joule’s law:

P = I!R, where:
P = power absorbed in watts
I = total current in amperes
R = total resistance of the circuit in ohms

Since the voltage drop (E') across a resistor
(R) is equal to IR, the formula above may also
be written: P = IR x I =EI.

"

Ezample 1: Find the power consumed in a
50-ohm resistor when a current
of 5 amperes flows through it.

P = IR
6t X 60
1,250 watts

Ezample 2: Find the power delivereda by a
12-volt battery when the cur-
rent drain is 6 amperes.

) o EI
12 X 6
T2 watts

192. Review Problems—Dc Electricity

a. (1) The resistance of a tungsten lamp is
20 ohms when the lamp is cold. What current
will the lamp draw the instant it is placed
across & 110-vo!r line? (2) When the lamp is
glowing at full brilliancy, its resistance rises
to 84 ohms. What is the final steady current
of the lamp?

b. An adjustable resistor has a minimum
setting of 14 ohms and a maximum setting of
50 ohms. (1) What ranges of resistance can
be covered with two of these resistors con-
nected in series? (2) What ranges of resist-
ance can be covered with two of these resistors
connected in parallel?

¢. When a 6,600-ohm resistance is con-
nected into the plate circuit of a radio tube,
the plate current is 34 milliamperes. (1) What
is the voltage drop across the 6,500-ohm re-
sistance? (2) How much power is consumed
by the resistor?

d. Three resistors of 20 ohms, 30 ohms, and
50 ohms, respectively, are connected in series.
The current through R; (20 ohms) is 0.8 am-
pere. (1) What is the current through R,
(50 ohms)? (2) What is the voltage across
R, (30 ohms)? (3) What is the total voltage
drop across the three resistors?

e. A divided circuit has three branches of
5, 10, and 20 ohms resistance, respectively.
(1) What is the joint conductance of the three
branches? (Conductance is the reciprocal of
resistance.) (2) What is the joint resistance?
(3) A current of 20 amperes flows in the 5-
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ohm branch; find the current in each of the
other branches. (4) Find the combined cur-
rent.

f. A parallel circuit has branches with re-
sistances of 1, 8, 10, 20, and 50 ohms, respec-
tively. (1) What is the conductance of each
branch? (2) What is the conductance of the
combination? (8) What is the resistance of
the combination?

g. Three resistors R, (36 ohms), R, (42
ohms) and R; are connected in series with a
generator. An ammetler inserted in the circuit

between R, and R; reads 2.4 amperes, and a
voltmeter across R, reads 41 volta. (1) What
is the resistance of Ry? (2) What is the volt-
age across R, ? (3) What is the voltage across
R;? (4) What is the voltage across the gen-
erator?

h. Find the total resistance of: (1) circuit
A when R, = 6 ohms, R; = 9 ohms, R; = 17
ohms, R, = 6 ohms, Ry = 11 ohms; (2) cir-
cuit a when R, = 12 ohms, R, = 25 ohms, R,
= 19 ohms, R, = 8 ohms, Ry = 12 ohms. (8)
circuit B; (4) circuit C.

A,

10 OHMS
A

§. A 10-ohm resistor is connected in series
with a 15-ohm resistor. (1) What voltage
must be placed across the two resistors to
send a current of 5 amperes through it? (2)
What would the voltage be across each re-
sistor?

5. (1) What voltage is required to force a
current of 10 amperes through a parallel com-
bination of three branches having resistances
of 15.8 ohms, 1.8 ohms, and 10.5 ohms, re-

AGO ss8A
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spectively? (2) What will the current be in
each branch? (3) What is the voltage drop
across each branch?

k. A generator has an output voltage of
110 volts. (1) What current is flowing in a
wire of 0.02 ohm connected across the termi-
nals? (2) What current will flow if an in-
candescent lamp of 484 ohms is also connected
across the generator?



l. Find the total resistance of each of the

parallel circuits A, B, and C.

