TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL,

DIRECT SUPPORT, AND GENERAL SUPPORT

MAINTENANCE MANUAL

RECEIVING SET, RADIO, AN/ URR-71

WARNING

HIGH VOLTAGE

is used in operation of this equipment. Exercise care to prevent contact with high voltage connection during operation or maintenance. DEATH or injury could result. Do not service or adjust this equipment alone. Personnel working with high voltage equipment should be familiar with modern methods of fit aid.

The 115 vac or 230 vac power to the receiver is lethal. The voltage is present at the input to the power transformer which is not accessible unless the transformer is removed from the chassis. Do not remove the power transformer fom the chassis during testing. The voltage is also present at the fuse terminals and at the FUNCTION switch terminals. Exercise caution to avoid these areas while testing.

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL RECEIVING SET, RADIO AN/URR-71 (NSN 5820-00-013-8944)

TM 11-5820-770-14, 23 August 1976 is changed as follows:

1. New or changed materiel is indicated by a vertical bar in the margin of the page.
2. Added or revised illustrations are indicated by a vertical bar adjacent to the illustration identification number.
3. Remove old pages and insert new pages as indicated below.

Remove Pages
i through iv
1-1 through 1-3
4-1 through 4-4
Index 1 and Index 2

Insert Pages
ithrough iv
1-1 throug 1-3/(1-4 blank)
4-1 throug $4-4$
Index 1 and Index 2
4. File this change sheet in front of the publication for reference purposes.

JOHN A. WICKHAM JR. General, United States Army Official:

ROBERT M. JOYCE Major General, United States Army The Adjutant General

DISTRIBUTION:

To be distributed in accordance with DA Form 12-51A-1, Operator's Maintenance requirements for AN/URR-69, 70, 71.

Operator's, Organizational, Direct Support, And General Support Maintenance Manual RECEIVING SET, RADIO AN / URR-71

(NSN 5820-00-013-8944)

TM 11-5820-770-14, 23 August 1976, is changes as follows:

1. New or changed material is indicated by a vertical bar in the margin of the page.
2. Added or revised illustrations are indicated by a vertical bar in front of the figure caption.
3. Remove and insert pages as indicated below:

Remove	Insert
i and ii.	i and ii
1-1 and 1-2.	1-1 and 1-2
4-1 and 4-2.	4-1 and 4-2
6-11 and 6-12.	6-11 and 6-12
7-5 thru 7-14	7-5 thru 7-14
A-1/(A-2 blank)	A-1/(A-2 blank)
F0-5	F0-5
F0-11	F0-11
F0-17	F0-17

4. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

Official: \quad| E. C. MEYER |
| :---: |
| General, United States Army |

Chief of Staff

ROBERT M. JOYCE
Major General, United States Army
The Adjutant General

DISTRIBUTION:

To be distributed in accordance with Special Mailing List.

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: DRSEL-ME-MP, Fort Monmouth, New Jersey 07703. In either case, a reply will be furnished direct to you.

		Paragraph	Page
CHAPTER Section	1. INTRODUCTION		
	I. General	1-1	-1-1
	11. Description and data.	-1-5	1-1
CHAPTER Section	2. SERVICE UPON RECEIPT AND INSTALLATION		
	I. Site and shelter requirements	2-1	2-1
	11. Service upon receipt	2-3	2-1
	III. Installation Instructions	2-5	2-3
CHAPTERSection	3. OPERATING INSTRUCTIONS		
	I. Controls and indicators	3-1	3-1
	II. Operation under usual conditions	3-3	3-2
	III. Operation under unusual conditions	3-7	3-3
	IV. Preparation for movement	3-10	3-4
CHAPTERSection	4. MAINTENANCE		
	I. General	4-1	4-1
	II. Operator/crew maintenance	4-4	4-1
	III. Troubleshooting	4-9	4-2
	IV. Organizational maintenance	4-11	4-2
$\begin{aligned} & \text { CHAPTER } \\ & \text { Section } \end{aligned}$	5. FUNCTIONING OF EQUIPMENT		
	I. Unit functioning	5-1	5-1
	II. Gear and tuner assembly	5-3	5-2
	III. AM receiver and subsystem	5-7	5-3)
	IV. FM receiver system	5-9	5-4
	V. Dust cover	5-11	5-5
CHAPTERSection	6. DIRECT SUPPORT MAINTENANCE		
	I. General	6-1	6-1
	II. Troubleshooting	6-3	6-1
	III. Maintenance	6-5	6-4
	IV. Testing	6-10	6-6

Figure	Title	Page
[-1)	Receiving Set, Radio AN/URR-71	1-0
2-1	Typical packing diagram	2-2
2-2	Tpical manpack installation	2-3
2-3]	Typcial fixed installation	2-5
2-4	Typical vehicular installation	2-6
3-1	Controls, indicators, and connectors	3-1
5-1	Block diagram, AMreceiver subsystem integrated circuit	5-4
5-2	Block diagram, FM receiver subsystem integrated circuit	5-5
6-1	Panel meter test connections	6-7
6-2	AM and CW sensitivity test connections	6-7
6-3	FM sensitivity test connections	6-8
6-4	Frequency calibrator accuracy test connections	6-9
6-5	Dial readout error test connections.	6-9
6-6	Discriminator output test connections	6-11
6-7	Diode output test connections	6-12
6-8	AM whip sensitivity test connections	6-12
6-9	IF amplifier gain adjustment connections	6-13
6-10	Front apnel component terminal numbering	6-14
6-11	Connector pin numbering	6-14
6-12	Lowpass filter fabrication.	6-17
6-13	Lowpass filter test connections	6-17
6-14	Gain test connections	6-18
6-15	IF amplifier assembly test connections	6-19
6-16	Detector assembly test connection.	6-20
6-17	Power supply assembly test connections	6-21
6-18	Calibration oscillator test connections .	6-22
6-19	Dust cover connector and switch pin numbering	6-22
7-1]	Motherboard, A1A1A2A1A1A1, parts location	7-6
7-2	RF preselector, A1A1A2A1A2, parts location	7.7
7-3	First RF amplifier, A1A1A2A1A3, parts location	7-8
7-4	Second RF amplifier, A1A1A2A1A4, parts location	7-9
7-5	Third RF amplifier, A1A1A2A1A5, parts location.	7-10
7-6	Oscillator-mixer, A1A1A2A1A6, parts location	7-11
7-7	IF amplifier, A1A1A2A3A1, parts location	7-12
7-8	Detector, A1A1A2A4A1, parts location	7-13
7-9	Power supply, A1A1A2A5A1, parts location	7-14
7-10	Regulator, A1A2A2A5A2, parts location	7-14
7-11	Calibration oscillator, A1A1A2A6A1, parts location	7-15
7-12	Reed switch lead forming dimensions . .	7-15
7-13	Reed switch mounting	7-15
7-14	Dial tape alignment . . .	7-19
7-15	Local oscillator aligment connections	7-20
7-16	Power supply voltage measurement connections	7-29
7-17	Calibration oscillator voltage measurement connections.	7-30
FO-1	Block diagram, AN/URR-71	
FO-2	Schematic diagram, ANA/URR-71	
FO-3	Schematic diagram, dust cover.	
FO-4	Simplified schematic diagram, RF tuner	
FO-5	Schematic diagram, motherboard.	
FO-6	Schematic diagram, RF preselector.	
FO-7	Schematic diagram, first RF amplifier	
FO-8	Schematic diagram, second RF amplifier	
FO-9	Schematic diagram, third RF amplifier	
FO-10	Schematic diagram, oscillator-mixer	
FO-11	Schematic diagram, IF amplifier .	
FO-12	Schematic diagram, detector .	
FO-13	Schematic diagram, power supply	
FO-14	Schematic diagram, calibration oscillator	
FO-15	Receiver, parts location	
FO-16	Dust cover, parts location	
FO-17	Radio assembly, parts location..	
FO-18	Front panel, parts location .	
FO-19	Gear and tuner assembly, parts location	
FO-20	Testpoint and adjustments location.	
FO-21	Color code chart; resistor, inductor, and capacitor .	

LIST OF TABLES

Number Title Page1-1Items comprising an operable equipment1-2
Technical characterietics 1-2
Common names and reference designations 1-3
Control, indi cators, and connectors 3-2
Operator/crew preventive maintenance checks and services. 4-2
Operator's troubleshooting. 4-3
Organizational troubleshooting 4-3
Organizational preventive maintenance checks and services 4-4
Direct support troubleshooting 6-1
Calibration frequencies 6-10
Radio assembly continuity and resistance checks 6-15
Front panel assembly continuity and resistance checks 6-16
Gain test frequencies 6-18
Bandwidth test levels 6-20
Dust cover continuity and resistance checks 6-23
Gear and tuner assembly troubleshooting 7-1
Motherboard troubleshooting 7-1
RF preselector troubleshooting 7-2
First RF amplifier troubleshooting 7-2
Second RF amplifier troubleshooting 7-2
Third RF amplifier troubleshooting 7-2
Oscillator-mixer troubleshooting 7-2
IF amplifier assembly troubleshooting 7-2
Detector assembly troubleshooting 7-3
Power supply assembly troubl eshooting 7-3
Calibration oscillator assembly troubleshooting 7-3
Power suppply (A1A1A5) wire list 7-16
Receiver wire list 7-17
Motherboard continuity and resistance checks 7-21
RF preselector continuity and resistance checks 7-22
First RF amplifier continuity and resistance checks 7-23
Second RF amplifier continuity and resistance checks 7-23
Third RF amplifier continuity and resistance checks 7-24
Oscillator-mixer continuity and resistance checks 7-24
IF amplifier quiescent voltages 7-25
IF amplifier dynamic voltages 7-26
Detector quiescent voltages 7-27
Detector dynamic voltages 7-28
Power supply ac voltage measurements 7-29
Power supply dc voltage measurements 7-30
Calibration oscillator voltage measurements 7-31

Figure 1-1. Receiving Set, Radio AN/ URR-71.

CHAPTER 1

INTRODUCTION

Section I. GENERAL

1-1. Scope

This manual describes Receiving Set, Radio AN/ URR-71 (fig. 1-1). Topics covered include installation, operation, functioning, and instructions for operator, organizational, direct support, and general support maintenance. It should be noted that intermediate level repairs are performed by direct or general support, depending upon the complexity of the repair.

1-2. Consolidated Index of Army Publications and Blank Forms

Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes of additional publications pertaining to the equipment.

1-2.1. Maintenance Forms, Records, and Reports

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the army forms and procedures used for equipment maintenance will be those prescribed by TM 38-750, The Army Maintenance Management System.
b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed in AR 735112/DLAR 4140.55/NAVMATINST 4355.73A/ AFR 400.54/MCO 4430.3F.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as pre-

1-2.2. Reporting Equipment Improvement Recommendations (EIR)

If your equipment needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: DRSEL-ME-MP, Fort Monmouth, New Jersey 07703. We'll send you a reply.

1-3. Destruction of Army Electronics Materiel

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

1-4. Administrative Storage

Administrative Storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts before storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness. Disassembly and repacking of equipment for shipment or limited storage are covered in TM 740-90-1.

Section II. DESCRIPTION AND DATA

1-5. Purpose and Use

Receiving Set, Radio AN/URR-71 is a solid state superheterodyne receiving set. The receiver frequency range is in the 19.0 to 157.5 MHz band operating from fixed sites, vehicular installations, or as a backpack radio. Operating modes include AM, FM, and CW, This radio set may be powered by 220 vat, 110 vat, 24 vdc external power, or from internal batteries.

1-6. Description

a. Receiving Set, Radio AN/URR-71. Receiving Set, Radio AN/URR-71 (f \quad q. 1-1) consists of Receiver R-1518/UR, Antenna AS-2887/UR, and Field Pack CW- 1005/UR. These items are described in the following subparagraphs,
b. Receiver R-1518/ UR. Receiver R-1518/UR (1, figure 1-1 is housed in a rectangular metal case. Operating controls, indicators and connectors are installed on the front and rear panels of the unit. The metal case detaches from the front panel and may be removed to provide access for internal maintenance. A rear cover may be removed from the case for battery installation.
c. Antenna AS-2887/ UR. Antenna AS-2887/UR (3, fq. 1-1) is a whip antenna terminated by a male TNC connector suitable for use with Receiver R1518/UR antenna input connector \#l.
d. Field Pack CW-1005/UR. Field Pack CW1005/UR (2, fig. I-I) is a cotton duck carrying case capable of containing Receiver R-1518/UR, Antenna AS-2887/UR, and running spare lamps and fuses (5

1-1. The common name and reference designations of major assemblies within the receiver are shown in table 1-3.

Table 1-1. Items Comprising an Operable Equipment

USN	Item	Common name	Qty	Dimensions (in.)			Weight (b)
				Length	Width	Height	
5820-00-013-8944	Receiving Set, Radio AN/URR-71 consisting	Radio set	1				
5820-00-013-9001	Receiver R-1518/UR	Receiver	1	9-3/8	7-1/8	5	11 max (less batteries)
5820-00-013-9005	Antenna AS-2887/UR	Antenna	1	39			
5820-00-763-3101	Field Pack CW-1005/UR	Field pack	1	13	8	51/2	21/2

Table 1-2. Technical Characteristics

Power requirements:

Frequency range:
Frequency stability:

Tuning rate:
sensitivity (for $10 \mathrm{db} \frac{\mathbf{S}+\mathbf{N}}{\mathbf{N}}$)
(for $20 \mathrm{db} \frac{\mathbf{S}+\mathbf{N}}{\mathbf{N}}$)
Spurious responses:

IF frequency:
IF bandwidth:
Audio output:
Audio response:
Diode output:
Calibration crystal frequency
RF input:

110 or 220 volt 50 to 400 Hz or 24 vdc external power or twelve BA-30/U type batteries for internal power.
Maximum power consumption: 5.5 watts for ac, external; 3 watts for dc, external; 1.5 watts for internal battery.
19.0 to 157.5 MHz in two continuous tuned bands; Band 1, 19.0 to 52.5 MHz ; Band 2, 47.5 to 157.5 MHz .
$\pm 0.03 \%$, zero to 5 minutes of operation at ambient temperature; $\pm 0.01 \%, 5$ minutes to 60 minutes of operation at ambient temperature. Temperature stability; $\pm 0.5 \%$ over the temperature range of -400 F to $+154^{\circ} \mathrm{F}$.
Fast mode; 12 turns per band, continuous tune. Slow mode; approximately one-fortieth fast tuning rate.
Mode
Sensitivity
AM 1.2 microvolts, $30 \%, 1000 \mathrm{~Hz}$ amplitude modulated signal at 10 KHz bandwidth.
CW 0.4 microvolt at 10 kHz bandwidth.
FM 1.2-microvolt, $15-\mathrm{kHz}$ deviated, $1000-\mathrm{HZ}$, frequency modulated signal at $75-\mathrm{kHz}$ bandwidth.
a. Image rejection - at least 80-db suppression from 19 MHz to 52.5 MHz in band 1; 80 db at $47.5 \mathrm{MHz} ; 60 \mathrm{db}$ at 102 MHz , and 50 db at 156 MHz in band 2.
b. IF rejection-at least 80 db .
c. Intermodulation; at least 66-db suppression, except in-band third order products, 60 db .
d. Crossmodulation; separation of 30.5 MHz , suppression at least 40 db : $\pm 1.25 \mathrm{MHz}, 60 \mathrm{db} ; \pm 3.75 \mathrm{MHz}, 80 \mathrm{db}$.
10.7 MHz .

10 kHz or 75 kHz , selectable.
20 milliwatts minimum with 18 vdc internal supply, VOL control at maximum. 300 to $2,500 \mathrm{kHz}$, nominal.
2 volts or greater negative voltage across a 50,000 ohm load.
$2 \mathrm{MHz} \pm 0.005 \%$.
2 switched antenna inputs: 1 is TNC-type, high inpedance, 2 is BNC-type, nominal 50 ohms.

Table 1-3. Common Names and Reference Designations

Common name	Reference designation
Radio assembly	A1A1
Control panel assembly	A1A1A1
Gear end Tuner assembly	A1A1A2
RF tunner assembly	A1AA1AA1
Tuner subassembly	A1A1A2A1A1
Circuit card motherboard	A1A1A2A1A1A1
Preselector bard	A1A12A1A2
First RF amplifier	A1A1A2A1A3
Second RF amplifier	A1A1A2A1A4

Table 1-3. Common Names and Reference Designations

common name	Reference designation
Radio assembly	A1A1
Control panel assembly	A1A1A1
Gear and Tuner assembly	A1A1A2
RF tunner assembly	A1A1A2A1
Tuner subassembly	A1A1A2A1A1
Circuit card motherboard	A1A1A2A1A1A1
Preselector board	A1A1A2A1A2
First RF amplifier	A1A1A2A1A3
Second kF amplifier	A1A1A2A1A4
Third RF amplifier	A1A1A2A1A5
Oscillator mixer	A1A1A2A1A6
IF amplifier assembly	A1A1A3
IFamplifier	A1A1A3A1
Detector assembly	A1A1A4
Detector	A1A1A4A1
Power supply assembly	A1A1A5
Power supply circuit card assembly	A1A1A5A1
Regulator	A1A1A5A2
Calibration oscillator assembly	A1A1A6
Calibration oscillator circuit card assembly	A1A1A6A1
Dust cover assembly	A1A2
Battery cover assembly	A1A2A1

CHAPTER 2

SERVICE UPON RECEIPT AND INSTALLATION

Section I. SITE AND SHELTER REQUIREMENTS

2-1. Siting

a. Portable or Vehicular Use Ideal operating sites are often not available when the radio set is operated in a portable or vehicular configuration. However, when the tactical situation allows, make an effort to obtain the following operating conditions:
(1) Antenna clear of nearby obstructions.
(2) Site clear of electromagnetic radiation sources (high-tension lines, operating electric motors, etc).
(3) Good ground conditions available.
b. Fixed Installation. Consider the following general requirements when choosing a site for a fixed installation of the radio set:
(1) Ample clear space to install an antenna for the lowest operating frequency.
(2) Antenna site as high above surrounding terrain as possible.
(3) Good ground conditions available.
(4) Adequate shelter available for operators and equipment.
(5) 110 vac or 220 vac power available.
(6) Site clear of electromagnetic radiation sources (high-tension lines, operating electric motors, etc).

2-2. Shelter Requirements

The radio set is capable of operation in severe environments and requires no special shelter. However, use shelter, if available, to keep the equipment dry and free of dust. This will help reduce corrective maintenance requirements.

Section iil. SERVICE UPON RECEIPT

2-3. Unpacking

Fiqure 2-1 shows typical packaging for the receiving set. Open top cover of outer carton, remove top pad
and manual, and carefully remove receiving set from shipping container.

Figure 2-1. Typical packing diagram.

2-4. Checking Unpacked Equipment

a. Inspect the equipment for damage incurred during shipment, If the equipment has been damaged, report the damage on DD Form 6 [para 1.] 2).
b. Check the equipment against the component listing in table 1-1 and the packing slip to see if the shipment is complete. Report all discrepancies in accordance with paragraph 1.2. The equipment should be placed in service even though a minor assembly or pert that does not affect proper functioning is missing.
c. Check to see whether the equipment has been modified. Equipment which has been modified will have the MWO number on the front panel, near the nomenclature plate. Check also to see whether all currently applicable MWOs have been applied. Current MWOs applicable to the equipment are listed in DA Pam 310-7.
d. See SB 700.20 for dimensions, weights, and volume of packaged items.

Section III. INSTALLATION INSTRUCTIONS

2-5. Manpack or Fixed Configuration

Install the radio set in the manpack or fixed configuration as follows:
a. Battery Installation (fig_FO-16).
(1) Remove the battery cover (5) of the receiver by loosening the two attaching captive thumbscrews.
(2) Install the batteries with the polarity as shown on the inside of the battery cover.
(3) Reinstall the battery cover and secure with the two captive thumbscrews.
b. Manpack Installation (fig. 2-2).
(1) Connect Antenna-AS-2887/UR to receiver ANT input 1 (fig. 3-1).
(2) Set the ANT switch to 1.
(3) Connect a headset to the AUDIO connector.
(4) Set the rear panel POWER switch to INT.
(5) Refer to paragraph 3-5 and operate receiver in AM mode.
(6) Activate LITE to M ON and check that panel light operates.

Figure 2-2. Typical manpack installation.
c. Fixed Installation (fig. 2-3).
(1) Extend handle/stand to stand position.
(2) Connect the desired antenna to the receiver.
(3) Set the ANT switch (fig. 3-1.) to the desired input.
(4) Set the rear panel POWER switch to EXT.
(5) Connect the 110 vac or 220 -vac power cable
(parts of MX-1517/UR) to the POWER connector end to a suitable outlet.
(6) Connect a headset to the AUDIO connector.
(7) Refer to baragraph 3-5 and operate receiver in am. mode.
(8) Position LITE switch to ON and check that panel light operates.

2-6. Vehicular Configuration (fig. 2-4)

Install the radio set in the vehicular configuration as follows:
a. If not already installed, install the shock mount (part of MX-1517/UR) in the vehicle with the attaching hardware (TM 11-5820-807-14\&P)
b. Install the receiver in the shock mount and secure the receiver with the thumbscrew.
c. Connect a whip antenna to the appropriate receiver connector.
d. Set the ANT switch to the desired input.
e. Connect a headset to the AUDIO connector.
f. Set the rear panel POWER switch to EXT.
g. Connect the 24 -vdc Fewer cable (part of MX1517/UR) to the POWER connector and to the vehicle.
h. Refer to paragraph 3-5 and operate receiver in AM mode.
i. Position LITE switch to ON and check that panel light operates.

NOTE:

Figure 2-4. Typical vehicular installation.

CHAPTER 3

OPERATING INSTRUCTIONS

Section I. CONTROLS AND INDICATORS

3-1. Damage From Improper Settings
No damage will result to the receiver from improper control settings.

3-2. Description of Operator/ Crew Controls and Indicators

The receiver front panel (fig. 3-1) controls, indicators, and connectors, and the rear panel and their functions, are listed in table 3-1

Figure 3-1. Controls, indicators, and connectors.

Section II. OPERATION UNDER USUAL CONDITIONS

3-3. Preliminary Starting Procedures

Perform the preliminary operations listed below before starting the equipment as outlined in detail in paragraph 3-5
a. Install the batteries and connect the equipment in the desired configuration (para 2-5 and 2-6).
b. Press the PWR CHK switch and read the battery voltage on the panel meter. Release the switch. If the meter reading was in the REPLACE (red) range, replace the batteries (para 2-b).

Table 9-1. Controls, Indicators, and Connectors

Front pane
FUNCTION switch
VOL control
RF GAIN control
BANDWIDTH control
TUNE control
BAND switch
$20-50 \mathrm{MHz}$
$50-150 \mathrm{MHz}$
Panel meter
PWR CHK switch
LITE switch
CAL ADJ control
ANT connectors
ANT switch
TRIM control
DIODE connector
DISCR connector
AUDIO connector
Rear panel
Power switch
POWER connector
110 vac
220 vac
24 vdc
Audio output
Diode output
AGC

Function

Applies power to the receiver and selects the operating mode. Switch positions include OFF, FM, AM, CW, and CAL.
Controls the audio output level of the receiver.
Controls the overall gain of the receiver. Extreme clockwise position initiates AGC operation.
Sets the if. bandwidth of the receiver for 10 or 75 kHz bandwidth for CW , AM and FM.
Selects the operating frequency of the receiver. With the tuning knob depressed, 12 turns scan the band. In the nonpressed mode the tuning rate is approximately $1 / 40$ th the scan rate.
Selects the operating frequency band of the receiver.
Displays the receiver tuning within BAND 1 selected by the TUNE control.
Displays the receiver tuning within BAND 2 selected by the TUNE control.
Displays received signal level, battery voltage level, or internal power converter output voltage level, as selected by the PWR CHK switch.
Selects the equipment voltage level (spring-loaded in this position) or signal level for display on the panel meter.
Controls dial light with positions ON, off at center, and M ON and momentary on (spring-loaded) position.
Used to shift the cursor to align it with a calibration frequency.
Used to couple an antenna to the receiver using TNC (input 1) or BNC (input 2) connectors.

Used to select the desired antenna input.
Used to optimize the impedance match between antenna and receiver.
DC voltage from the detector is supplied to this connector for output to external equipment.
Detected voltage from the FM discriminator is supplied to this connector for output to external equipment.
Used to connect a headset to the receiver.
Selects internal (INT) battery power or external (EXT) power for application to the receiver.
Provides connection for following circuits:
110 volts, 50 to 400 Hz input power
220 volts, 50 to 400 Hz input power
24 volts dc input power
Same output signal as at AUDIO connector.
Same output signal as at DIODE connector.
DC voltage from the agc detector is supplied to this connector for output to external equipment.
c. Set the controls on the front of the receiver (fig. (3-1) as follows:

Control
FUNCTION switch
VOL control RF GAIN control BAND switch
TUNE control
LITE switch BANDWIDTH switch ANT switch

d. Set the controls on all ancillary equipment to the preliminary settings listed in the applicable technical manual.

3-4. Initial Adjustments

No initial adjustments of the radio set are necessary. However, when ancillary equipment is used with the radio set, this equipment may require initial adjustment. Refer to the applicable technical manuals for initial adjustment of this equipment.

3-5. Operating Procedures

a. Equipment Starting. With the controls set as described ir paragraph 3-ß, perform the following procedures:
(1) Start the receiver by setting the FUNCTION switch to the desired operating mode.
(2) Start ancillary equipment per applicable technical manuals.
b. Continuous Wave Reception (Cw).
(1) Set the FUNCTION switch to CW.
(2) Set the BANDWIDTH switch to 10 kHz .
(3) Tune in the desired signal with the TUNE control. Press tuning knob for fast scan tuning, release for fine tuning. Once a signal has been obtained, trim the antenna by adjusting the TRIM control for maximum signal level to the receiver, as observed on the panel meter.
(4) If the level of the incoming signal is stable, set the VOL control to about 3/4 clockwise and adjust the audio level using the RF GAIN control.
(5) If the level of the signal is varying, set the RF GAIN control to AGC (fully clockwise) and adjust the audio level using the VOL control.
c. Amplitude Modulation (AM) Reception.
(1) Set the FUNCTION SWITCH TO AM.
(2) Set the BANDWIDTH switch to 10 kHz .
(3) Tune in the desired signal with the TUNE control. Press tuning knob for fast scan tuning, release for fine tuning. Once a signal has been obtained, trim the antenna by adjusting the TRIM control for maximum signal level to the receiver, as observed on the panel meter.
(4) Set the RF GAIN control to AGC (fully clockwise).
(5) Adjust level with the VOL control.
d. Frequency Modulation (FM) Reception.
(1) Set the FUNCTION switch to FM.
(2) Set the BANDWIDTH switch to 75 kHz .
(3) Tune in the desired signal with the TUNE control. Press tuning knob for fast scan tuning, release for fine tuning. Once a signal has been obtained, trim the antenna by adjusting the TRIM control for maximum signal level to the receiver, as observed on the panel meter.
(4) Set the RF GAIN control to AGC (fully clockwise).
(5) Adjust the audio level with the VOL control.

3-6. Equipment Stopping Procedure

To stop the receiver, set the FUNCTION switch to OFF. Refer to the applicable technical manuals for ancillary equipment stopping procedures.

Section III. OPERATION UNDER UNUSUAL CONDITIONS

3-7. Operation Under Emergency Conditions

a. Operation on Low Batteries. To conserve batteries, set the LITE switch to its center (off) position.
b. Operation with Random-Length Antennas. In an emergency, the radio set can be operatied using practically any random length of wire as an antenna. Connect the random-length antenna to either antenna input and trim for optimum impedance match by tuning an input signal and adjusting the TRIM control for maximum signal to the receiver, as observed on the panel meter.

3-8. Recognition and Identification of J amming

Under real or simulated tactical conditions the receiver can be jammed by the enemy. Enemy jamming is done by transmitting a strong signal on the same frequency as that used by the receiver for communication, making it difficult or impossible to
receive the desired signal. Unusual noises or strong interference heard on the receiver may be enemy amming, signals from a friendly station, noise from local source, or the receiver may be defective. To etermine if the interference is originating in the ceiver, disconnect and remove the antenna leads,
short the ANT post to the chassis. If the interference continues, the receiver is defective. Enemy jamming signals may be typed as continuous wave or modulated. A jamming signal may be intended to block a single frequency. This is called spot jamming. The enemy may use one or several transmitters to jam or block a band of frequencies. This method ia called barrage jamming.
a. Continuous-Wave J amming. CW jamming is transmitted as a steady carrier. This signal beats with another signal and produces a steady tone in the headset. CW jamming signals may also be keyed
by using a random on-and-off signal or using actual code characters keyed to the same rate or a little faster than the signal being received.
b. Modulated J amming. Modulated jamming signals may consist of noise, laughter, singing, music, various tones, or most any unusual sound, or it may be a combination of these sounds. Various types of modulated jamming signals are explained below.
(1) Spark. This is one of the simplest, most effective, and most easily produced jamming signals. This type of signal sounds very rough, raspy, and sometimes like an operating electric motor with sparking brushes. The signal is very broad; therefore it will interfere with a large number of communication channels.
(2) Sweep-through. This signal is the result of sweeping or moving a carrier back and forth across your frequency at a slow or rapid rate. The numerous signals of varying amplitude and frequency produce a sound like that of a low-flying airplane passing overhead. This type of jamming is effective over a broad range of frequencies. When it is varied rapidly, it is effective against all types of voice signals.
(3) Stepped tones or bagpipes. This signal usually consists of several separate tones. The tones are transmitted in the order of first increasing and then decreasing pitch, repeated over and over. The audible effect is like the sound of a Scottish bagpipe.
(4) Noise. Noise is random both in amplitude and frequency. It produces a sound similar to that heard when a receiver is not tuned to a station and the VOL control is turned to maximum.
(5) Gulls. This signal consists of a quick rise and a low fall of a variable audio frequency. The sound is similar to the cry of the sea gull.
(6) Zone This signal consists of a single audio frequency of unvarying tone. It produces a steady howl in the headset. Another use of tone is to vary it slowly. This produces a howling sound of varying pitch.

3-9. Antijamming Procedures

When it is determined that the incoming signal is being jammed, notify the immediate superior officer and continue to operate the equipment. To provide maximum intelligibility of jammed signals, follow one or more of the operational procedures below. If these procedures do not provide sufficient signal separation for satisfactory operation, change to an alternate frequency.
a. Operate the receiver as outlined in paragraph 35.
b. Detune the tuning control several degrees on either side of the desired signal. This may cause some separation of the desired signal and the jamming signal.
c. Set the BANDWIDTH control to the narrowest bandwidth which will allow reception of the desired signal.
d. Vary the RF GAIN control. This may reduce the jamming signal enough to permit the weaker desired signal to be heard.
e Use CW mode. This mode is less susceptible to jamming.
f. If two antennas are connected to the receiver, switch from one to the other to obtain best reception.

Section iV. PREPARATION FOR MOVEMENT

3-10. Manpack or Fixed Configuration

a. Manpack Configuration. The manpack configuration of the radio set may be transported while assembled if further use is anticipated. However, if the equipment will not be used immediately at the new location, it should be disassembled as follows:
(1) Set the FUNCTION switch to OFF,
(2) Disconnect the antenna from the ANT Connector.
(3) Disconnect the headset from the AUDIO connector.
(4) Remove the battery cover of the receiver by loosening the two captive thumbscrews.
(5) Remove the batteries from the receiver.
(6) Reinstall the battery cover and secure with the two captive thumbscrews.
b. Fixed Configuration. Disassemble the fixed configuration as follows:
(1) Set the FUNCTION switch to OFF.
(2) Disconnect the 110 vac or 220 vac power cable from the POWER connector and from the power outlet.
(3) Disconnect the antenna(s) from the ANT connector(s).
(4) Disconnect the headset from the AUDIO connector.

NOTE

Perform the following steps only if batteries are installed in the receiver.
(5) Remove the battery cover of the receiver by loosening the two captive thumbscrews.
(6) Remove the batteries from the receiver.
(7) Reinstall the battery cover and secure with the two captive thumbscrews.

3-11. Vehicular Configuration

The vehicular configuration is not normally disassembled for movement unless no further use of the radio set is anticipated. If the radio set will not be used immediately at the new location, or if it will be installed in a different vehicle, disassemble the equipment as follows:
a. Set the FUNCTION switch to OFF.
b. Disconnect the 24 vdc power cable from the POWER connector and from the vehicle power connector.
c. Disconnect the antenna(s) from the ANT connector(s).
d. Disconnect the headset from the AUDIO connector.
e Loosen the thumbscrews on the vehicle mount and remove the receiver from the mount.
f. Remove the vehicle mount by removing the attaching hardware.

NOTE

Perform the following steps only if batteries are installed in the receiver.
g. Remove the battery cover of the receiver by loosening the two captive thumbscrews.
h. Remove the batteries from the receiver.
i. Reinstall the battery cover and secure with the two captive thumbscrews.

CHAPTER 4

MAINTENANCE

Section I. GENERAL

4-1. Scope of Maintenance

This chapter describes the operator and organizational maintenance requirements for Radio Set AN/URR-71. These requirements include preventive maintenance, troubleshooting, adjustment, removal, cleaning, inspection, repainting and refinishing, installation, and testing.

4-2. Maintenance Duties

Operator maintenance of the radio set is limited to
visual inspection, operational testing, external cleaning, and minor retouching of paint. Organizational maintenance includes all of the preventive and corrective maintenance duties described in this chapter.

4-3. Tools and Equipment

All tools and equipment required for operator and organizational maintenance are listed in the M aintenance Allocation Chart (appx B).

Section II. OPERATOR/CREW MAINTENANCE

4-4. Operator Crew Preventive Maintenance

 NOTERefer to TM 750-244-2 for proper procedures for destruction of this equipment to prevent enemy use.
a. Operator/crew preventive maintenance is the systematic care, servicing and inspection of equipment to prevent the occurrence of trouble, to reduce downtime, and to maintain equipment in serviceable condition. To be sure that your receiver is always ready for your mission, you must do scheduled preventive maintenance checks and services (PMCS).
(1) BEFORE OPERATION, perform your PMCS to be sure that your equipment is ready to go.
(2) DURING OPERATION, perform your D PMCS. This should help you to spot small troubles before they become big problems.
(3) When an item of equipment is reinstalled after removal, for any reason, perform the necessary PMCS (table 4-1) to be sure the item meets the readiness reporting criteria.
(4) Use the ITEM NO. column in the PMCS table to get the number to be used in the TM ITEM NO. column on DA Form 2404 (Equipment Inspection and Maintenance Worksheet) when you fill out the form.
b. Routine checks like CLEANING, PRESERVATION, DUSTING, WASHING, CHECKING FOR FRAYED CABLES, STOWING ITEMS NOT IN USE, COVERING UNUSED RECEPTACLES, CHECKING FOR LOOSE NUTS AND BOLTS

AND CHECKING FOR COMPLETENESS are not listed as PMCS checks. They are things that you should do any time you see they must be done. If you find a routine check like one of those listed in your PMCS, it is because other operators reported problems with this item.

WARNINGS

Adequate ventilation should be provided while using TRICHLOROTRIFLUOROETHANE. Prolonged breathing of vapor should be avoided. The solvent should not be used near heat or open flame; the products of decomposition are toxic and irritating. Since TRICHLOROTRIFLUOROETHANE dissolves natural oils, prolonged contact with skin should be avoided. When necessary, use gloves which the solvent cannot penetrate. If the solvent is taken internally, consult a physician immediately.