1S OHMS

ISOHMS

18 OHMS

(A0

\_J

880 VOLTS

16 OHMS

il

1800 VOLTS

200 VOLTS

NOTE:

@ INDICATES GENERATOR

TME84-T77

m. Find the total resistance of each of the

parallel circuits A, B, C, and D.

mL—r 0t ;:.:..E% u.(P
ez | i
EOL:_:L—T'S[ 5‘0 IOEOO #13 ﬂ‘:‘
8
ooL'::::a 2l E 'E 2l 3
—re ONMS OHMS OHMS
C

?-L 100 100 100 100
60 VOLTS -T oum%ouus ONMS 5, ONMS

0
o NOTE:
=" INDICATES BATTERY
= INDICATE e
AGO S88A




n. Find the total resistance of each of the parallel circuits A, B, and C.

120
voLTS

20 OHMS
ps 20 ONMS

c
. NOTE:
# INDICATES BATTERY
= TME84-T79

o. Find the total resistance of each of the parallel ¢ircuits A, B, and C.

30 OnMS

10 OHNMS

—AMA— —AM—

16 OHMS

8 OuMS

4 ONNS

20 ONNS

—AAN\N—

TME84-80

c

137



p. Find the current through each resistor in the circuit below.

I

‘D 1o0v

TMEG4 - 60

¢. Find the total resistance in the circuit below when a current of .5 amperes flows through
it.

32.65 v 23.678 v 8.5V 33v 11.7564 v

()
u TME84-69

r. Find the current through the resistors in the circuit below when 115 volts is applied across
the circuit.

3.567 18.67 189.6 22 17.678
R, Ry R Rg Rg
TME84-68
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CHAPTER 15
PROBLEMS IN AC ELECTRICITY

193. General

In circuits using ac electricity?, the current
is affected by inductance and capacitance as
well as resistance. In addition, certain com-
binations of these loads will produce unusual
effects, such as resonance (par. 202), not ex-
perienced in dc circuits. These phenomena are
used extensively in electrical and electronic
circuits. Consequently, problems in ac elec-
tricity are more complex than corresponding
problems in dc electricity.

194. Application of Vectors and Trigonometry
in Solving Ac Circuit Problems

a. As discussed in chapter 12, a vector is
a line whose length and direction represent
accurately a given quantity; the quantity thus
represented is a vector quantity. Because the
magnitude of ac currents and voltages varies
from instant to instant, the magnitude is a
function of time, and the current and voltage
can be expressed as vectors: The length of the
vector represents the magnitude of the cur-
rent or voltage, and the direction represents
its relationship in time to another vector (b
below).

b. When a circuit contains inductance or
capacitance, the current in the circuit is not
in phase with the voltage that produces it.
In other words, the instant the voltage is zero,
the current that it produces has a value other
than zero, or when the voltage is at its maxi-
mum, the current has a value different from its
maximum value. The current is said to lead
the voltage if the current reaches its maximum
before the voltage maximum occurs; the cur-
rent is said to lag the voltage if the current

1 This chapter is limited to the application of mathe-
matics to single-phase, sinusoidal ac. The electrical
phenomena of this type of ac are treated briefly. See
TM 11-681 for a complete treatment of single-phase,
sinusoidal ac.

= g

\
1

B. CURRENT (I) LAGS

VOLTAGE (E)
TMe84-18!

A. CURRENT (I) LEADS
VOLTAGE (E)

Figure 67. Veotor representation of leading and
lagging current.

reaches its maximum after the voltage maxi-
mum occurs. The relationship between cur-
rent and voltage can be represented by vectors,
with one vector representing current, another
voltage, and with the angle between them in-
dicating the amount of lag or lead. Figure 67
shows a vector representation of leading and
lagging current. The angle is called the phase
angle.