NOTES

The PROCEDURES column in your PMCS charts instruct how to perform the required checks and services. Carefully follow these instructions and, if tools are needed, get organizational maintenance to do the necessry work.

4-5. Operator/Crew Preventive Maintenance Checks and Services
 NOTE

The PMCS are to be performed in the order listed.

Table 4-1. Operator/ Crew preventive Maintenance Checks and Services Chart

			B - Before	D - During	
Item No.	Interval		Item to be Inspected	Procedures - Check for and have repaired or adjusted as necessary.	Equipment is Not Ready/Available If:
	B	D			
1	1		Mission Essential Equipment	Check for completeness and satisfactory condition of the equipment. Report missing items.	Available equipment is insufficient to support the combat mission.
2	*		Battery Check	Check batteries for full charge (Use Control Panel meter). Replace bad batteries.	Batteries are bad.
3		1	Operational Check	Perform operational check as described in paraqraph 4-8.	Equipment fails to operate satisfactorily.

[^0]Paragraph 4-6 deleted.

4-7. Repainting and Refinishing

a. Refer to SB 11-573 to determine the proper finish to use.
b. Refer to TB 43-0118 for refinishing procedures.
c. Do not paint connectors, controls, frequency MHz windows, or panel meter face.

4-8. Operational Checks

a. Install the batteries in the receiver (para 2-\$a).
b. Install the radio set in the manpack configuration (para 2-5b).
c. Operate the radio set in each operating mode
on each band, at an assigned frequency. Verify that satisfactory reception is possible on each assigned frequency.
d. Install the radio set in the fixed configuration (para 2-5c). (If available, install antennas to both ANT inputs.)
e. Repeat c above. Test operation using both antennas, if installed.
f. Install the radio set in the vehicular configuration (para 2-6).
g. Repeat c above.
h. Shut down the equipment (para 3-b).
i. Unless further operation is anticipated, disassemble the vehicular \{configuration (para 3-11).

Section III. TROUBLESHOOTING

4-9. General

When an equipment malfunction occurs, the information in this section will aid in isolating the trouble to a defective unit or item of equipment. The defective equipment may then be forwarded to a higher category of maintenance.

4-10. Troubleshooting Chart

Troubleshooting of the radio set is accomplished in
conjunction with the operational checks (para 4-8) and preventive maintenance checks listed in table 4-1. When an abnormal condition or result is observed, locate the appropriate trouble symptom in tables 4-2 and 4-3. The procedure listed in the corrective action column should then correct the trouble. Refer any trouble that is beyond the scope of operator and organizational maintenance to a higher category of maintenance.

Table 4-2. Operator's Troubleshooting

Item	Trouble symptom	Probable trouble	Checks and corrective action
1	Receiver completely inoperative.	a. Fuse. b. POWER switch not in proper position for source. c. Defective source voltage. d. Defective power plug.	a. Replace fuse. b. Check position of POWER, switch for proper position. c. Replace if defective. d. Check plug for damage. Refer to a higher category of maintenance for repair.
2	Low signal power (weak audio output).	a. Antenna in wrong area. b. RF gain or VOL control out of adjustment. c. Damaged antenna connection.	a. Move antenna. b. Readjust controls. c. Check antenna for damage, tighten, or replace. Refer to higher category of maintenance for repair.
3	Static or noise in receiver.	d. Weak batteries (when used). a. Enemy jamming. b. Loose antenna connection.	d. Check and replace if required. a. Seeparagraph 3-9 b. Tighten connection.
4	Panel lamp inoperative.	Defective panel lamp.	Refer to higher category of maintenance for replacement.
5	Signals weak or fading rapidly.	Improper setting of RF gain control.	Set RF gain control to AVC.

Table 4-3. Organizational Troubleshooting

Malfunction	Probable cause	Corrective action
Radio set inoperative from internal batteries.	a. Batteries defective. b. Receiver defective.	a. Replace batterie (para2-\$a). b. Replace receiver.
Radio set inoperative from 110 vac power.	a. Blown fuse. b. 110 vac power cable defective.	a. Replace fuse (para 4-1B). b. Replace cable. Forward defective cable to higher category maintenance.
	c. Receiver defective.	c. Replace receiver.
Radio set inoperative from 220 vac power.	a. Blown fuse. b. 220 vac power cable defective.	a. Replace fuse (para 4-1ß). b. Replace cab!e. Forward defective cable to higher category maintenance.
	c. Receiver defective.	c. Replace receiver.
Radio set inoperative from 24 vdc power.	a. Blown fuse. b. 24 vdc power cable defective.	a. Replace fuse (para 4-1ß). b. Replace cable. Forward defective cable to higher category maintenance.
	c. Receiver defective.	c. Replace receiver.
Only noise heard in headset (no	a. Antenna defective.	a. Replace antenna.
Receiver audio weak or garbled (all	b. Receiver defective.	b. Replace receiver.
modes and frequencies).	b. Antenna defective.	b. Replace antenna.
	c. Receiver defective.	c. Replace receiver.
Dial light or panel meter inoperative.	Receiver defective.	Replace receiver.

Section IV. ORGANIZATIONAL MAINTENANCE

4-11. Organizational Preventive Maintenance Checks and Services

Organizational preventive maintenance procedures are designed to help maintain equipment in service-
able condition. They include items to be checked and how to check them. These checks and services, described in table 4-4, outline inspections that are to be made at specific monthly intervals.

Table 4-4. Organizational Preventive Maintenance Checks and Services charts
M - Monthly

Item No.	Interval		
	M	Item to be Inspected	Procedures
1	\bullet	Radio Receiving Set AN/URR-71	Perform operational checks and troubleshooting procedures as described in paragraphs 4-8 and $4-10$.

4-12. Equipment Removal and Installation

a. When the equipment is used in the backpack or fixed configuration, disassemble the receiver as outlined in paragraph 3-10. When the equipment is used in a vehicular configuration follow the procedures outlined in paragraph 3-11
b. To install the equipment after maintenance has been performed, follow the procedures outlined for the backpack or fixed configuration (para 2-\$), or for the vehicular configuration (para 2-8).

4-13. Receiver Parts Removal and Replacement

a. General. Maintenance and repair of the receiver at the organizational level is limited to the replacement of batteries, knobs, and fuses.
b. Fuse Replacement. Replace the front panel fuse as follows:

NOTE

A spare fuse (stored in the field pack) is provided to allow the receiver to be placed back in service quickly after a fuse blows. If a spare fuse is installed in the receiver, restock a new $1 / 8$-ampere fuse in the field pack as soon as the operational or tactical situation allows.
(1) Set the FUNCTION switch to OFF.
(2) Disconnect the external power cable (if
connected).
(3) Remove the cap from the freeholder by turning counterclockwise.

CAUTION

Do not replace the fuse with one of a higher rating. Use a $1 / 8$-ampere fuse as specified in the Repair Parts and Special Tools List.
(4) Remove the fuse from the cap and replace it with the new fuse.
(5) Install the cap on the freeholder and tighten by turing clockwise.
c. Antenna Repair. Unscrew leaf assembly (4, fig. 1-1) from antenna base and replace with a serviceable part.

4-14. Maintenance of Ancillary Items

a. External Power Cables. Maintenance of items in the accessory kit is covered in TM 11-5820-80714\&P. The 110 vat, 220 vat, and 24 vdc power cables are not repairable at the organizational maintenance category. Forward damaged or defective cables to higher category of maintenance for repair
b. Other Ancillary Items. Organizational maintenance of other ancillary items (headset, etc) are covered in separate technical manuals.

CHAPTER5

FUNCTIONING OF EQUIPMENT

Section I. UNIT FUNCTIONING

5-1. General

This section covers the basic functioning of Radio Receiver R-1518/UR. Functioning details for the gear and tuner assembly, the AM receiver subsystem integrated circuit, and the FM receiver subsystem integrated circuit are given in sections II, III, and IV of this chapter. The information in these sections may be used as a troubleshooting aid to isolate a fault to a specific subassembly. Section V covers the functioning of the dust cover.

5-2. Block Diagram Analysis

(fig. FO-1)

a. General. The received RF signal (19 to 157.5 MHz) enters the receiver through the high impedance (1) or 50 ohm (2) antenna connector on the front panel. The signal passes through the antenna trimmer into the gear and tuner assembly where it is bandwidth limited, amplified and mixed with the output of the local oscillator to produce the 10.7 MHz IF signal. The signal flows through the IF assembly where it is filtered and amplified and passed on the the detector assembly. The detector assembly demodulates the signal and amplifies the resultant audio to furnish the audio output of the receiver. The detector assembly also provides diode output and the agc voltage for controlling the gain in the IF amplifier and RF tuner. Basically, the receiver is composed of five blocks of circuits which are the gear and tuner assembly (A2), calibration oscillator (A6), IF assembly (A3), detector assembly (A4), and power supply (A5). Each of these circuits is described in the following subparagraphs.
b. Gear and Tuner Assembly (A2). The gear and tuner assembly is composed of the following subassemblies which are, in signal flow order, the preselector, first RF amplifier, second RF amplifier, third RF amplifier, and oscillator-mixer.
(1) The preselector is composed of a tunable bandpass filter and is used to provide a portion of the receiver selectivity and to provide the proper impedance match for the first RF amplifier, thereby contributing to the selectivity of the receiver. The RF amplifiers are tunable amplifiers. The gain of the first and second RF amplifiers is controlled by the agc voltage developed in the detector assembly or by
the RF gain control on the receiver front panel. The third RF amplifier has a fixed gain.
(2) The output of the third RF amplifier is routed to the oscillator-mixer subassembly where it is mixed with the local oscillator to produce the 10.7 MHz IF output that is routed to the IF assembly.
(3) Due to the complexity of the band switching arrangement and the mechanical configuration, further details of the gear and tuner assembly are given in paragraphs 5-3 through 5-6.
c. Calibration Oscillator (A6). The calibration oscillator is composed of a 2 MHz crystal controlled oscillator of conventional design and a differentiation network. The output of the oscillator is routed to the differentiation network which produces an impulse. The impulse contains all of the 2 MHz harmonics from 20 to 156 MHz . This spectrum is routed to the input of the gear and tuner assembly and is used as reference frequencies for calibrating the receiver dial.
d. IF Assembly (A3). The IF assembly consists of a 3-db impedance matching pad, two selectable crystal filters, two stages of amplification, and an agc amplifier. The output of the oscillator-mixer subassembly in the gear and tuner assembly is routed through the impedance matching pad to one of the 10.7 MHz crystal filters. The crystal filters are selectable from the receiver front panel bandwidth switch. The $6-\mathrm{db}$ bandwidths of the filters are 10 kHz and 75 kHz . The filter rejects all of the mixer products except the desired 10.7 MHz IF signal. The first and second IF amplifier stages are tuned amplifiers with a nominal voltage gain of 60 db whose gain is controlled by the agc amplifier. The agc amplifier is an inverting dc amplifier that converts the agc voltage from the detector, or the voltage from the receiver front panel RF gain control, to the proper polarity for controlling the gain of the IF amplifiers.
e. Detector Assembly (A4). The detector assembly contains a third stage of IF amplification, a multipurpose am. receiver subsystem integrated circuit, an FM receiver subsystem integrated circuit, bfo, product detector, meter amplifier, and an audio amplifier.
(1) The IF amplifier stage is similar to those in the IF assembly except it has a fixed voltage gain of approximately 20 db . The AM receiver subsystem operates in all receiver modes and provides the following functions: AM detector, diode output amplifier, agc detector and amplifier, and audiopreamplifier. Due to the many functions contained within the am. receiver subsystem, additional details are given in paragraphs 5-7 and 5-8.
(2) The beat frequency oscillator (bfo) and product detector are energized only when the receiver front panel FUNCTION switch is in the CW or CAL modes. The bfo operates on a crystal controlled frequency of 10.7 MHz . The output of the bfo is routed to the product detector where the CW signal is demodulated and routed to the audio preamplifier in the AM receiver subsystems.
(3) The FM receiver subsystem integrated circuit is energized only when the receiver front panel FUNCTION switch is in the FM mode. The FM receiver subsystem incorporates a limiter and an FM detector. It provides the detected FM audio which is routed to the audio preamplifier in the AM receiver subsystem integrated circuit, and the discriminator output of the receiver. Further details on the various functions contained in the fm receiver subsystem integrated circuit are given in paragraphs 5-9 and 510.
(4) The agc output from the AM receiver subsystem is also used to drive the meter amplifier which produces a current that is proportional to the RF input to the receiver. The output of the meter amplifier is used to drive the front panel signal strength meter.
(5) The output from the audio preamplifier in the AM receiver subsystem is routed to the audio amplifier which produces the necessary audio power output of the receiver. The audio amplifier consists of a bandpass filter and an amplifier. The amplifier has a fixed voltage gain of approximately 20 db and a 6-db bandwidth of 2.5 to 3.5 kHz .
f. Power Supply (A5). The power supply consists basically of a rectifier and filter, a +18 -volt pre regulator, and a +11.2 -volt regulator. A power transformer external to the power supply assembly is used to supply the proper voltage to the power supply when operating from an ac source with any frequency between 50 and 400 Hz . The primary of the transformer can be connected for either 110 or 220 vac operation. This is accomplished by jumpers in the power cable which is connected to the rear panel POWER connector of the receiver. In addition to ac operation, the power supply can also operate from a nominal +24 -volt vehicular power source, or from an internal battery by means of the INT-EXT switch on the rear panel of the receiver. The rectifier and filter circuits consist of a bridge rectifier and capacitive filter and is used only during ac operation. The +18 volt preregulator circuit is a conventional zener diode, series pass transistor arrangement and is used to supply power to nonvoltage sensitive circuits of the receiver, and to limit the input voltage to the +11.2 -volt regulator. The +11.2 -volt regulator is a precision integrated circuit regulator which is short circuit protected and is used to supply power to all voltage sensitive circuits in the receiver.

Section II. GEAR AND TUNER ASSEMBLY

5-3. General

(fig. FO-4)
The tuner assembly is contained in a metal box that is divided into five compartments. The compartments are used to provide isolation between the subassemblies contained in each compartment. The motherboard forms one side of the tuner box and is used to provide interconnections among the subassemblies. The main tuning inductor is also connected to the motherboard side of the tuner box. The variable inductor contains five sections; each section located directly opposite the subassembly with which it is electrically associated.
a. There are five subassemblies, one per corn. partment, within the tuner; the preselector, first RF amplifier, second RF amplifier, third RF amplifier, and the oscillator-mixer. Each subassembly is explained in the following paragraphs.
b. The simplified schematic diagram, figure FO-4, is shown in the band 1 position. Interconnections from the motherboard to the various subassemblies are not shown except for the pertinent signal path from one subassembly to the next. Switches S1 and S2 of each subassembly form the band switch. These switches are magnetically operated reed switches. The switches are activated by a shaft containing five magnets that is connected to the detent mechanism of the front panel band switch. The magnets and switches are positioned such that one magnet is used to activate both switches on each subassembly. For simplicity, the mechanical relationship among the switches is not shown on the simplified schematic diagram.

5-4. Preselector

The preselector subassembly is composed of a two
pole, tunable bandbass filter. Tuning is provided by section L1-E of the main tuning inductor. Capacitor C11 and resistor R1 form a slope correction network to compensate for changes in gain throughout the frequency range. Capacitor C3 is a temperature compensating capacitor. The capacitive divider output network consisting of capacitors C9, C10, and C11 is selected to provide the best sensitivity consistent with the signal handling requirements of the receiver. The receiver is capable of handling a 0.5 volt signal without blocking, therefore the capacitive divider output cannot be too high or the first RF amplifier will limit. The output of the preselector is coupled to the first RF amplifier by inductor L4. The interstate coupling coils, L4, L3, L2, and L1, serve as high frequency chokes, thus eliminating any possibility of UHF oscillations due to the very high frequency response of the transistors used in the rf amplifier stages.

5-5. RF Amplifiers

a. The three RF amplifiers are the same except for the agc circuit. The third stage is operated as a fixed gain stage with no age. Transistor Q1 in each stage is a dual insulated gate field effect transistor. Gate 2 is used for the agc input. Due to the inherent gain versus gate 2 voltage characteristic, the agc of the first and second rf amplifiers are delayed relative to the IF amplifiers. In addition, resistor R8 of the second RF amplifier provides a slight delay in the agc action of the second RF amplifier relative to the first RF amplifier. This is necessary in order to accommodate the large dynamic range of input signals to the receiver, up to 0.5 volts. The total agc range in the RF amplifiers exceeds 60 db .
b. When operating in the band 1 position, switches S1 and S2 closed as shown in figure FO-4 Coils L4 and resistors R6 of the first and second RF
amplifiers, and coil L4 and resistor R7 of the third RF amplifier, form slope correction networks. These networks tend to stabilize the gain of the amplifiers throughout the band 1 frequency range. With the band switch in the band 2 position, switches S2 and S2 open, capacitors C12 and resistors R7 of the first and second RF amplifiers and capacitor C12 and resistor R8 of the third RF amplifier, form slope correction networks. These networks tend to stabilize the gain of the amplifiers throughout the band 2 frequency range.
c. Capacitors C6 of all three stages are temperature compensating capacitors for band 2. Capacitors C8 of all three stages are temperature compensating capacitors for band 1 . These capacitors maintain proper tank tuning throughout the temperature range of the receiver.

5-6. Oscillator - Mixer

a. The oscillator-mixer subassembly contains the local oscillator and the mixer circuits. The local oscillator is a conventional Clapp circuit that is tuned by section L1-A of the main tuning inductor. The oscillator frequency is 10.7 MHz above the RF input signal. Capacitor C13 is the temperature compensating capacitor for band 1 and capacitor C8 is the temperature compensating capacitor for band 2. These capacitors are used to stabilize the oscillator frequency throughout the operating temperature range of the receiver.
b. The output of the local oscillator is routed through capacitor C14 to gate 2 of the dual insulated gate field effect transistor mixer stage. The RF output from the third RF amplifier is routed to gate 1 of oscillator-mixer stage transistor Q2. The 10.7 MHz output of the mixer is taken from transformer T1 and routed to the IF output of the tuner.