¢. The voltage drop across a resistor also
may be represented by a vector having the
same direction as the vector representing the
current flowing through the resistor. In other
words, the voltage across the resistor and the
current flowing through it are in phase.

d. The voltage drop across a capacitor may
be represented by a vector making an angle
of 90° with the vector representing the cur-
rent flowing through the capacitor. In a
purely capacitive circuit, the current will lead
the applied voltage by an angle of 90°.

e. The voltage drop across an inductor may
be represented by a vector making an angle of
90° with the vector representing the current
flowing through the inductance. In a purely in-
ductive circuit, the current will lag the applied
voltage by an angle of 90°.



f. In a circuit that contains inductance, ca-
pacitance, and resistance, the current will lead
or lag the applied voltage by a phase angle of
less than 90°.

g. The example below illustrates the use
of vectors in the solution of a typical ac cir-
cuit problem. Paragraphs 199 through 201
give a more detailed coverage of problems of
this type.

Ezample: 1In a series circuit (fig. 68), the
voltage drop across the capaci-
tor (E¢) is 10 volts, the voltage
drop across the inductance
(E.) is 50 volts, and the voltage
drop across the resistance (E)
is 80 volts. Determine the mag-
nitude of the applied voltage.
By what phase angle (4) does
the current lead or lag the ap-
plied voltage in the circuit?

c

IL
LAY

© 3

AAA
Wy

TME84-63

Figure 63. An ac series circuit containing inductance,
capacitance, and resistance.

Step 1. The vector diagram for this cir-
cuit is shown in figure 69. In a
series circuit, the same current
flows through each element.
Draw the vector representing
the current (I) in a horizontal
position. The angles of all vec-
tors representing voltage drops
are given with respect to the
current.

Step 2. Draw the vector E,, represent-
ing the voltage drop across the
inductance, at an angle of 90°
with the vector /.

Step 3. Draw the vector E., represent-
ing the voltage drop across the
capacitor, at a angle of —90°
with the vector I.

140

E-EcEx
80-10+ 40

En 1
30
TMES4-86

Figure 69. A vector diagram of an ac seriss circuit
oontaining inductance, capacitance, and resistance.

Step 4.

Step 5.

Step 6.

Step 7.

The vector E,, representing the
voltage drop across the resis-
tor, has the same direction as
the vector I.

The vector sum of these voltage
drops is equal to the applied
voltage.
Along the horizontal:
EL=0,E0=0,E3=30
Along the vertical :
EL=50,E0=—10,E.=0
Adding the horizontal and ver-
tical voltage drops, respec-
tively:
EL+E0+E.=0+0+80
E. + Ec + Ex = 50 +
(—10) +0=40
Because the vectors form a
right triangle, with the applied
voltage E as the hypotenuse
and Ex and E; as the sides
(fig. 69), the law of right tri-
angles (par. 183) can be used
to solve for one of the quantities
when the other two are known.
From this law, the relationship
between E, E,, and Er is ex-
pressed by the formula
E = VEF T ES.
E = VEF + EF

+
/300 F 1600
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Step 8. The formula for determining
angle A which the vector repre-
senting the applied voltage
makes with the vector I (fig.

_ Ex

69) istan A = E,
_ Ex
tan A = E,

40 4

= % or §

= 1.38338

A = B53° 7’ 48"
Step 9. The circuit is predominately in-

ductive; therefore, the current
lags the applied voltage by a
phase angle of 53° 7’ 48”.

195. Ohm'’s Law Applied to Ac Circuits

Because of the effects of inductance and ca-
pacitance in ac circuits, Ohm’s law (par. 188)
must be modified to take these added effects
into consideration.

a. If the circuit contains a combination of
resistance and inductive reactance (par. 196)
or capacitive reactance (par. 197), or both,
the overall effect is called impedance (par.
198), and Ohm’s law is modified to read:

E

=%

where I is the current in amperes, £ the ac
voltage in volts, and Z the impedance in ohms.
This formula may also be written:
E =12
_E
I {
b. If the circuit contains reactances only,
the formulas become:

E
=%
E = IX

E
X=7

where X is the total reactance (par. 198z) of
the circuit in ohms.

c¢. If the circuit contains resistance only,
the formula is the same as in a dc circuit (par.
186).

d. The application of these formulas in solv-
ing ac circuit problems is covered in para-
graphs 196 through 208.