Section II. AM RECEIVER SUBSYSTEM

5-7. General

The AM receiver subsystem is a multipurpose integrated circuit used in the detector module. This integrated circuit is used to perform the following functions; diode amplifier, IF amplifier-AM detector, agc amplifier, and audio preamplifier. The use of this integrated circuit conserves space, increases reliability and provides good performance. The AM detector portion of the integrated circuit is virtually unaffected by temperature throughout the operating range of the receiver.

5.8. Block Diagram

(fig. 5-1)
a. The 10.7 MHz IF signal from the third IF amplifier in the detector module is routed to pins 2 and 8 of the integrated circuit. Pin 2 is the input to the diode amplifier which provides approximately 20 db of voltage gain. The output is taken from pin 3 and routed to a voltage doubling circuit to produce the diode output of the receiver. Pin 1 is used to provide the proper bias for the diode amplifier.

Figure 5-1. Block diagram, AM receiver subsystem integrated circuit.
b. The IF input signal at pin 8 is routed to the IF amplifier-AM detector portion of the integrated circuit. The detected audio is present at pin 9 . The detector also provides a detected agc signal that is routed internally to the agc amplifier. The dc signal from the agc amplifier at pin 13 is used for the agc voltage in the RF tuner module and the IF amplifier module, and to drive the signal meter amplifier in the detector module. Pin 7 is used to provide feedback for the internal IF amplifier stage.
c. Pin 14 is the input to the audio preamplifier. The detected audio in all receive modes is routed to pin 14 through the FUNCTION switch and VOL control on the receiver front panel. The preamplifier provides approximately 20 db of voltage gain and produces the audio output at pin 15 which is routed to the audio amplifier in the detector module, The
total distortion through the IF amplifier-AM detector stage and the audio preamplifier stange is less than 3 percent.
d. The supply voltage at pin 10 is internally regulated to approximately 5.6 vdc by a Zener diode for use in voltage sensitive areas of the integrated circuit.
e. Due to the internal configuration of the integrated circuit, it is possible for one function within the integrated circuit to fail and not affect the remaining functions. For example, the diode amplifier may fail causing the loss of diode output, but all other functions of the receiver may be normal. If the agc amplifier fails it may be possible to operate the receiver with the manual RF gain control. Thus portions of the integrated circuit may fail and still result in a usable, but limited, receiver.

Section IV. FM RECEIVER SUBSYSTEM

5-9. General

The FM receiver subsystem is a multipurpose integrated circuit used in the detector module. This integrated circuit is used to perform the following functions: IF amplifier-limiter, FM detector, and
audio preamplifier. The use of this integrated circuit conserves space, increases reliability, and provides good performance. Performance of the integrated circuit is practically unaffected throughout the operating temperature range of the receiver.

5-10. Block Diagram

(fig. $5-2$)
a. The 10.7 MHz IF signal from the third IF amplifier in the detector module is routed to pin 2 of the integrated circuit. Pin 1 is the signal ground pin. The amplifier-limiter provides approximately 60 db of gain and limiter action begins with approximately

250 microvolt of input signal. The limiter provides approximately 55 db of AM rejection. The output of the amplifier-limiter is internally connected to the FM detector. The FM detector is a differential peak detection circuit and pins 9 and 10 are used for the detector tuning components.

ELIAL008

Figure 5-2. Block diagram, FM receiver subsystem integrated circuit.
b. The detected audio is internally routed to an emitter follower stage. The output of the emitterfollower at pin 8 is capacitively coupled to the input of the audio preamplifier at pin 14. The pre-amplifier has a voltage gain of approximately 20 db and has two outputs. The output at pin 12 is routed to the discriminator output of the receiver. The output at pin 13 is routed to the preamplifier in the AM
receiver subsystem integrated circuit to produce the audio output of the receiver.
c. Dc power to the integrated circuit is applied at pin 5 through the receiver front panel FUNCTION switch only in the fm mode. The integrated circuit contains a voltage regulator which supplies power to all stages of the integrated circuit.

Section V. DUST COVER

5-11. General

The dust cover serves as a protective case for the receiver and contains the battery compartment, internal-external power switch, power connector, and the radio frequency interference (RFI) filter. The schematic diagram for the dust cover is shown in figure FO-3

5-12. Functioning

a. Battery Compartment. The battery compartment is used to house $12 \mathrm{BA}-30 / \mathrm{U}$ cells which
power the receiver when the INT-EXT switch is in the INT position. The compartment is watertight and the battery is accessible through the cover on the back of the case. A diode, CR1, in series with the positive battery line prevents damage to the receiver if the cells are not properly inserted in the battery compartment.
b. Internal-External Switch. INT:EXT switch S1 is located on the rear of the dust cover and is used to select between battery power or external power.

In the INT position, the battery is connected to the receiver power supply and any external power source that may be connected to the dust cover is disabled. In the EXT position, the battery is disconnected from the receiver power supply and the external power source which is connected to the multipin connector on the rear of the dust cover is connected to the receiver power supply.
c. Power Connector. POWER connector J 2 is used to connect external power sources to the receiver and also provides audio diode, and discriminator outputs from the receiver. Strapping options in the plug that mates with the power
connector provide operation from 110 or 220 vat, 50 to 400 Hz , or 24 vdc vehicular power sources. Power cables contained in Accessory Kit -MK-1517/UR already are strapped to provide proper operation. d. RFI Filter. RFI filter FL1 prevents any radio frequency interference from being conducted through the power cable to the receiver. Each conductor of the power line and the fuse conductors pass through a section of the filter. Thus any interference that may be present on the power line is filtered out so that it will not interfere with the proper operation of the receiver.

CHAPTER 6

DIRECT SUPPORT MAINTENANCE

Section I. GENERAL

6-1. Scope of Maintenance

This chapter describes the direct support maintenance requirements for Receiving Set, Radio AN/URR-71. These requirements include troubleshooting, repair testing, and adjustment. It should be noted that intermediate level repairs are performed by direct or general support, depending upon the complexity of the repair.

6-2. Tools and Test Equipment

All tools and test equipment required for direct support maintenance are listed in the Maintenance Allocation Chart (app B).

Section II. TROUBLESHOOTING

CAUTION

This equipment contains transistor circuits. Observe the following precautions to prevent damage to the components:
Test equipment requires an isolation transformer in the power supply circuit. Observe battery polarity; polarity reversal may damage transistors. If battery eliminators are used in testing, they must have good voltage regulation and low ac ripple so the voltage rating of the transistor equipment being tested is not exceeded.

6-3 General

This section contains procedures for isolating and localizing faulty subassemblies in Receiver R1518/UR. The defective subassemblies shall be muted to general support maintenance for repair.

6-4. Troubleshooting

Troubleshooting of the receiver is accomplished by systematically testing the receiver and subassembly inputs and outputs. Table 6-1 should be used as guide in isolating common faults in the receiver. Be sure that organizational troubleshooting (table 4-4) has been previously accomplished and the fault has been isolated to the receiver's internal circuits or components before accomplishing these procedures.

NOTE

If a receiver fault cannot be corrected by using the procedure in this table, the fault may be in the wiring of the dust cover or the receiver chassis. Make resistance and continuity checks of the dust cover and the receiver chassi\$ (para 6-15, 6-16 and 6-22). Refer to TM 11-5820-770-24P to determine if replacement parts are provisioned at the direct support maintenance category. If a replacement part is not avadable, or if the defect is in front panel assembly A1A1A1, forward the receiver to higher category of maintenance for repair.

Table 6-1. Direct Support Troubleshooting

Item	Symptom	Probable trouble	Corrective action
1	Receiver inoperative on batteries or external power (all modes and bandwidths; no power indication).	a. Defective FUNCTION switch.	a. Check continuity (para 6-16). If
defective, forward receiver to			
higher category maintenance for			

Item \quad Symptom \quad Probable trouble \quad Corrective action

Receiver inoperative on vehicular a. Defective power supply diode. external power only.
b. Defective FUNCTION switch.

Receiver inoperative on internal a. Defective diode in dust cover. power only.
b. Defective FUNCTION switch. eceiver ino
power only.
a. Defective power transformer.
b. Defective INT.EXT switch in dust b cover.
c. Defective FUNCTION switch

No audio output (all modes and a. Defective headset. bandwidths; but have signal meter b. Defective detector assembly. indication.
c. Defective VOLUME control.
d. Defective FUNCTION switch.
a. Check power transformer para 615). Replace if needed para 6-6 and 6-9).
b. Check continuity (para 6-16). If defective, forward receiver to higher category maintenance for repair.
a. Test power supply (para 6-2(). Replace if needed para 6-6 and 69).
b. Check continuity (para 6-16). If defective, forward receiver to higher category maintenance for repair.
a. Check continuity (para 6-2p). Replace diode if needed para 6-6 and 6-9).
b. Check continuit (para 6-2p).

Replace switch if needed Pam 6-6 and 6-9).
c. Check continuity para 6.16). If defective, forward receiver to higher level maintenance for repair.
a. Replace headset.
b. Test detector (para 6-19). If defective, forward receiver to higher category of maintenance for repair.
c. Check resistance (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
d. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
No audio output and no signal meter a. Defective celebration oscillator if indication (power indication normal).
used.
b. Defective antenna switch.
c. Defective antenna capacitor.
d. Defective detector aseembly.

TRIM TRI repair.
ealibration oscillator (para 6 21).If defective, forward receiver to higher cetegory of maintenance for repair.
b. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
c. Check for short circuit (para 6-16). If defective, forward radio to higher category of maintenance for repair.
d. Test detector assembly para 6 19). If defective, forward receiver to higher category of maintenance for repair.
e. Defective IF amplifier assembly. e. Test IF amplifier (para 6-1 β). If defective, forward receiver to higher category of maintenance for repair.
f. Defective RF tuner assembly. f. Test RF tuner (para 6-17). If defective, forward receiver to higher category of maintenance for repair.

Table6-1. Direct Support Troubleshooting- Continued

Item	Symptom	Probable trouble	Corrective action
7	No audio output on CAL position only.	a. Defective calibration oscillator assembly.	a. Test calibration oscillator (para 621). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective FUNCTION switch.	b. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
8	No audio output on FM or AM only.	a. Defective detector assembly.	a. Test detector (para 6-19). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective FUNCTION switch.	b. Check continuity (para 6-16). If defective forward receiver to higher category of maintenance for repair.
9	No audio output on CW and CAL only.	a. Defective detector assembly	a. Test detector (para 6-19). If defective forward receiver to higher category of maintenance for repair.
		b. Defective FUNCTION switch.	b. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
10	No audio output on one band only.	Defective RF tuner assembly.	Test RF tuner (para 6-17). If defective, forward receiver to high category of maintenance for repair.
11	No audio output on one bandwidth only.	Defective IF amplifier assembly.	Test IF amplifier (para 6-18). If defective, forward receiver to higher category of maintenance for repair.
12	No DIODE output.	Defective detector assembly.	Test detector (para 6-19). If defective, forward receiver to higher category of maintenance for repair.
13	No DISCR output on FM.	Defective detector assembly.	Test detector (para 6-19). If defective, forward receiver to higher category of maintenance for repair.
14	Dial light will not light under any condition.	a. Defective bulb.	a. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective LITE switch.	b. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
15	Dial light remains on under all condition.	Defective LITE switch.	Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
16	Dial light will not light in M ON position of LITE switch when on INT power.	Defective LITE switch.	Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
17	No audio, discriminator,or diode output at dust cover connector only.	Broken wire, loose connection broken connector.	or Check continuity (para 6-22). Repair if needed (para 6-5 and 6-9).
18	Receiver indicates wrong frequency.	Defective RF tuner assembly.	Test tuner (para 6-17). If defective, forward receiver to higher category of maintenance for repair.

Table 6-1. Direct Support Troubleshooting- Continued

Item	Symptom	Probable trouble	Corrective action
19	Panel meter inoperative under all condition.	a. Defective meter.	a. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective PWR CHK switch.	b. Check continuity (para 6-26). If defective, forward receiver to higher category of maintenance for repair.
20	No signal strength indication on meter (power check normal).	a. Misadjusted or defective detector assembly.	a. Test and readjust detector para 6 14) and 6-19). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective RWR CHK switch.	b. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
21	No power indication on meter (signal normal).	a. Defective PWR CHK witch.	a. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective resistor in power supply,	b. Test power supply (para 6-20). Replace if needed (para 6-8).
22	Receiver inoperable on one antenna output.	a. Defective antenna connector.	a. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective whip antenna if used.	b. Check continuity (para 6-2ß). Repair or replace if needed.
		c. Defective ANT switch.	c. Check continuity (para 6-16). If defective, forward receiver to higher category of maintenance for repair.
23	Weak signals (low sensitivity).	a. IF amplifier assembly misadjusted or defective.	a. Test and readjust IF amplifier (para 6-14 and 6-18). If defective, forward receiver to higher category of maintenance for repair.
		b. Defective detector assembly.	b. Test detector para 6-19). If defective, forward receiver to higher category of maintenance for repair.
		c. Defective RF tuner assembly.	c. Test tuner (para 6-17). If defective, forward receiver to higher category of maintenance for repair.
24	Broken or defective knobs.		Replace as needed (para 6-8).

Section III. MAINTENANCE

6-5. General

This section contains corrective maintenance procedures for Receiver R-1518/UR. Instructions are provided for disassembly, inspection, repair, and reassembly of the receiver.

6-6. Disassembly

a. Disassembly of Radio Receiver A1. NOTE

Disassemble the receiver only to the extent
necessary to make repairs. Do not disassemble the receiver beyond that which is specified in this paragraph.
(1) Dust cover removal fig. FO-1\$).
(a) Turn FUNCTION switch to OFF.
(b) Remove power cable, if connected.
(c) Remove screw (3) on rear of dust cover.
(d) Loosen two captive screws on front panel and pull receiver (1) out of dust cover (2).
(2) Disassembly of dust cover assembly A1A2 (fig. FO-1 $\overline{\text { b }}$).
(a) Battery cover and battery removal

1. Loosen two captive thumbscrews on battery cover.
2. Remove battery cover (5) and twelve BA-30/U cells from the battery compartment.
(b) Components and wiring removal.

NOTE

Replacement of components or repair of broken wires in the dust cover is more easily accomplished if the entire wiring harness and the attached components are removed from the case.

1. Remove nut from INT-EXT switch (2).
2. Remove nut from POWER connector
(1).
3. Remove two screws (7) from connector

J 1 (6).
4. Remove mounting hardware $(13,14)$ from RFI (power) filter FL1 (12).
5. Unsolder wire from terminal E2 and remove entire wiring and components from dust cover.
b. Disassembly of Radio Assembly A1A1 (fig. FO-17).
(1) IF amplifier assembly A1A1A3 removal.
(a) Place the BANDWIDTH switch in the 75 kHz position.
(b) Remove four screws on the receiver chassis (not the cover (5) screws).
(c) Lift straight up on the assembly (1) to remove.
(2) Detector assembly A1A1A4 removal.
(a) Loosen captive screw on top of the assembly (28).
(b) Remove two screws (23) on the receiver chassis.
(c) Pull up gently on the assembly to disengage the connector (26).
(d) Unplug the coaxial connector to free the assembly.
(3) Calibration oscillator assembly A1A1A6 removal.
(a) Remove two screws (46) on top of the assembly (44).
(b) Pull straight up to remove the assembly.
(4) Power Supply assembly A1A1A5 removal.
(a) Remove four screws (11) on top of the printed wiring board.
(b) Pull upon both printed wiring boards to disengage the connector and the heatesinks.
(5) Power transformer A1A1T1 removal.
(a) Remove two screws (24, 25) and spacer on the receiver chassis.
(b) Unsolder and tag all wires from the transformer terminals.

6-7. Inspection

a. Remove and inspect the dust cover for dents, corrosion, loose terminals, loose wires, missing hardware, or signs of arcing or overheating.
b. Inspect the receiver assembly for dents, corrosion, loose terminals, loose wires, missing hardware, or signs of arcing or overheating.
c. Inspect the IF amplifier, detector, and calibration oscillator assembly housings for dents, corrosion, or missing hardware.
d. Inspect the IF amplifier, detector, calibration oscillator, and power supply printed wiring boards for cracks, warping, corrosion, or signs of overheating.
e. Inspect the power transformer for signs of arcing or overheating.
f. Inspect the front panel controls and the dust cover switch and connectors for damage.

6-8. Replacement and Repair

a. Replacement. Refer to baragraphs 6-6 and 6-9 for replacement instructions for replacement of the IF amplifier, detector, calibration oscillator, power supply, and power transformer.
b. Knob replacement.
(1) The tuning control (TUNE) knob cannot be replaced at this maintenance category. Forward receivers with defective tuning control knobs to higher category of maintenance for replacement.
(2) On pointer-type knobs, note the position of the pointer and replace with a serviceable part. Make sure the pointer is oriented properly before securing.

6-9. Reassembly

a. Reassembly of Receiver Assembly A1A1 (fig. (FO-17).