AQO SseA

196. Inductive Reactance

Inductance enables an electric circuit to
build up a voltage by electromagnetic induec-
tion whenever the current strength changes.
The induced voltage always opposes the ap-
plied voltage and thus retards the change in
the current. Inductive reactance is the effect
of inductance expressed in ohms. The formula
for finding inductive reactance is:

X, = 2+fL

where X, is the inductive reactance in ohms,
L is the inductance in henrys, and f is the fre-
quency in cps.

Ezample 1: Determine the inductive reac-
tance of a coil if the ac in the
circuit has a frequency of 100
cps, and the inductance of the

coil is 0.036 henry.
X, = 2fL
= 2 X 8.14 X 100 x .036
= 628 X .036
= 22.608 ohms

Ezample 2: If a coil with an inductance of
0.2 henry and negligible resist-
ance is connected across the
terminals of a 220-volt, 60-cycle
ac generator, how much current
will flow through the coil?

Step 1. Find the inductive reactance of
the coil.
X, = 2«fL
= 2% 8.14 X 60 X .2
= 876.8 X .2
= 76.86 ohms
Step 2. Find the amount of current
that will flow through the coil.
- E
=¥
_ 220
— 176.36
= 2.92 amperes

197. Capacitive Reactance

Capacitance enables a capacitor to retain an
electric charge which opposes any changes in
the voltage of the circuit in which the capaci-
tor is connected. Capacitive reactance is the
effect of the capacitance expressed in ohms.
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The formula for finding capacitive reactance
is:
R W
Xe = gu5C
where X is the capacitive reactance, C is the
capacitance expressed in farads, and f is the
frequency in cycles per second.

Example: A 110-volt, 60-cycle ac genera-
tor is connected in series with
a l1-microfarad (10— farad)
capacitance. What is the ca-
pacitive reactance of the cir-
cuit?

1

Xc -_— 2'fc

- 1

— 2% 8.14 X 60 X 10—

_ 10¢

— 6.28 X 60

1,000,000

- 8768

= 2,663 ohms

198. Impedance

a. The impedance of a circuit is the circuit’s
total opposition to the flow of current. In a
de circuit, the opposition consists of resistance
alone. In an ac circuit, the opposition consists
of resistance and reactance (X). Inductive
and capacitive reactances can be combined, but
because their effects in the circuit are exactly
opposite—inductive reactance causes the cur-
rent to lag the voltage by 90° and capacitive
reactance causes the current to lead the volt-
age by 90°—they are combined by subtraction:
X =X, — Xcor
X =X— X, (subtracting the smaller

from the larger)

b. Resistance and reactance cannot be added
directly, but they can be considered as two
vectors acting at right angles to each other.
Thus, the relation between resistance, reac-
tance, and :mpedance may be illustrated by
a right triangle (fig. 70). Since these quanti-
ties may be related to the sides of a right tri-
angle, the formula for finding the impedance
of a circuit is:

Z'=R'+X’orZ=\/R*+X5
142

REACTANCE

RESISTANCE
TME84-81

Figure 70. The resistonce-reactance-impedance triangls.

where Z is the impedance in ohms, R is the
resistance in ohms, and X is the reactance in
ohms.

Example 1: A 110-volt, 60-cycle ac gener-
ator is connected in series with
a l-microfarad capacitance and
a 1,000-ohm resistance. The
capacitive reactance of the cir-
cuit is 2,660 ohms. What is the
impedance of the circuit?

Z = VEEF XO
\/(1000)* + (2650)*
VT (285 X TO)T
VIOV FT7.023 X 108
VB8.02Z8 X 10%

2.83 x 10

2,830 ohms

Ezample 2: A 800-volt, variable-frequency
ac generator is connected in
series with an inductive reac-
tance of 300 ohms, a capacitive
reactance of 100 ohms, and a
resistance of 100 ohms. What
is the impedance of the circuit?

¥4 + (A, — &¢

V/TO0)T ¥ (300 — T00)*

V{100)* + (200)?