CAUTION

Exercise care to prevent pinched wires during the installation of the assemblies.
(1) Power transformer A1A1T1 installation.
(a) Solder wires to transformer terminals and remove the wire tags.
(b) Insert longest screw (25) through the receiver chassis and install spacer (16) over screw.
(c) Place the transformer over the spacer and secure with the two screws (24) through the receiver chassis.
(2) Power supply assembly A1A1A5 installation.
(a) Orient the printed wiring boards so that the connector and the heatsinks are engaged.
(b) Secure the assembly with four screws
(11), flat washers (12), and lockwashers (3) through the printed wiring boards.
(3) Calibration oscillator assembly A1A1A6 installation.
(a) Orient the assembly (44) so that the pins engage the sockets on the chassis.
(b) Secure the assembly with two screws (46) through the module housing.
(4) Detector assembly A1A1A4 installation.
(a) Plug the loose coaxial connector (not shown) into the coaxial connector in the assembly (28).
(b) Orient the assembly so that the connector (26) engages with the chassis connector.
(c) Secure the assembly by two screws (23) through the receiver chassis and the captive screw in the assembly.
(5) IF amplifier assembly A1A1A3 installation.
(a) Be sure that the flat on the bandwidth switch shaft inside the assembly is against the switch actuator plate.
(b) Place the receiver BANDWIDTH switch in the 75 kHz position.
(c) Orient the assembly so that the bandwidth switch coupling and the assembly connectors are engaged.
(d) Secure the assembly with four screws through the receiver chassis.
b. Reassembly of Dust Cover Assembly A1A2. Reassemble the dust cover by reversing the procedure given in paragraph 6-6a(2). Be sure that the wiring lays in the channel formed by the tabs inside of the dust cover case.
C. Reassembly of Radio Receiver A1.
(1) Dust cover installation (fig. FO-1p).
(a) Insert receiver into dust cover so that connectors are engaged.
(b) Secure the assembly with two captive screws on the receiver front panel and one screw on the rear of the dust cover.

Section IV. TESTING

6-10. General

Direct support testing is limited to testing all major subassemblies while these subassemblies are installed in the receiver or extended by means of cable extenders. When testing shows a subassembly to be defective, forward the defective subassembly to general support maintenance for repair.

6-11. Physical Tests and Inspection

a. Inspect the exterior of the unit as described in table 4-1
b. Check all receiver controls for ease of operation.
c. Remove the dust cover and the batteries (para. 6-6).
d. Inspect the subassemblie (para. 6-7).

6-12. Receiver Electrical Tests, Preliminary Test Setup

WARNING

The 110 vac or 220 vac power to the receiver is lethal. The voltage is present at the input to the power transformer, which is not accessible unless the transformer is removed from the chassis. Do not remove the power transformer from the chassis during testing. The voltage is also present at the fuse terminals and at the FUNCTION switch
terminals. Exercise caution to avoid these areas while testing.

NOTE
Perform band d below only if test setup calls for separation of the dust cover. See applicable tests.
a. Set the FUNCTION switch to OFF.
b. Remove the receiver from the dust cover (para 6-6).
c. Set the POWER switch on the rear of the dust cover to EXT.
d. Connect Extension Cable CX-12953/U (part of accessory kit) between the receiver and the dust cover.
e. Connect the applicable 110 vat, 220 vat, or vehicular power cable (part of accessory kit) to the POWER connector on the dust cover.
f. Connect the power cable connector to a 110 vat, 220 vac, or 24 vdc vehicular outlet, as appropriate.

6-13. Receiver R-1518/ UR (A1) Testing

a. Pand Meter Test.
(1) Accomplish the preliminary test setup (para 6-12) except, omit band d above.
(2) Connect the test equipment as shown in figure 6-1

Figure6-1. Pand meter test connections.
(3) Set the receiver controls as follows: Control
BAND
TUNE
BANDWIDTH
ANT
RF GAIN
VOL
TRIM
FUNCTION
(8) Observe a panel meter indication of near full scale.
(9) Disconnect the signal generator from the test setup.
(10) Activate the PWR CHK switch. The panel meter should indicate near the upper limit of the green area.
(11) Remove the power from the receiver and disconnect the test setup.
b. Dial Light Test.
(1) Perform a(1) above.
(2) Piece the front panel LITE switch in the ON and M-ON positions. The frequency dial should be illuminated in each position.
C. Am Sensitivity Test.
(1) Perform a (1) above.
(2) Connect the test equipment as shown in figure 6-2.

Figure6-2. AM and CW sensitivity test connections.
(3) Set the receiver controls as follows: control

BANDWIDTH
ANT
RF GAIN FUNCTION
(4) Perform (6) through (9) below for the following receiver and signal generator frequencies:

Band	Frequency $(M H z)$
1	19.0
1	35
1	52.5
2	47.5
2	102
2	157.2

(5) Apply power to the signal generator and the electronic voltmeter and allow 15 minutes for warmup.
(6) Adjust the signal generator for $1 \mathrm{kHz}, 30$ percent modulation at a level of 12 microvolts.
(7) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(8) Adjust the receiver VOL control for a 2.45 volt indication on the electronic voltmeter.
(9) Turn the signal generator modulation off. The electronic voltmeter should indicate 0.775 volt or less.
(10) Remove power from the receiver and disconnect the test setup.
d. CW Sensitivity Test.
(1) Perform a(l) above.
(2) Connect the test equipment as shown in fiqure 6-2.
(3) Set the receiver controls as follows:

Control	
BANDWIDTH	Setting
ANT	10 kHz
RF GAIN	2
FUNCTION	Maximum dockwise (no AVC)
	CW

(4) Perform (6) through (9) below for the receiver and signal generator frequencies listed in c(4) above.
(5) Apply power to the signal generator and the electronic voltmeter and allow 15 minutes for warmup.
(6) Adjust the signal generator for a cw output at a level of 4 microvolt.
(7) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(8) Adjust the receiver VOL control for a 2.45 volts indication on the electronic voltmeter.
(9) Disconnect the signal generator from the attenuator. The electronic voltmeter should indicate 0.775 volt or less.
(10) Remove power from the receiver and disconnect the test setup.
e. Fm Sensitivity Test.
(1) Perform a(1) above.
(2) Connect the test equipment as shown in figure 6-3

Figure 6-3. FM sensitivity test connections.
(3) Set the receiver controls as follows:

Control	Setting	
BANDWIDTH	75 kHz	
ANT	2	
RF GAIN	Maximum clockwise (no AVC)	
FUNCTION	FM	

(4) Perform (6) through (9) below for the receiver and signal generator frequencies listed in c(4) above.
(5) Apply power to the signal generator and the electronic voltmeter and allow 15 minutes for warmup.
(6) Adjust the signal generator for 1 kHz modulating frequency, 15 kHz deviation, and a level of 12 microvolt.
(7) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(8) Adjust the receiver VOL control for a 2.45 volts indication on the electronic voltmeter.
(9) Turn the signal generator modulation off. The electronic voltmeter should indicate 0.775 volts or less.
(10) Remove the power from the receiver and disconnect the test setup.
f. Frequency Calibrator Accuracy Test.
(1) Perform the preliminary test setup of paragraph 6-12
(2) Connect the test equipment as shown in figure 6-4

Figure 6-4. Frequency calibrator accuracy test connections.
(3) Set the receiver controls as follows:

Control
BAND
FUNCTION
(4) Apply power to the electronic counter and allow 15 minute warmup.
(5) The electronic counter should read 1,999,900 Hz to $2,000,100 \mathrm{~Hz}$.
(6) Remove the power from the receiver and disconnect the test setup.
g. Injection Level Test.
(1) Perform a(1) above.
(2) Set the receiver controls as follows:

Control Setting
BAND
BANDWIDTH
ANT
FUNCTION
Setting
1
2

CAL

Band
i
Band
i
i
1
1
2
2
2
2
(4) Set the receiver RF GAIN control maximum dockwise (no AVC). The panel meter should indicate greater than half scale.
(5) Set the receiver RF GAIN control maximum counterclockwise. The panel meter should indicate less than half scale.
(6) Remove the power from the receiver and disconnect the test setup.
h. Did Readout Error Test.
(1) Perform a (1) above.
(2) Connect the test equipment as shown in figure 6-5
(3) Perform (4) and (5) below for the following receiver frequencies:

Figure 6-5. Dial readout error test connection.

(4) Apply power to the test equipment and allow a 15 minute warmup.
(5) Adjust the signal generator for a cw output

NOTE
The calibration points below 20 MHz and 48

MHz and above 52 MHz and 156 MHz are outside of the frequency range of the receiver and cannot be checked.
(6) Set the signal generator frequency to the Calibration Frequency listed in table 6-2. Check, using electronic counter.
(7) Tune the receiver lower in frequency than the calibration frequency, then tune the receiver for a zero beat as indicated by a null on the electronic voltmeter.
(8) Adjust the receiver CAL ADJ control until the dial cursor is directly over the calibration frequency mark on the dial tape.
(9) Without overshooting, tune the receiver to the Upper Calibration Point listed in table 6-2.
(10) Adjust the signal generator frequency for a zero beat.
(11) Verify that the signal generator frequency is within the limits specified in the Upper Calibration Point column of table 6-2. Check, using electronic counter.
(12) Tune the receiver lower in frequency than the calibration point, then without overshooting, tune the receiver to Lower Calibration Point listed in table 6-2.
(13) Adjust the signal generator frequency for a zero beat.
(14) Verify that the signal generator frequency is within the limits specified in the Lower Calibration Point column of table 6-2. Check, using electronic counter.

Table 6-2. Calibration Frequencies

Band	Calibration Frequency (MHz)	Upper Calibration Point (MHz)	$\underset{(\mathrm{MHz})}{\stackrel{\text { Limit }}{ }}$	Lower Calibration Point (MHz)	$\begin{gathered} \text { Limit } \\ (\mathrm{MHZ}) \end{gathered}$
1	20	22	21.950	None	None
			22.050		
1	28	30	29.950	26	29.950
			30.050	36	26.050
1	36	38	37.950		33.950
			38.050	34	34.050
1	44	46	45.950	42	41.950
			46.050		42.050
1	52	None	None	50	49.950
					50.050
2	48	50	49.950	None	None
			50.050		
2	76	78	77.941	74	73.944
			78.059		74.056
2	102	104	103.922	100	99.925
			104.078		100.075
2	130	132	131.901	128	127.904
			132.099		128.096
2	156	None	None	154	154.116

(15) Repeat (6) through (14) above for all calibration frequencies listed in table 6-2.
(16) Remove the power from the receiver and disconnect the test setup.
i. Discriminator Output Test.
(1) Perform a (1) above.
(2) Connect the test equipment as shown in figure 6-6.

Figure 6-6. Discriminator output test connections.
(3) Set the receiver controls as follows:

Control
BAND
TUNE
BANDWIDTH
ANT
RF GAIN
FUNCTION

Setting

$$
\begin{aligned}
& 02 \mathrm{MHz} \\
& 100 \mathrm{kHz}
\end{aligned}
$$

2
Maximum clockwise (no AVC) FM
(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Adjust the signal generator for 1 kHz modulating frequency, 15 kHz deviation, RF frequency of 100 MHz , and a level of 12 microvolts.
(6) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter. The electronic voltmeter should indicate 50 millivolts or greater.
(7) Remove the power from the receiver and disconnect the test setup.
j. Audio Output Test.
(1) Perform a (1) above.
(2) Connect the test equipment as shown in figure 6-5.
(3) Set the receiver controls as follows:

Control
Setting
BAND
TUNE
$100^{2} \mathrm{MHz}$
10 KHz
Maximum dockwise (no AVC)
Maximum dockwise
2
AM
(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Adjust the signal generator for 100 MHz with $1 \mathrm{kHz}, 30$ percent modulation and a level of 12 microvolt.
(6) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(7) Observe that the electronic voltmeter indicates 3.5 volts or greater.
(8) Deleted.
(9) Set the receiver BANDWIDTH control to 75 kHz and the FUNCTION switch to FM.
(10) Apply power to the test equipment and allow 15 minutes for warmup.
(11) Adjust the signal generator to 100 MHz with a 1 kHz modulating frequency deviated 15 kHz and a level of 12 microvolt.
(12) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(13) Observe that the electronic voltmeter indicates 3.5 volts or greater.
(14) Remove the power from the receiver and disconnect the test setup.
k. Diode Output Test.
(1) Perform a(1) above.
(2) Connect the test equipment as shown in figure 6-7.

Figure 6-7. Diode output test connections.
(3) Set the receiver controls as follows:

	Control Setting
BAND	2
ANT	2
BANDWIDTH	10 kHz
RF GAIN	Maximum clockwise (no AVC)
FUNCTION	AM
TUNE	100 MHz

(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Adjust the signal generator for 100 MHz with $1 \mathrm{kHz}, 30$ percent modification and a level of 12 microvolt.
(6) Adjust the receiver TRIM control for a peak indication on the digital voltmeter.
(7) Observe that the digital voltmeter indicates 2 volts dc or greater. The voltage should be negative with respect to ground.
(8) Remove the power from the receiver and disconnect the test setup.
l. AM Whip Sensitivity Test.
(1) Perform a (1) above.
(2) Connect the test equipment as shown in figure 6-8.

Figure 6-8. AM whip sensitivity test connections.

(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Perform (6) through (9) below for the following receiver and signal generator frequencies at the signal generator level specified:

Band	Frequency $M H z$	Signal Level.
Generator		

(6) Adjust the signal generator for $1 \mathrm{kHz}, 30$ percent modulation at the level specified in (5) above.
(7) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(8) Adjust the receiver VOL control for a 2.45 volt indication on the eletronic voltmeter.
(9) Turn the signal generator modulation off. The electronic voltmeter should indicate 0.775 volts or less.
(10) Remove the power from the receiver and disconnect the test setup.
m. Agc Characteristic Test.
(1) Perform a(1) above.
(2) Connect the test equipment as shown in figure 6-1.
(3) Set the receiver controls as follows:

	Control
BAND	2
TUNE	100 MHz
BANDWIDTH	10 Hz
RF GAIN	AVC
ANT	2
FUNCTION	AM

(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Adjust the signal generator for 100 MHz with $1 \mathrm{kHz}, 30$ percent modulation at a level of 2.5 microvolt.
(6) Adjust the receiver TRIM control for a peak indication on the electronic voltmeter.
(7) Adjust the receiver VOL control for a 0.775 volt indication on the electronic voltmeter.
(8) Adjust the signal generator level to 500 millivolts. The electronic voltmeter should indicate 2.45 volts or less.
(9) Remove the power from the receiver and disconnect the test setup.

6-14. Radio Assembly (A1A1) Adjustments

a. IF Amplifier Gain
(1) Perform the preliminary test setup of paragraph 6-12
(2) Connect the test equipment as shown in figure 6-9.

Figure 6-9. IF amplifier gain adjustment connections.
(3) Set the receiver controls as follows:

	Control Setting
ANT	2
BAND	1
TUNE	62.6 MHz
BANDWIDTH	10 kHz
RF GAIN	Maximum clockwise (no AVC)
VOL	Maximum clockwise
FUNCTION	AM

(4) Apply power to the test equipment and allow 16 minutes for warmup.
(5) Adjust the signal generator for 62.6 MHz with $1 \mathrm{kHz}, 30$ percent modulation at a level of 12 microvolt.
(6) Adjust IF amplifier potentiometer A1A1A3R8 (fig. FO-2b) for an indication of -3 volts dc on the digital voltmeter. The electronic voltmeter should indicate 4.0 volta or greater. If it does not,
adjust the potentiometer for an indication of 4.0 volts on the electronic voltmeter.
(7) Remove the modulation from the signal generator and reduce the level to 4 microvolt.
(8) Place the FUNCTION switch in the CW position.
(9) Vary the frequency of the signal generator slightly for a peak indication on the electronic voltmeter. The electronic voltmeter must indicate 3.5 volts or greater. If it does not, adjust potentiometer A1A1A3R8 for a 3.5 volt indication on the electronic voltmeter.
(10) Remove the power from the receiver and disconnect the test setup.
b. Signal Meter Adjustment.
(1) Perform the preliminary test setup of paragraph 6-12
(2) Connect the test equipment as shown in figure 6-1 except the receiver will be removed from the dust cover and connected, using the extension cable (part of the accessory kit).
(3) Set the receiver controls as follows:

	Control
ANT	Setting
BAND	2
TUNE	1
BANDWIDTH	52 MHz
RF GAIN	10 kHz
FUNCTION	AVC
AM	

(4) Apply power to the test equipment and allow 15 minutes for warmup.
(5) Adjust the signal generator for 52 MHz with $1 \mathrm{kHz}, 30$ percent modulation at a level of 500 millivolts.
(6) Adjust detector assembly potentiometer A1A1A4R14 (fig. FO-20) for full scale deflection on the receiver signal meter A1A1A1M1.
(7) Remove the power from the receiver and disconnect equipment setup.

6-15. Radio Assembly (A1A1) Testing

a. Remove the radio assembly from the dust cover para 6-6).
b. Remove the subassemblies from the radio assembly (para 6-6) except do not unsolder the leads from the power transformer.
c. Make the continuity and resistance checks in table 6-3 as follows:
(1) Refer to the schematic diagram of the receiver, figure FO-2 and figures FO-17, FO-18 and FO-19 for assistance in locating components. Pin numbers on components are shown in figures 6-10 and 6-11.

EL1ALO18
Figure 6-10. Front panel component terminal numbering.

Figure 6-11. Connector pin numbering.
(2) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX1 scale.
(3) Set the receiver controls as specified in table 6-3. Controls not listed have no effect on the tests.
(4) Reference designators listed in table 6-3 are abbreviated. For complete reference designation, prefix with A1A1.
d. Reinstall the subassemblies in the radio assembly (para 6-9).
e Reinstall the radio assembly in the dust cover (para 6-9).
6-16. Control Panel Assembly (A1A1A1) Testing a. Remove the radio assembly from the dust cover (para 6-).
b. Remove the subassemblies from the radio assembly (para 6-6) except do not remove the power transformer.
c. Uncouple the connectors at A1A1A1S1P1 and A1A1W1P2.
d. Refer to the schematic diagram of the receiver, figure FO-2 and figure 6-10 for assistance in locating components and pin numbers.
e. Make the continuity and resistance checks in table 6-4 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX1 scale.
(2) Set the receiver controls as specified in table 6 -4. Controls not listed have no effect on test.
(3) Reference designators listed in table 6-4 are abbreviated. For complete reference designation, prefix with A1A1.
f. Reinstall the subassemblies in the radio assembly (pare 6-9) and reconnect the connectors at A1A1A1S1P1 and A1A1W1P2.
g. Reinstall the radio assembly in the dust cover (para 6-9).