VT (2 X 1002

VIOTFTX 10

VB X 10¢
2.286 X 102
228.6 ohms

AGO B3SA
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199. Solving Ac Circuits Having Resistance and Inductance

’ a. Series Circuits. The following examples illustrate the method of solving series ac circuits
having resistance and inductance (called series RL circuits) by using the principles described
in paragraphs 198 through 198.

Ezample 1: An ac circuit with a resistance of 1,000 ohms and an in-
ductance of 5 henrys is connected in series with a generator
(fig. 71). The voltage drop across the resistance is 51.5
volts, and the voltage drop across the inductance is 97 volts.
Find the applied voltage in the circuit. If the impedance
of the circuit is 2,132 ohms, what is the phase angle by
which the current lags the applied voltage?

Step 1. The vector diagram for this circuit is shown in figure 77.
In an ac series circuit, the same current flows through all
parts of the circuit—in this case, 0.061 ampere. Draw the
vector E, to represent the voltage drop across the resist-
ance. Draw the vector E, to represent the voltage drop
across the inductance.

Step 2. The vector sum of these voltage drops is equal to the applied
voltage. Adding the horizontal and vertical voltage drops,
respectively:

E, + Ex = 0 + 515 = 5156
E, + Ex = 97T 4+ 0 =97
Step 3. Find the applied voltage as follows:

E’ = EL + Eg’
= (97)* 4+ (51.5)
' = 9409 4 2652.25
= 12061.26
E = .
= 109.8 or approx 110 volts
Step 4. Find the phase angle by which the current lags the applied
voltage.
cos A = % (for series circuit)
— 1000
- 2182
0.46904

A = 62° 119"

L
8 MENRYS €
MM 97 VOLTS
R

5: 1,000

oNMS

Er
$1.5 VOLTS
TMEG4-086 TME84-87
Figure 71. An ac series eircuit containing inductanoe Figure 78. Ac series circuit containing inductance and
and resistence. resistance, vector diagram.
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Step 6.

Example 2:

Step 1.

Step 2.

Step 8.

Step 4.

Step 6.

Step 6.

Step 7.

Therefore, the current lags the applied voltage by a phase
angle of 62° 1’ 19”.
A 110-volt, 60-cycle ac generator is connected in a series
circuit to a load consisting of an inductance of 8 henrys
and a resistance of 10,000 ohms (A, fig. 73).
Find the inductive reactance of the circuit.
X, 2« fL
2x8.14 X 60Xx38
6.28 % 180
1180.4
1,180 ohms (approx)
Find the impedance of the circuit.
Z VB F X3
V/(10,000)* + (1130)2
/101,276,500

10,063.64
10,064 ohms (approx)
Find the effective current in the circuit. (The effective
value is the equivalent heating value of an alternating cur-
rent as compared to a direct current. It is also called the
root-mean-square (rms) value.)
1= E
1
_ 110
— 10,086
= 0.0109 ampere
In a series circuit, the same current flows through all parts
of the circuit. Therefore, the current through both the
inductance and the resistance is 0.0109 ampere.
Find the voltage drop across the inductance.
E. I1X,
0.0109 X 1180
12.817
12 volts (approx)
Find the voltage drop across the resistance.
Ex IR
0.0109 x 10,000
= 109 volts
Find the total voltage in the circuit. In an ac series circuit,
voltage drops are added vectorially (B, fig. 78).
E" = EL' + Ez'
(12)t 4 (109)*
144 4 11,881
12,025
VIZ028
109.6
110 volts (approx)

E,




A
’ 3 NE:RV.

P J R
(] :: 10,000
OHMS

Ep
109 VOLTS

TME84-9¢

Figure 73. Ac series circuit having inductance and
resistance, schematic end vector diagrams.

’ Step 8. Find the phase angle by which the current lags the applied
voltage.
cos A = -g
__ 10,000
— 10,065
= 0.99354
A = 6° 8Y

b. Parallel Circuits. The following examples illustrate the method of solving parallel RL cir-
cuits by using the principles described in paragraphs 193 through 198.