Table 6-3. Radio Assembly Continuity and Resistance Checks

Multimeter (+) Lead	Multimeter (-) Lead	Reading (ohms)	Control setting
a. Rf tuner (A2A1)			
W2-P1	W2-J1	0	Any
W2-P1 shield	W2-J1	Infinite	Any
W2-P1 shield	W2-J1 shield	0	Any
P1-A	A1S6B-F11	0	Any
P1-C	A2E3	0	Any
P1-E	J1-H	0	Any
P1-E	AlS2A-A	0	Any
P1-F	A2E6	0	Any
P1-H	A2E4	0	Any
b. If. amplifier (A3)			
W3-J1	W3-J2	0	Any
W3-J1 ahiold	W3-J2	Infinite	Any
W3-J1 shield	W3-J2 shield	0	Any
J1-A	A2E4	0	Any
J1-B	A2E6	0	Any
J1-C	A1R2-3	0	Any
c. Detector (A4)			
J2-A	A1J3	0	Any
J2-B	AlR1-2	0	Any
J2-C	A2E6	0	Any
J2-D	A1S5B-F6	0	Any
J2-E	A1S5B-F4	0	Any
J2-F	A1S3	0	Any
J2-H	A1S2A-B	0	Any
J2-J	A1S5B-F2	0	Any
J2-K	A1S5B-F10	0	Any
J2-L	A1S5B-F3	0	Any
J2-M	A1J1	0	Any
J2-N	A2E4	0	Any
J2-P	A2E3	0	Any
J2-R	A1J2	0	Any
d. Power supply (AG)			
J3-A	A1T1.6	0	Any
J3-B	A153	0	Any
J3-C	A2E3	0	Any
J3-D	A2E6	0	Any

Table 6-3. Radio Assembly Continuity and Resistance Checks-Continued

	Multimeter $(+)$ Lead	Multimeter $(-)$ Lead	Reading $($ ohms $)$

Table 6-4. Front Panel Assembly Continuity and Resistance Checks

Multimeter $(+)$ Lead	Multimeter $(-)$		Lead

Table 6-4. Front Pane Assembly Continuity and Resistance Checks-Continued

Multimeter $(+)$ Lead	Multimeter $(-)$ Lead	Reading (ohms)	Control setting
A1SSB-F1	A1S5B-F4	0	A1S5 to CAL
A1S5B-F7	A1S5B-F10	0	A1S5 to CAL
A1S5B-F7	A1S5B-F11	0	A1S5 to CAL

6-17. Gear and Tuner Assembly (A1A1A2) Testing a. Low Pass Filter.
(1) Fabricate the low pass filter shown in figure 6-12, using the materials listed in the Tool and Test Equipment List (app B).
(2) Test the low pass filter as follows:
(a) Connect the test equipment as shown in figure 6-13 with the signal generator connected directly to the electronic voltmeter, using the jumper wire as shown.

ELIALO2O
Figure 6-13. Low pass filter fabrication.

Figure 6-13. Low pass filter test connections.
(b) Apply power to the test equipment and allow 125 minutes for warmup.
(c) Adjust the signal generator for a 10 MHz CW output at a level of 0 dbm as indicated on the electronic voltmeter.
(d) Remove the jumper wire from the test setup without disturbing the signal generator controls.
(e) The electronic voltmeter should indicate -1 dbm or greater.
(f) Adjust the level of the signal generator for a 0 dbm indicating on the electronic voltmeter with the low pass filter in the test setup. Maintain this level at the signal generator output for the remainder of the test.
(g) Adjust the signal generator frequency to 15 MHz . The electronic voltmeter should indicate -3 dbm or lees.
(h) Adjust the signal generator frequency to

23 MHz . The electronic voltmeter should indicate -20 dbm or greater.
(i) Adjust the signal generator frequency to 50 MHz . The electronic voltmeter should indicate -40 dbm or less.
b. Gain Test.
(1) Remove the receiver from the dust cover (para 6-\$).
(2) Remove IF amplifier A1A1A3 (para 6-6).
(3) Perform the preliminary test setup [pare 6-
12).
(4) Connect the test equipment as shown in figure 6-14

Figure 6-14. Gain test connections.
(5) Set the receiver controls as follows:

	control setting	
ANT	2	Band
RF GAIN	Maximum clockwise (no AVC)	1
FUNCTION	CW	1

Table 6-5. Gain Test Frequencies
(6) Apply power to the test equipment and 2 allow 15 minutes for warmup.
(7) Perform (8) through (12) below at each of the frequencies listed ir table 6-5.
(8) Adjust the signal generator for a cw output at the frequency given in (7) above and a level of 10 millivolts.
(9) Adjust the TRIM control for a peak indication on the electronic voltmeter.
(10) Observe that the electronic voltmeter indicates the voltage listed ir table 6-5.
(11) Adjust the RF GAIN control fully counterclockwise. The electronic voltmeter should indicate less than 1.0 millivolt.
(12) Adjust the RF GAIN control fully clock. wise.
(13) Remove the power from the receiver and disconnect the test setup.
(14) Reinstall the IF amplifier in the radio assembly (para 6-9).
6-18. IF Amplifier Assembly (A1A1A3) Testing a. Preliminary.
(1) Remove the receiver from the dust cover and remove detector assembly (A1A1A4) (para 6-6).
(2) Disconnect connector A1A1W2P1 from the rf tuner motherboard.
(3) Perform the preliminary test setup pare 6 12).
(4) Connect the test equipment as shown in figure 6-15.

Figure 6-15. IF amplifier assembly test connections.
(5) Set the receiver controls as follows:

Control

RF GAIN
BANDWIDTH
FUNCTION

setting

Maximum clockwise (no AVC) 10 kHz FM
(6) Apply power to the test equipment and allow 15 minutes for warmup.
b. Voltage Gain and Agc Test.
(1) Adjust the signal generator for a CW output at 10.7 MHz and a level of 1.0 millivolt.
(2) Adjust the signal generator frequency slightly for a peak indication on the electronic voltmeter.
(3) Adjust IF amplifier gain potentiometer A1A1A3R8 (fig. FO-2Q) for maximum indication on the electronic voltmeter.
(4) Observe that the electronic voltmeter indicates a minimum of 100 millivolts.
(5) Turn the receiver RF GAIN control fully counterclockwise,
(6) Increase the signal generator level to 100 millivolts.
(7) Observe that the electronic voltmeter indicated 10 millivolts or leas.
c. Bandwidth Test.
(1) Turn the receiver RF GAIN control fully clockwise (no AVC).
(2) Adjust the signal generator level for a 10millivolt indication on the electronic voltmeter.
(3) Adjust the signal generator frequency
slightly for a peak indication on the electronic voltmeter and readjust the signal generator level for a 10 -millivolt indication on the electronic voltmeter.
(4) Note the signal generator level.
(5) Increase the signal generator level by 6 db .
(6) Increase the signal generator frequency until the electronic voltmeter indicates 10 millivolts. Note the signal generator frequency.
(7) Decrease the signal generator frequency until the electronic voltmeter indicates 10 millivolts. Note the signal generator frequency.
(8) Compute the difference between the frequencies noted in (6) and (7) above.
(9) The difference frequency should be within the limits specified, in table 6-6 for the 6-db bandwidth.
(10) Increase the signal generator level 60 db above that noted in (4) above.
(11) Repeat (6) (7) and (8) above.
(12) The difference frequency should be within the limits specified in table 6-6 for the $60-\mathrm{db}$ bandwidth.
(13) Turn the receiver BANDWIDTH switch to 75 kHz .
(14) Repeat (1) through (12) above.
(15) Remove the power from the receiver and disconnect the test setup.
(16) Install detector assembly (A1A1A4) per paragraph 6-9).

Table 6-6. Bandwidth Test Levels

Level Above Reference (db)	10 kHz Position Bandwidth (kHz)	75 kHz Position Bandwidth (kHz)
6	9 to 11	70 to 80
80	Less than 30	Less than 225

(17) Reconnect connector A1A1W2P1 to RF tuner motherboard A1A1A2A1A11 2.
(18) Readjust IF amplifier gain potentiometer A1A1A3R8 (para. 6-14a).

6-19. Detector Assembly (A1A1A4) Testing

a. Preliminary.
(1) Remove the receiver from the dust cover, and remove the IF amplifier assembly (A1A1A3) (Para 6-6).
(2) Perform the preliminary test setup (para 6. 12).
(3) Connect the test equipment as shown in fiqure 6-16.

Figure 6-16. Detector assembly test connections.
(4) Set the receiver controls as follows:

Control	Seting
RF GAIN	AVC
FUNCTION	As required
VOL	As required

(5) Apply power to the test equipment and allow 15 minutes for warmup.
b. Fm Audio and Discriminator Output Test.
(1) Turn and receiver FUNCTION switch to FM.
(2) With the fm signal generator connected in the test setup, adjust the generator output for $\mathbf{1 0 . 7}$ $\mathrm{MHz} \pm \mathrm{kHz}$ with $1 \mathrm{kHz}, 15 \mathrm{kHz}$ deviated modulation and a level of 7.0 millivolts.
(3) Turn the receiver VOL control fully clockwise (no AVC).
(4) When measured at the receiver AUDIO output, the electronic voltmeter should indicate 3.5 volts or greater.
(6) When measured at the DISCR output the electronic voltmeter should indicate 50 millivolts or greater.
c. Am. Audio and Diode Output Test.
(1) Turn the receiver FUNCTION switch to AM.
(2) With the signal generator (AN/USM-44B) connected in the test setup, adjust the generator output for $10.7 \mathrm{MHz} \pm \mathrm{kHz}$ with $1 \mathrm{kHz}, 30$ percent modulation and a level of 9.0 millivolts.
(3) Turn the receiver VOL control fully clockwise.
(4) When measured at the receiver AUDIO output, the electronic voltmeter should indicate 3.5 volts or greater.
(5) When measured at the receiver DIODE output, the digital voltmeter should indicate 2.0
volts or greater. The voltage should be negative with respect to ground.
d. CW Audio Output and Signal Meter Test.
(1) Turn the receiver FUNCTION switch to CW.
(2) With the signal generator (AN/USM-44B) connected in the test setup, adjust the generator for a CW output at 10.7 MHz and a level of 3.0 millivolts.
(3) Turn the receiver VOL control fully clockwise.
(4) With the electronic voltmeter connected to the receiver AUDIO output, adjust the frequency of the signal generator slightly for a peak indication on the electronic voltmeter.
(5) The electronic voltmeter should indicate 3.5 volts or greater.
(6) Increase the signal generator level to 30 millivolts.
(7) The receiver signal level meter should indicate near full scale.
e Limiter Characteristic Test.
(1) Connect the FM signal generator to connector A1A1W3J 1.
(2) Turn the receiver FUNCTION switch to FM.
(3) Adjust the FM signal generator output for $10.7 \mathrm{MHJ} \mathrm{z} \pm \mathrm{kHz}$ with $1 \mathrm{kHz}, 15 \mathrm{kHz}$-deviated modulation and a level of 7 millivolts.
(4) With the electronic voltmeter connected to the receiver AUDIO output, adjust the receiver VOL control for a O-dbm indication on the electronic voltmeter.
(5) Increase the FM signal generator level to 50 millivolts.
(6) The electronic voltmeter should indicate 0 $\mathrm{dbm} \pm 3 \mathrm{db}$.
f. Agc Characteristic Test.
(1) Turn the receiver FUNCTION switch to AM.
(2) With the signal generator (AN/USM-44B) connected in the test setup, adjust the signal generator output for $10,7 \mathrm{MHz} \pm 1 \mathrm{kHz}$ with 1 kHz , 30 percent modulation and a level of 0.5 microvolt.
(3) When measured at pin H of connector A1A1A3J 1, the digital voltmeter should indicate 7 volts dc or greater.
(4) I ncrease the signal generator level to 30 millivolts.
(5) The digital voltmeter should indicate 2 volts dc or less.
(6) Remove the power from the receiver and disconnect the test setup.
(7) Install the IF amplifier assembly (A1A1A3) in the receiver (para 6-9).

6-20. Power Supply Assembly (A1A1A5) Testing
a. Preliminary.
(1) Perform the preliminary test setup (para 612).
(2) Connect the test equipment as shown in fiqure 6-17.

Figure 6-17. Power supply assembly test connections.
(3) Set the receiver controls as follows:

RF GAIN	Control VOL
LITE	Maximum clockwise (no AVC)
FUNCTION	Maximum clockwise
OFF	OF

NOTE

Be sure to install the proper power cable for the source voltage to be used. Use power cable CX- 10958/U for vehicular power source, CX-10957/U for 220-vac source, and CX-10956/U for 110-vac source. The ac test and voltage adjustment in this section may be performed, using either 110 vac or 220 vat, $50-\mathrm{Hz}$ to $400-\mathrm{Hz}$ power.
b. Ac Operation Test.
(1) With the digital voltmeter connected to test point TP3, the voltmeter should indicate 16 to 19 volts dc.
(2) With the digital voltmeter connected to test point TP4, the voltmeter should indicate 11.2 ± 1 volts dc.
(3) With the oscilloscope connected to test point TP3, the ripple at the power source frequency should not exceed 60 millivolts peak-to-peak.
c. Vehicular Operation Test.
(1) With the digital voltmeter connected to test point TP3, the voltmeter should indicate 16 to 19 volts dc.
(2) With the digital voltmeter connected to test
point TP4, the voltmeter should indicate 11.2 ± 1 volts dc.
d. Battery Operation Test.
(1) Remove the power cable from the dust cover (A1A2).
(2) Install twelve fresh BA-30/U cells in the battery compartment (para 2-5a).
(3) Place the INT-EXT switch on the dust cover (A1A2) in the INT position.
(4) Press the PWR CHK switch on the receiver front panel. The panel meter should indicate in the green portion of the scale.
(5) With the digital voltmeter connected to test point TP4, the voltmeter should indicate 11.2 ± 1 volts dc.
e. 11.2-Volt Adjustment.
(1) Connect the receiver for ac operation.
(2) Be sure that the INT-EXT switch on the dust cover (A1A2) is in the EXT position.
(3) Connect the digital voltmeter to test point TP4.
(4) Adjust potentiometer A1A1A5R2 (fig. FQ20) for an indication of $11.2 \pm$ volts dc on the digital voltmeter.
6-21. Calibration Oscillator Assembly (A1A1A6) Testing
a. Perform the preliminary test setup (para 6-12).
b. Connect the test equipment as shown in figure 6-18.

Figure 6-18. Calibration oscillator test connections.
c. Set the receiver FUNCTION control to CAL.
d. Apply power to the test equipment and allow 15 minutes for warmup.
e The electronic counter should indicate 2.0 MHz $\pm 100 \mathrm{~Hz}$.

6-22. Dust Cover Assembly (A1A2) Testing

a. Remove the radio assembly from the dust cover (para 6-6).
b. Loosen filter FL1 in the dust cover by removing the four mounting screws and the terminal cover.
c. Refer to the schematic diagram of the dust cover, figures FO-3, 6-19 and FO-16 for assistance in locating components and pin numbers.

Figure 6-19. Dust cover connector and switch pin numbering.
d. Make the continuity and resistance checks in table 6-7 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX1 scale.
(2) Set the dust cover controls as specified in table 6-7.
(3) Reference designators, listed in table 6-7, are abbreviated. For complete reference designation prefix with A1A2.
e. Reinstall filter FL 1 and the terminal cover, using four screws.
f. Reinstall the radio assembly in the dust cover (para 6-9).

Table 6-7. Dust Cover Continuity and Resistance Checks

Multimeter (+) Lead	Multimeter (-) Lead	Reading (ohms)	Control setting
J1-1	J2-M	o	Any
FL1-7	J2-J	0	Any
J1-3	FLl-6	o	Any
FL1-6	J2-L	0	Any
J1-4	S1-2	o	Any
J1-5	FL-4	o	Any
FL1-4	J2-C	o	Any
J1-6	FL1-3	o	Any
FL1-3	J2-H	o	Any
J 1-71	FL1-2	o	Any
FL1-2	J2-B	o	Any
J1-8	J2-N	o	Any
J1-9	J2-D	0	Any
J1-10	S1-4	o	Any
J1-11	S1-1	o	Any
J1-12	FL1-7	o	Any
FL1-7	J2-F	o	Any
J1-13	J2-E	o	Any
J1-14	FLl-1	o	Any
FLl-1	J2-A	o	Any
J1-15	FL1-5	o	Any
FL1-5	J2-K	o	Any
El	E2	15 Max	Any
E2	El	15K Min	Any (RX1000)
E2	J1-4	0	S1 to INT
E2	J1-10	Infinite	S1 to INT
JI-4	J1-11	0	S1 to EXT
J1-4	J1-10	0	S1 to EXT
FL1-7	J1-14	Infinite	Any
FL1-7	J1-7	Infinite	Any
FLl-7	J1-6	Infinite	Any
FL1-7	J1-5	Infinite	Any
FL1.7	J1-15	Infinite	Any
FL1.7	J1.3	Infinite	Any

6-23. Antenna AS-2887/ UR Testing

a. Adjust the multimeter (TS-352/U) for resistance measurement on the RX 1 range.
b. Measure the resistance between the antenna connector center pin and the top section of spring
material. The multimeter should indicate 10 ohms or less.
c. Measure the resistance between the antenna connector center pin and the connector body. The multimeter should indicate infinity.

CHAPTER 7

GENERAL SUPPORT MAINTENANCE

Section I. GENERAL

7-1. Scope of Maintenance

This chapter describes general support maintenance requirements for Receiving Set, Radio AN/URR-71. These requirements include subassembly troubleshooting, inspection, repair, testing, adjustment, and alignment. It should be noted that intermediate level repairs are performed by direct or
general support, depending upon the complexity of the repair.

7-2. Tools and Test Equipment Required

All tools and test equipment required for general support maintenance are listed in the Maintenance Allocation Chart (app B).

Section II. TROUBLESHOOTING

7-3. General

This section contains procedures for isolating and localizing faulty circuits or components within the various subassemblies. These procedures normally are accomplished in conjunction with subassembly testing as described in paragraphs 7-10 through 723, or in paragraphs 6-3 and 6-4.

7-4. Troubleshooting Charts

Troubleshooting of the subassemblies is accomplished by systematically testing the subassembly inputs and outputs and by making other measurements at available test ppints. Tables 7-1 and 7-11 contain the subassembly troubleshooting procedures as follows:

Subassembly
A1A1A2
A1A1A2A1A1A1
A1A1A2A1A2
A1A1A2A1A3
A1A1A2A1A4
A1A1A2A1A5
A1A1A2A1A6
A1A1A3
A1A1A4
A1A1A5
A1A1A6

Name	Table
Gear and tuner assembly	$7-1$
Motherboard	$7-2$
RF preselector	$7-3$
First RF amplifier	$7-4$
Second RF amplifier	$7-5$
Third RF amplifier	$7-6$
Oscillator-mixer	$7-7$
IF amplifier assembly	$7-8$
Detector assembly	$7-9$
Power supply assembly	$7-10$
Calibration oscillator assembly	$7-11$

Table 7-1. Gear and Turner Assembly Troubleshooting

| Item of check | Test Conditional | Normal readings |
| :--- | :---: | :--- | \(\left.\begin{array}{c}Additional Checks

and remarks\end{array}\right]\)

Table 7-3. RF Preselector Troubleshooting

Item of check	Test condition	Normal readings	Additional checks and remarks
continuity and resistance.	Para 7-15a.	Table 7.15	Broken coil wires, coil slugs, glass trimmer capacitors.
Functional teat.	Para 7-.15b.	Pare 7-15b.	
Table 7-4. First RF Amplifier Troubleshooting	Normal readings	Additional checks and remarks	
Item ofcheck	Test condition	Para 7-16a.	Table 7.16

Table 7-5. Second RF Amplifier Troubleshooting

Item of check	Test condition	Normal readings	Additional checks and remarks
Continuity end resistance.	Pare 7-17a.	Table 7-17	Broken coil wires, coil slugs, glass trimmer capacitors. Defective Q1
Functional tact	Para 7-17b.	Para 7-17b.	Der

Table 7-6. Third RF Amplifier Troubleshooting

Item of check	Test conditions	Normal reading	Additional checks and remarks
Continuity and resistance.	Pam 7-18a.	Table 7-18.	Broken coil wires, coil slugs, glass trimmer capacitors. Defective Q1.
Functional test.	Pare 7-18b.	Pare 7-18b.	Derner

Table 7-7. Oscillator-Mixer Troubleshooting

Item of check	Test conditions	Normal reading	Additional Checks and remarks
Continuity and resistance.	Para 7-19a.	Table 7-19	Broken coil wires, coil slugs,
Functional test.	Pare 7-19b.	Pare 7-19b.	gees trimmer capacitors.

Table 7-8. IF Amplifier Assembly Troubleshooting

Table 7-9. Detector Assembly Troubleshooting

Table 7-10. Power Supply Assembly Troubleshooting

Table 7-11. Calibration Oscillator Assembly Troubleshooting

| Item of check | Test condition | Normal readiness |
| :--- | :--- | :--- | \(\left.\begin{array}{c}Additional checks

and remarks\end{array}\right]\)

Section III. MAINTENANCE

7-6. General

This section describes general support corrective maintenance procedures for the receiver and the various subassemblies.

7-6. Disassembly of Receiver
NOTE
Refer to paragraph 6-6 for disassembly of the receiver to the subassembly level.

Disassemble the subassemblies only to the extent necessary to make repairs.
a. Disassembly of Radio Assembly (A1A1) (fig. F0-17).
(1) Remove the if. amplifier assembly, detector assembly, power supply assembly, calibration oscillator assembly, and power transformer (para 66).
(2) Remove the outside body of the main tuning knob (37) by pulling straight out from the front panel.
(3) Remove the internal tooth nylon gear by pulling straight out from the front panel.
(4) Remove nylon spur gear from shaft by loosening two setscrews.

NOTE

See b below for removal of remaining main tuning knob parts. Do not remove remaining knob parts at this assembly level.
(5) Remove the control panel assembly (A1A1A1) from the radio by removing three screws (38) and pulling the control panel off of the main tuning shaft.
(6) Unsolder and tag all wires on the control panel that come from the remainder of the radio and disconnect connector W 1P1 (48) at the antenna trimmer connector J 2.
(7) Remove three nuts and lockwashers securing the rear support bracket (41) to the tuner housing.
(8) Remove the four screws (32) and lockwashers secureing the main rib assembly to the gear casting.
(9) Complete the removal of the main rib assembly by removing the attaching hardware from connectors J 1 (18), J 2 (26), and J 3 (17), and disconnecting cable W2 and connector P1 (18) from J 3 on the rf tuner motherboard.
b. Disassembly of Control Panel Assembly (A1A1A1) (fig. FO-18).
(1) Tuning knob removal. Remove the remaining parts of the main tuning knob from the control panel by removing the waterproof nut (36, fig, FO-17).
(2) Remove the knobs from the remaining front panel controls.
(3) Unsolder and tag wiring from front panel controls, connectors, etc, which are to be removed.
(4) Remove front panel controls, connectors, indicators, etc., as required, by removing the attaching hardware.
(5) If required, replace lamp DS1 by removing the clear lens cap and pulling the lamp out of the socket. Install a new lamp in the socket and replace the lens cap.
C. Disassembly of Gear and Tuner Assembly (A1A1A2) fig. FO-19).
(1) Dial tape removal:
(a) Remove the retainer spring that holds the tape in the sprocket gear by removing two screws.
(b) Remove the c rings from the spool posts.
(c) Remove the dial tape and spools from the spool posts.
(2) Remove the anti-blacklash gear (5) from the variable inductor (28) shaft by loosening the screw in the gear clamp (4).
(3) Loosen the bandswitch coupling (3) by loosening the setscrew (2) and the cap screw (10).
(4) Remove the gear housing assembly from the RF tuner assembly by removing three screws (6) and flat washers (7) and sliding the gear housing assembly off of the variable inductor shaft.
d. Disassembly of RF Tuner Assembly (A1A1A2A1) (fig. FO-19).
(1) Remove the cover (19) from the rf tuner (11) by removing six screws (18).
(2) Remove the RF tuner circuit card assemblies ($13,14,15,16,17$) by carefully pulling them out of the RF tuner.
e. Disassembly of Tuner Subassembly (A1A1A2A1A1) (fig. FO-19).
(1) Unsolder the lead from C1 and the jumper wire from E6 on the motherboard (24) to terminals J 4 and J 5 of the tuner subassembly (12).
(2) Remove the motherboard (24) and variable inductor (28) from the tuner subassembly by removing three screws (23), lockwashers (21), flat washers $(22,25)$ and nuts (26) that secure the motherboard to the tuner subassembly, and four screws (20) and washers $(21,22)$ that secure the variable inductor.
(3) Remove the variable inductor (28) from the motherboard (24) by unsoldering the ten variable inductor terminals from the motherboard.
f. Disassembly of IF Amplifier Assembly (A1A1A3) (fig. FO-17).
(1) Remove the IF assembly cover (5) by removing the four screws (7) and washers (6).
(2) Remove the four standoffs (8).
(3) Remove the circuit card assembly (9) and the switch actuator (2) by removing two screws (4) and washers (3) from the circuit card.
g. Disassembly of Detector Assembly (A1A1A4) (fig. FO-17).
(1) Remove the detector assembly cover (31) by removing the four screws (7) and washers (6).
(2) Remove the four standoffs (30).
(3) Remove the circuit card assembly (29) by removing the two screws (4) and washers (3) in the center of the circuit card.
h. Disassembly of Power Supply Assembly (A1A1A5) (fig. FO-17).
(1) Fold the power supply circuit card Al (13) over to expose the wires connecting it to the regulator circuit card A2 (14).
(2) Unsolder and tag the wires from the regulator circuit card (A2).
i. Disassembly of Calibration Oscillator Assembly (A1A1A6) (fig. FO-17). Remove the circuit card assembly (45) by removing two screws (4) and flat washers (3).

7-7. Inspection

a. Inspect circuit cards and the interior of the radio assembly as outlined in paragraph 6-7.
b. Inspect the control panel controls, indicators, connectors, terminals, etc for dirt, corrosion, wear, breakage, or signs of overheating.
c. Inspect the gear and tuner assembly for the following deficiencies
(1) Loose screws.
(2) Unsealed setscrews.
(3) Shafts that will not turn.
(4) Bent push rods.
(5) Gears not meshed and aligned.
(6) Bent or broken electrical contacts.
(7) Dirt or foreign matter present.

7-8. Replacement and Repair of Subassemblies and Circuit Cards
a. Subassembly Replacement. To replace a subassembly, follow the detailed instructions in paragraphs 6-6, 6-9, 7-6, and 7-9.
b. Circuit Card Repairs (fig. 7-1 through 7-11). Make repairs to circuit cards by accomplishing the following general parts replacement procedures:
(1) Remove attaching hardware as required to remove the defective part.
(2) Unsolder the part from the circuit card or unsolder the wiring from the part as applicable.
(3) Remove the part from the circuit card and replace with a serviceable part.

NOTE

See paragraph 7-8f for lead forming and mounting of reed switches on the RF tuner circuit cards.
(4) Use solder type SN60WRMAP2 to solder the component leads to the circuit card or connect the wiring to the component, as applicable, (MIL-STD-454 requirement 5).

WARNING

The fumes of trichloroethane are toxic. Provide thorough ventilation whenever used. DO NOT USE NEAR AN OPEN FLAME. Trichloroethane is not flammable, but exposure of the fumes to an open flame or hot metal forms highly toxic phosgene gas.
(5) Clean solder connections with trichloroethane and allow the circuit card to dry.

NOTE

Do not apply conformal coating over adjustment screws, under the card connector, around hardware, or over the components not previously coated. Do not apply conformal coating to any of the circuit cards in the RF tuner or to the motherboard circuit card.
(6) Apply conformal coating to the new component, the solder joints, and to the surrounding area, using a small paint brush. Apply the coating evenly to an approximate thickness of 0.001 to 0.006 inch .
(7) Allow the conformal coating to air cure at ambient temperature for 24 hours. This process can be speeded up by baking in accordance with MIL-STD-275.
c. Reed Switch Replacement (fig. 7-12 and 7-13). Magnetically activated reed switches are used as S1 and S2 on the following circuit card assemblies:
Preselector
A1A1A2A1A2
First RF Amplifier
A1A1A2A1A3
Second RF Amplifier
Third RF Amplifier
A1 A1 A2A1A4
A1A1A2A1A5
Oscillator-Mixer

CAUTION

Use extreme care in forming and cutting the leads of the reed switch to avoid cracking or breaking the glass envelope. Use long-nose pliers to grip the lead next to the glass while forming the lead. Do not cut the leads until the switch has been soldered in the circuit card.
(1) Form the leads to the dimension shown (fig. 7-12).
(2) Insert the switch in the circuit card and solder (fig. 7-1ß).

ウ் TM 11-5820-770-14

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX
ALL SYMBOLS WITH IAIAIARAIAIAI.
ELIALO28

Figure 7-I. Motherboard, AlAIA2AIAIAII parts location.

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIAIA2AIA2.

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIAIA2AIA3. parts location

FRONT

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIAIA2AIA4.

Figure 7-4. Second RF amplifier, A1A1A2A1A4, parts location.

FRONT

NOTE:
FOR COMPLETE REFERENCE DESIGNATIONS PREFIX
ALL SYMBOLS WITH IAIAIA2AIA5,

FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIAIA2AIA6.

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX
ALL SYMBOLS WITH LAIAIA3. ALL SMMBOLS WITH LAIAIA3.

Figure 7-7. IF amplifier, A1A1A2A3A1, parts location.

TM 11-5820-770-14

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIAIAMAI.

Figure 7-9. Power supply, A1A1A2A6A1, parts location.

Figure 7-10. Regulator, A1A1A2A5A2, parts location.

Figure 7-12. Reed switch lead forming dimensions.

Figure7-11. Calibration oscillator, A1A1A2A6A1, parts location.

Figure 7-13. Reed switch mounting.

7-9. Reassembly of Receiver Components NOTE

Refer to paragraph 6-9 for final assembly procedures for the receiver. In the following procedures, disregard steps involving components not previously removed.
a. Reassembly of Calibration Oscillator Assembly (A1A1A6) fig. FO-17). Secure the circuit card (45) to the assembly cover, using two screws (4) and flat washers (3).
b. Reassembly of Power Supply Assembly (A1A1A6) (fig. FO-17).
(1) Wire and solder the regulator circuit card A2 (14) to the power supply circuit card AI (13) per the wire list shown in table 7-12.
(2) Fold the power supply circuit card on top of the regulator circuit card so that the connector is properly oriented.
c. Reassembly of Detector Assembly (A1A1A4) fig. FO-17).
(1) Orient the circuit card (29) as shown in figure FO-17.
(2) Secure the circuit card to the chassis, using
two screws (4) and washers (3) in the center of the circuit card.
(3) Secure the four standoffs (30) to the assembly as shown.
(4) Orient the assembly cover (31) as shown, and secure with four screws (7) and washers (6).
d. Reassembly of IF Amplifier Assembly (A1A1A3) (fig. FO-17).
(1) With the circuit card (9) held component side up, place the switch actuator assembly (2) over the four microswitches on the circuit card.
(2) Orient the chassis as shown in figure FO-17 and be sure that the flat on the switch activator shaft is parallel to the opening in the chassis.
(3) Insert the circuit card (9) into the chassis and secure, using two screws (4) and washers (3) in the center of the circuit card.
(4) Secure the four standoffs (8) to the assembly as shown.
(5) Orient the assembly cover (5) as shown and secure with four screws (7) and washers (6).

Table 7-12. Power Supply (A1A1A5) Wire List

Wire No.	Origin	Termination	color	$\begin{aligned} & \hline \text { Size } \\ & \text { (awg) } \end{aligned}$
1	AlEl	A2E1	White	24
2	A1E2	A2E2	White	24
3	AlE3	A2E3	white	24
4	AlE4	A2E4	white	24
5	AlE5	A2E5	White	24
6	AlE6	A2E6	White	24
7	AlE7	A2E7	White	24
8	AlE8	A2E8	White	24
9	A1E9	A2E9	White	24

e. Reassembly of Tuner Subassembly (A1A1A2A1A1) (fig. FO-19).
(1) Orient the motherboard (24) as shown in figure FO-19.
(2) Secure the motherboard to the chassis, using three screws (23), flatwashers (22,25), lockwashers (21), and nuts (26).
(3) Secure the variable inductor (28) to the assembly, using four screws (20) and nonmetallic flat washers $(21,22)$.

NOTE

Do not tighten the four screws securing the variable inductor (28) to final tightness. Leave screws loose enough for variable inductor to move slightly. Do not solder the variable inductor terminals to the motherboard. See f below for proper orientation before soldering.
(4) Solder the lead from capacitor C1 of the motherboard to terminal J 5 on the chassis.
(5) Solder the jumper wire from E6 on the motherboard to terminal J 4 on the chassis.
f. Reassembly of Gear and Tuner Assembly (21 A 1 A 2) (fig. FO-19).

NOTE

Steps (2) and (3) below are necessary only if a replacement tuner subassembly is used.
(1) Orient the tuner subassembly so that the variable inductor (28) shaft and the bandswitch shaft are properly aligned with the holes in the gear housing. Place spacer (1) over end of variable inductor shaft before inserting shaft into the gear housing.
(2) Be sure that the top edge of the tuner subassembly is parallel to the top edge of the gear housing and clamp in this position..
(3) Drill two 0.0465 to 0.0478 diameter holes approximately 1.3 inches apart through the gear housing and the tuner subassembly wall. Press groove pins into the holes.
(4) Secure the tuner subassembly to the gear housing, using three screws (6) and flat washers (7). Remove the clamps.
(5) Rotate the variable inductor shaft so that the variable inductor can align itself within the bearing in the gear housing.
(6) Tighten the four screws (20) securing the variable inductor to the tuner subassembly.
(7) Rotate the variable inductor shaft to be sure that proper alignment has been achieved. The shaft should turn freely in the bearing with no binding.
(8) Carefully solder the ten variable inductor terminals to the motherboard. Use short pieces of buss wire as necessary to make direct connections with no stressing.
(9) Rotate the bandswitch shaft in the tuner subassembly so that the magnets are in the vertical position, parallel to the tuner subassembly wall.
(10) Orient the bandswitch coupling (3) as shown in figure FO-19.
(11) Apply sealing compound, grade C per MIL-S-22473, to the setscrew (2) and capscrew (10) of the bandswitch coupling. Engage coupling on bandswitch shaft so there is 0.001 to 0.004 inches of end play in the shaft. Tighten setscrew and capscrew.
(12) Place the gear clamp (4) and the antibacklash gear (5) on the variable inductor shaft. Preload the anti-backlash gear before engaging the idler gear.
(13) Tighten the screw in the gear clamp.
(14) Place the dial tape spools on the spool pins as shown in figure FO-19.
(15) Place the c rings on the spool pins.
(16) Align the dial tape as described in paragraph 7-13a.
g. Reassembly of RF Tuner Assembly (A1A1A2A1) (fig. FO-19).
(1) Orient of RF tuner circuit cards ($13,14,15$, $16,17)$ as shown in figure FO-19.
(2) Insert the circuit cards in the RF tuner, being careful not to bend any pins.
(3) Orient the RF tuner cover (19) as shown and secure the cover using six screws (18).
h. Reassembly of Control Panel Assembly (A1A1A1) fig. FO-17 and FO-18).
(1) Attach the wavy washer and stationary gear of the TUNE knob to the TUNE hole in the panel using the screw and watertight nut (36) as shown in figure FO-17.
(2) Replace the front panel controls, connectors, indi cators, etc, using the attaching hardware as shown in figure FO-18.
(3) Replace the knobs on the front panel controls. Be sure that pointer type knobs are in the proper position before securing them to the shaft.
(4) Solder the wiring on any controls, connectors, etc. which have been removed, and remove the wire tags.