Ezxample 1: An ac circuit has an inductance and resistance connected
in parallel (fig. 74). The current flowing through the in-
ductance is 0.0584 ampere, and the current flowing through
the resistance is 0.11 ampere. What is the total current
in the circuit? If the impedance of the circuit is 884 ohms,
what is the phase angle by which the line current lags the
applied voltage?

Step 1. The vector diagram for this circuit is shown in figure 75.
In a parallel circuit the voltage drop across each inductance
or resistance is the same—in this circuit, 110 volts. Draw
the vector I, to represent the current through the resistor.
Draw the vector I, to represent the current through the

’ inductance.

AGO $5SA 48
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<

b
<

2 1,000
SHENRYS ¢ '

I
R 0584 AMPERE

OHMS

In
.1l AMPERE
TME84-90 TMGS4-9!

Figure 74. An ac parallel cireuit eontaining inductance Figure 75. Ae parallel circuit containing inductanes
and resistence.

Step 2.

Step 8.

Step 4.

Step 8.

Exzample 2:

Step 1.

Step 2.

146

and resistance, vecter disgram.

The horizontal and vertical currents, respectively are:
0.11 ampere
0.0584 ampere

Find the total current as follows:

In
I

n

~

I 4 It

(0.0584)* + (0.11)*

0.0084 + .0121
0.0155
1/0.0188
0.1245 ampere

Find the phase angle by which the line current lags the
applied voltage.

cos A = % (for parallel circuit)

A

884

= 1,000

0.88400

= 27° 52’ 48”

Thus, the line current lags the appliea voltage by a phase
angle of 27° 52’ 43”.

A 110-volt, 60-cycle ac generator is connected in a parallel
circuit to a load consisting of an inductance of 3 henrys
and a resistance of 10,000 ohms (A, fig. 76).

Find the inductive reactance of the circuit.

X

2«fL
2314 X60x3
6.28 X 180

1130.4

1130 ohms (approx)

Find the impedance of the circuit.

Z =

RX,

VRE+ X1

10,000 X 1180

10, +
104 X 1.13 x 10*

= V09I £ (1.13 x 100)}

1.18 X 107

VI FT2TT X 108
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Step 8.

Step 4.

Step b.

Step 6.

Step 7.

Step 8.

1.18 X 107

X + 1.877 X
1.18 X 107
VIOLZTT % 108
1.13 X 107
10.07 x 102
1128 x 10¢
1123 ohms (approx)

Find the line current in the circuit.
1= E
- Z
_ 110
- 1123
= 0.09796 ampere

Find the current flowing through the inductance.
E
I, = X,
110
1180
= .09734
= 0.0973 ampere (approx)

Find the current flowing through the resistance.
Ih=2%

__ 110

— 10,000

= 0.011 ampere

Find the total current in the circuit. In an ac parallel cir-
cuit, the currents through the separate parts of the circuit
are added vectorially (B, fig. 76).
I = 12+ Ig?
(0.097)2 4 (0.011)*
(9.7 X 10—2)2 4 (1.1 X 10—2)2
94.09 X 10—¢ 4 1.21 X 10—
95.8 x 10—+
V953 X 10—
9.8 X 10—
.098 ampere (approx)

In a parallel circuit, the voltage drop across one element
would be the same as the voltage drop across another ele-
ment in parallel with it. Thus, the voltage drop across
both the inductance and the resistance is 110 volts.

Find the phase angle by which the line current lags the

I,

applied voltage.
cos A = %
_ 1123
— 10,000
0.11230

A — 83° 33’ 52"
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Figure 76. Aec parallel circuit Aaving inductanocs and
resistance, schematic and veotor diagrams.

200. Solving Ac Circuits Having Resistance and Capacitance

a. Series Circuits. The following examples illustrate the method of solving series ac circuits
having resistance and capacitance (called series RC circuits) by using the principles deseribed
in paragraphs 198 through 198.

Example 1: An ac generator in a series circuit is connected to a load

Step 1.

Step 2.

consisting of a capacitance and a resistance (fig. 77). The
voltage drop across the capacitance is 103 volts, and the
voltage drop across the resistance is 39 volts. What is the
applied voltage in the circuit? If the impedance of the
circuit is 2,840 ohms, what is the phase angle by which
the current leads the applied voltage?

The vector diagram for this circuit is shown in figure 78.
In a series circuit, the same current flows through all parts
of the circuit—in this case, 0.039 ampere. Draw the vector
Er to represent the voltage drop across the resistance. Draw
the vector E; to represent the voltage drop across the
capacitance.

The vector sum of these voltage drops is equal to the applied
voltage. Adding the horizontal and vertical voltage drops,

respectively :
Ec + Ex =0 4 89 = 389




Figure 77. An ac series circuit containing oapacitance
and resistance.
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Step 8.

Step 4.

Step 5.

Ezample 2.

Step 1.

Find the applied voltage as follows:
E* = Eo* + Ex®

(108)* 4 (39)s

(1.08 x 102)% 4 (8.9 X 10)*

1.061 X 10¢ 4 15.2 X 10¢

106.1 x 108 4 16.2 X 10¢

121.8 x 10¢

VIZIZ X 10F

11.01 X 10

110.1 volts

Find the phase angle by which the current leads the applied

voltage.

E

R
cos A = 7
_ 1000
— 2840
= 0.35211
= 69° 24’
Thus, the current leads the applied voltage by a phase angle
of 69° 24,

A 110-volt, 60-cycle ac generator is connected in a series
circtit to a load consisting of a 2-microfarad capacitor and
a 10,000-ohm resistor (A, fig. 79).

Find the capacitive reactance of the circuit.
1
Xe = 3.7C
_ 1
T 2%8.14%60X2Xx 10—
1
~ 1758.6 X 10—¢
1
= 7536 X 10—
10
- 17.5686
__ 10,000
- 17.6386
= 1,827 ohms (approx)

Figure 78. Ac series oircuit containing capacitanocs
and resistance, vector diagram.
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Step 2.

Step 8.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Find the impedance of the circuit.

Z = \/REF X3
V/(10,000)* + (1827)2
VAT (1.327 x 10%)2
VIO F 1761 X 108

X 108 4-1.761 X
VIO X 108
10.088 x 103
10,088 ohms (approx)

Find the current in the circuit.
K
I'=3z
_ 10
— 10,088

= 0.0109 ampere (approx)

In a series circuit, the same current flows through all parts
of the circuit; therefore, the current through both the ca-
pacitance and the resistance is 0.0109 ampere.

Find the voltage drop across the capacitance.
E; IX,

0.0109 x 1827

14.46

14 volts

Find the voltage drop across the resistance.
Ex IR

0.0109 x 10,000

109 volts

Find the total voltage in the circuit (B, fig. 79).
Eg Ex* 4+ E

(109)* 4 (14)*

(1.09 X 10%)% 4 (1.4 X 10)*

1.1881 X 10¢ 4 1.96 X 10®

118.81 X 10% 4 1.96 X 10*

120.77 x 108

VIZOTT X 100

10.99 X 10

109.9 or 110 volts

Find the phase angle by which the current leads the applied
voltage.

R

Z

10,000
10,088
0.991178
0.99118
7° 87T

cos A

.|
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Figure 79. Ac series cirouit Aaving capacitance and
resistance, schematic and vector diagrams.

b. Parallel Circuits. The following examples illustrate the method of solving parallel RC cir-
cuits by using the principles described in paragraphs 193 through 198.

Ezxample 1: An ac circuit has a capacitance and resistance connected
in parallel (flg. 80). The current flowing through the ca-
pacitance is 0.0415 ampere, and the current flowing through
the resistance is 0.11 ampere. What is the total cufrent
in the circuit? If the impedance of the circuit is 988 ohms,
what is the phase angle by which the current leads the
applied voltage?

Step 1. The vector diagram for this circuit is shown in figure 81.
In a parallel circuit, the voltage drop across each capaci-
tance or resistance is the same—in this case, 110 volts.
Draw the vector I, to represent the current through the
resistor. Draw the vector I to represent the current
through the capacitance.

In
c ir .1 AMPERE
1 1,000

microrarap] onms Ic
L0418 AMPERE
TME84-02
Figure 80. An ac parallel circuit containing Figure 81. Ae parallel circuit containing capecitence
capacitance and resistance. and resistance, vector disgram.
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Step 2. The vector sum of the currents through the separate parts
of the circuit will be equal to the total current. Adding
the horizontal and vertical currents, respectively:

Io +1Ip =0+ .11 = .11

Ie 4+ Ip = 0415 4+ 0 = .0415
Step 8. Find the total current as follows:

r I + It

(.0145)* 4 (.11)

(1.45 x 10—-)2 4 (11 X 10—2)®

2.1 X 10— 4 121 X 10—

128.1 X 10—

d X

11.1 X 10—t

.111 ampere

Step 4. Find the phase angle by which the current leads the applied
voltage.

~

Z
R
988
1,000
= .98800
A = 20°17' 6" .

Step 5. Thus, the current leads the applied voltage by a phase

angle of 20° 17’ 6~.

Ezample 2: A 110-volt, 60-cycle ac generator is connected to a load
consisting of a 2-microfarad capacitance and a 10,000-ohm
resistance in parallel (A, fig. 82).

Step 1. Find the capacitance reactance of the circuit.

1
Xo = 377C

cos A

1
T 2x%8.14%X60X2x10-¢
1
~ 7.686 X 10—
_ _10¢
~ 17.5686
10,000
— 1.5686
= 1,327 ohms
Step 2. Find the impedance of the circuit.
z —_— RXO
VRT+ X732
___ 10,000 X 1327
V/(T0,000)* + (1820)F
104 X 1.827 X 10
VAT (1327 X 10%)?
1.327 X 10
+ 1.76 X
1.827 X 107

X 1084 1.76 X




AGO 38A

Step 8.

Step 4.

Step 5.

2

c e R e
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Figure 82. Ac parallel circuit having resistance and
capacitance, schematic and vector diagrams.

1.327 x 107
V10176 X 108
_ 1327 x 107
— 10.088 x 103
1315 x 10¢
= .1315 ohms (approx)

Find the current flowing through the capacitance.

I('=—X':

0.08289
0.0829 ampere

Find the current lowing through the resistance.
I = E
= R
110
10,000
= 0.011 ampere
Find the total current in the circuit.
12 = 1,2 412
- (.011)2 4 (.0829)2
(1.1 % 10—2)2 4 (8.29 X 10—2)2
1.21 x 10—* + 68.72 x 10—
69.93 x 10—¢

o
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Step 6.

Step 7.

I, = v8IB X 107
= 8.86 X 10—
= .0836 ampere (approx)
In a parallel circuit, the voltage drop across each capaci-
tance or resistance in parallel is the same. Thus, the volt-
age drop across both the capacitance and the resistance
is 110 volts.

Find the phase angle by which the current leads the applied
voltage.
Z
R
1316
10,000
0.18150
82° 26’ 87"

cos A

A

201. Solving Ac Circuits Having Resistance, Inductance, and Capacitance

a. Series Circuits. The following examples illustrate the method of solving series ac circuits
having resistnace, inductance, and capacitance (called series RLC circuits) by using the prin-

ciples described in paragraphs 198 through 198.

Ezample 1:

Step 1.

6 OHMS

AAA.

A 800-volt, 60-cycle ac generator is connected in series
with a 6-ohm resistance, an 8-ohm inductive reactance, and
a 16-ohm capacitive reactance (fig. 83). Find (1) the
resultant reactive voltage, (2) the current flowing in the
circuit, and (3) the voltage drops across the resistance,
the inductance, and the capacitance. (4) Check the solu-
tion by vectorially adding E;, E, and Ex. The result should
equal the applied voltage. (5) Find the phase angle by
which the current leads or lag