NOTE
Refer to table 7-13 for wiring details.

Table 7-13. Receiver Wire List

Wire No.	Color	Length (in).		From

Table 7-13. Receiver Wire List-Continued

Wire No.		Length (in.)		From

i. Reassembly of Radio Assembly (A1A1) (fig. FO-17).

NOTE

During the following procedure, be careful not to pinch wires between assemblies. Carefully observe the polarity of the connectors and the orientation of the various parts shown in figure FO-17
(1) Secure the main rib assembly to the gear housing, using four screws and lockwashers.
(2) Secure the rear support bracket (41) to the

RF tuner assembly, using flatwashers (42), lockwashers (34) and nuts (43).
(3) Secure connectors J 1 (18), J 2 (26), and J 3 (17) to the main rib assembly. Observe connector polarity.
(4) Reconnect cable W2 (22) and connector P1 (18) to J 3 on the RF tuner motherboard.
(5) Reconnect and solder all wiring connecting the control panel with the remainder of the receiver. See table 7-13 for wiring details. Reconnect connector W1P1 (48) at antenna trimmer connector J 2.
(6) Place the tuning shaft of the gear and tuner assembly through the hole in the control panel. Engage the bandswitch shaft and the bandwidth shaft with their respective couplings.
(7) Secure the gear and tuner assembly to the control panel, using three screws (38).
(8) Place the spur gear from the TUNE knob on the TUNE shaft and secure it to the shaft such that
there is 0.156 ± 0.005 inch clearance between the spur gear and the stationary gear.
(9) Place the nylon internal tooth gear over the spur gear and onto the stationary gear.
(10) Push the knob body over the rest of the knob assembly.
(11) Refer to paragraph 6.9 for final reassembly procedures.

Section IV. SUBASSEMBLY TESTING

7-10. General

This section contains testing procedures for the various receiver subassemblies. Alignment and adjustment instructions for the subassemblies are also provided. These procedures are used in conjunction with the troubleshooting charts (tables 7-1 through $7-11$) to isolate a fault within the subassemblies. Also, the proper functioning of the subassemblies after repair can be verified, using these procedures and the testing procedures of paragraphs 6-1B through 6-16.

7-11. Radio Assembly (A1A1) Testing

Refer to paragraphs 6-13, 6-14, and 6-15 to test and adjust the radio assembly.

7-12. Control Panel Assembly (A1A1A1) Testing

 Refer to paragraph 6-16 to test the control panel assembly.
7-13. Gear and Tuner Assembly (A1A1A2) Testing

a. Mechanical Testing.

(1) Rotate the main tuning shaft and observe that all gear assemblies operate without binding and that the dial tape is engaged with the drive gear.
(2) Rotate the main tuning shaft back and forth slightly and observe that there is no backlash between the main tuning shaft and the drive gear for the dial tape. If excessive backlash is noticed, remove the anti-backlash gear from the variable inductor shaft, increase the spring tension in the anti-backlash gear, and reinstall the gear on the variable inductor shaft.
(3) Remove the cover from the RF tuner assembly by removing the attaching screws.
(4) Insert a screwdriver into the slotted shaft of the band switching mechanism. Rotate the screwdriver and observe that the mechanism moves freely, and that the magnets inside of the RF tuner do not strike the reed switches mounted on the circuit cards.
(5) Replace the cover on the RF tuner assembly.
(6) Rotate the main tuning shaft fully counterclockwise. Observe that the line on the dial tape is
in the position shown in figure 7.14. If the dial tape does not line up as shown, remove the spring assembly by removing the two screws and slip the dial tape over the drive gear to achieve proper alignment. Replace the spring assembly.

Figure 7-14. Dial tape alignment.
b. Electrical Testing. Refer to paragraph 6-17 for electrical tests for the gear and tuner assembly.

NOTE
Electrical tests and alignment for the gear and tuner assembly can only be performed with the gear and tuner assembly installed in the radio assembly.
c. Alignment.

NOTE

Capacitors are adjusted using the metal tipped tuning tool. All coil adjustments are made using the nonmetallic tuning tool. File a chisel shape on the hexagonal end of the nonmetallic tuning tool so that it fits the slot in the core of transformer T1 of the oscillator-mixer board (A1A1A2A1A6).
(1) Local oscillator alignment..
(a) Remove the receiver from the dust cover and remove the if. amplifier, A1A1A3(para 6-6).
(b) Perform the preliminary test set up pard (6-12).
(c) Connect the test equipment as shown in fiqure 7-15
(d) Set the receiver FUNCTION switch to CW and the BAND switch to 2 .
(e) Apply power to the test equipment and allow 15 minutes for warmup.
(f) Rotate the main tuning shaft fully counterclockwise.
(g) Adjust the cursor until it is aligned with the line on the dial tape, using the CAL ADJ control,

Figure 7-15. Local oscillator alignment connections.

NOTE

Seefigure FO-20 for location of adjustable components.
(h) Turn the main tuning shaft until the cursor is aligned with the 100 mark on the dial tape.
(i) Adjust capacitor A6C7 until the electronic counter indicates approximately 110.70 MHz .
(j) Turn the main tuning shaft until the cursor is aligned with the 50 mark on the dial tape.
(k) Adjust coil A6L1 until, the electronic counter indicates approximately 60.70 MHz .
(I) Turn the main tuning shaft until the cursor is aligned with the 150 mark on the dial tape.
(m) Adjust coil A6L2 until the electronic counter indicates approximately 160.70 MHz .
(n) Repeat h through m above until the measured frequencies are within 75 kHz of the desired frequency.
(o) Place the BAND switch in the 1 position.
(p) Turn the main tuning shaft until the cursor is aligned with the 46 mark on the dial tape.
(q) Adjust capacitor A6C11 until the electronic counter indicates approximately 56.70 MHz .
(r) Turn the main tuning shaft until the cursor is aligned approximately 32.70 MHz .
(s) Adjust coil A6L3 until the electronic counter indicates approximately 32.70 MHz .
(t$)$ Repear p through s above until the
measured frequencies are within 20 kHz of the desired frequency.
(u) Remove the power from the receiver and disconnect the test setup.
(2) RF amplifier alignment.
(a) Perform the preliminary test setup (para
6.
(b) Connect the test equipment as shown in figure 6-14
(c) Set the receiver controls as follows:

Control
Setting
ANT
BAND
RF GAIN FUNCTION
 CW
(d) Apply power to the test equipment and allow 15 minutes for warmup.
(e) Adjust coil A2L2 so that the slug is $1 / 8$ inch from the top of the coil form. No further adjustment of this coil will be necessary.
(f) Turn the main tuning shaft until the cursor is aligned with the 50 'mark on the dial tape.
(g) Adjust the signal generator for cw operation at a frequency of 50.0 MHz 2 kHz and sufficient level for an indication on the electronic voltmeter.
(h) Adjust the IF output transformer, A6T1,
on the side of the tuner housing for a peak indication on the electronic voltmeter.
(i) Adjust the following capacitors for a peak indication on the electronic voltmeter (fiq. FO-2p): First RF amplifier
.A3C5
Second RF amplifier ..A4C5
Third RF amplifier .A5C5
(j) Turn the main tuning shaft until the cursor is aligned with the 150 mark on thedial tape. dial tape.
(k) Adjust the frequency of the signal generator to $150.0 \mathrm{MHz} \pm \mathrm{kHz}$.
(j) Adjust the following coils for a peak indication on the electronic voltmeter:

First RF amplifier
..A3L2
Second RF amplifierA4L2
Third RF amplifierA5L2
(m) Turn the main tuning shaft until the cursor is aligned with the 100 mark on the dial tape.
(n) Adjust the frequency of the signal generator to 100 MHz 15 kHz .
(o) Adjust preselector capacitor A2C7 for a peak indication on the electronic voltmeter.
(p) Repeat fthrough o above until a maximum peak is reached on the electronic voltmeter. Adjust the level of the signal generator as necessary to avoid saturating the rf tuner.
(q) Place the BAND switch in the 1 position.
(r) Turn the main tuning shaft until the cursor is aligned with the 50 mark on the dial tape.
(s) Adjust the frequency of the signal generator to 50.0 MHz 2 kHz .
(t) Adjust the following capacitors for a peak indication on the electronic voltmeter:

Preselector .A2C4
First RF amplifier A3C10
Second RF amplifier A4C10
Third RF amplifier A5C10
(u) Turn the main tuning shaft until the cursor is aligned with the 22 mark on the dial tape.
(u) Adjust the frequency of the signal generator to $22.0 \mathrm{MHz} \pm 2 \mathrm{kHz}$.
(w) Adjust the following coils for a peak indication on the electronic voltmeter:

Preselector
A2L1
First RF amplifier A3L3
Second RF amplifier A4L3
Third RF amplifier A5L3
(x) Repeat n through s above until a maximum peak is reached on the electronic voltmeter. Reduce the level of the signal generator as necessary to avoid saturating the RF tuner.
(y) Remove the power from the receiver and disconnect the test setup.

7-14. Motherboard (A1A1A2A1A1A1) Testing

Make the continuity and resistance checks (fig, 7-1 and FO-5) in table 7-14 as follows:
a. Set the multimeter (TS-352/U) to measure resistance. Unless specified, all measurements are made on the RX1 range.
b. Reference designators listed in table 7-14 are abbreviated. For complete reference designation prefix with A1A1A2A1A1A1.
c. Readings of less than 10 ohms are considered a short circuit.

7-15. RF Preselector (A1A1A2A1A2) Testing

a. Continuity and Resistance Test (iig. 7-2 and FO-6. Remove the RF preselector circuit card from the RF tuner and make the continuity and resistance checks in table 7-15 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX 10 range,
(2) Reference designators listed in table 7-15 are abbreviated, F or complete reference designation prefix with A1A1A2A1A2.

$\begin{aligned} & \text { Multimeter } \\ & (+) \text { Lead } \end{aligned}$	Multimeter $(-)$ Lead	Reading (Ohms)	Remarks
11	1 6-9	0	
\}1	Cl	Infinite	Top lead
, 1	1 3-F	Infinite	
12	1 10-6	0	
12	3-F	Infinite	
\} 3-A	E6	0	
] 3-C	17-5	0	
3-C	8-5	0	
) 3-C	9-5	0	
J 3-E	7-2	0	
3-E	8-2	0	
, 3-E	J 9-2	0	
\} 3-F	Ground plane	0	Circuit common
J 3-H	J 10-9	0	

Multimeter	Multimeter (-) Lead	Reading (ohms)	Remarks
J 6-1	J 3-F	0	
j 6-2	J 3-F	0	
J 6-3	J 3-F	0	
J 6-4	E1	0	
J 6-5	J 7-9	0	
J 6-7	J 3-F	0	
J 6-8	J 3-F	0	
J 6-10	J 3-F	0	
J 7-1	J 3-F	0	
J 7-3	J 3-F	0	
J 7-4	E2	0	
J 7-6	J 8-9	0	
J 7-8	J 3-F	0	
j 7-10	J 3-F	0	
J 8-1	J 3-F	0	
J 8-3	J3-F	0	
J 8-4	E3	0	
J 8-6	J 9-9	0	
J 8-7	J 3-F	0	
J 8-10	J 3-F	0	
J9-1	J 3F	0	
J 9-4	E4	0	
J9-6	J 10-5	0	
J 9-7	J 3-F	0	
J 9-8	J3-F	0	
J 9-10	J 3-F	0	
J 10-1	J 3-F	0	
J 10-3	J 3-F	0	
J 10-4	E5	0	
J 10-8	J 3-F	0	
J 10-10	J 3-F	0	

Table 7-15. RF Preselector Continuity and Resistance Checks

	Multimeter $(+)$ Lead	Multimeter $(-)$					Read (ohms)	Remarks
P1-9	P1-1	Infinite						
P1-4	P1-1	Infinite						
P1-4	P1-5	Infinite						
P1-5	R1, C11 junction	Infinite						
R1,C11 junction	P1-1	1,8K-2.2K	S2 activatad, RX1					
R1,C11 junction	S2, C9 junction	0	S1 activated, RX1					
P1-4	P1-1	0						

(3) Readings of less than 10 ohms are considered a short circuit,
(4) Unless otherwise specified, reed switches S1 and S2 are not activated,
b. Functional Test.
(1) After performing the resistance and continuity checks, insert the RF preselector in the RF tuner.
(2) Align the RF tuner (para 7-13c).
(3) Test the RF tuner (para 6-17).
(4) If the requirements of paragraph 6-17 are not satisfied, replace the RF preselector circuit card and repeat (2) and (3) above.
7-16. First RF Amplifier (A1A1A2A1A3) Testing
a. Continuity and Resistance Test fig. 7-3 and

F0-7). Remove the first rf amplifier circuit card from the rf tuner and make the continuity and resistance checks in table 7-16 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX10 range,
(2) Reference designators listed in table 7-16 are abbreviated. For complete reference designation prefix with A1A1A2A1A3.
(3) Readings of less than 10 ohms are con. sidered a short circuit,
(4) Unless otherwise specified, reed switches S1 and S2 are not activated.
b. Functional Test.
(1) After performing the resistance and con.
tinuity checks, insert the first RF amplifier in the RF tuner.
(2) Align the RF tuner (para 7-13c).
(3) Test the RF tuner (para 6-17).
(4) If the requirements of paragraph 6-17 gre
not satisfied, replace transistor Q1 on the first RF amplifier and repeat (2) and (3) above.
(5) If the requirements of paragraph 6-17 still are not satisfied, replace the first RF amplifier circuit card and repeat (2) and (3) above.

Table 7-16. First RF Amplifier Continuity and Resistance Checks

Multimeter $(+)$ Lead	Multimeter $(-)$ Lead	Reading (ohms)	Remarks
P1-9	P1-1	$45 K-61 \mathrm{~K}$	RX100
P1-2	R1, C1 junction	$9.2 \mathrm{~K}-10.8 \mathrm{~K}$	RX100
R4, L1 junction	L1, C3 junction	0	
R5,C4 junction	P1-1	$900-1100$	
P1-4	P1-5	Infinite	
P1-4	P1-6	Infinite	
P1-4	Infinite		
P1-6	Infinite	RX100	
R7, C12 junction	P1-1	P1-1	0
L4-R6 junction	P1-1	Infinite	
C11, S2 junction	P1-6	0	
C11, S2 junction	P1-4		S1, S2 activated

7-17. Second RF Amplifier (A1A1A2A1A4) Testing
a. Continuity and ResistanceTest (fig. 7-4 and FO-8). Remove the second rf amplifier circuit card from the RF tuner and make the continuity and resistance checks in table 7-17 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX10 range.
(2) Reference designators listed in table 7-17 are abbreviated. For complete reference designation prefix with A1A1A2A1A4.
(3) Reading of less than 10 ohms are considered a short circuit.
(4) Unless otherwise specified, reed switches S1 and S2 are not activated.
b. Functional Test.
(1) After performing the resistance and continuity checks, insert the second rf amplifier in the RF tuner.
(2) Align the RF tuner para 7-1Bc).
(3) Test the RF tuner (para 6-17).
(4) If the requirements of paragraph 6-17 are not satisfied, replace transistor Q1 on the second RF amplifier and repeat (2) and (3) above.
(5) If the requirements of paragraph 6-17 are still not satisfied, replace the second RF amplifier circuit card and repeat (2) and (3) above.

Table 7-17. Second RF Amplifier Continuity and Resistance Checks

Multimeter (+) Lead	Multimeter (-) Lead	Reading (ohms)	Remarks
P1-9	P1-1	35K-47K	RX100
P1-2	R1, C1 junction	$9.2 \mathrm{~K}-10.8 \mathrm{~K}$	RX100
P1-5	R1, C1 junction	184K-216K	RX1000
R4, L1 junction	L, C3 junction	0	
R6, C4 juntion	P1-1	900-1100	
P1-4	P1-5	Infinite	
P1-4	P1-6	Infinite	
P1-4	P1-1	Infinite	
P1-6	P1-1	Infinite	RX100
R7, C12 junction	P1-1	275-325	
L4, R6 junction	P1-1	0	
C11, S2 junction	P1-6	Infinite	
C11, S2 junction	P1-4	0	S1, S2 activated

7-18. Third RF Amplifier A1A1A2A1A5) Testing

a. Continuity and Resistance Test fig. 7-5 and FO-9). Remove the third RF amplifier circuit card from the RF tuner and make the continuity and resistance checks intable 7-18 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX10 range.
(2) Reference designators listed in table 7-18 are
abbreviated. For complete reference designation prefix with A1A1A2A1A5.
(3) Readings of less than 10 ohms are considered a short circuit.
(4) Unless otherwise specified, reed switches S1 and S2 are not activated.
b. Functional Test.
(1) After performing the resistance and continuity checks, insert the third RF amplifier in the RF tuner.
(2) Align the RF tuner (para 7-13c).
(3) Test the RF tuner (para 6-17).
(4) If the requirements of paragraph 6-17 are not satisfied, replace transistor Q1 \& on the third rf amplifier and repeat (2) and (3) above.
(5) If the requirements of paragraph 6-17 still are not satisfied, replace the third RF amplifier circuit card and repeat (2) and (9) above.

Table 7-18. Third RF Amplifier Continuity and Resistance Checks

Multimeter $(+)$ Lead	Multimeter $(-)$ Lead	Reading (ohms)	Remarks
P1-9	P1-1	$43 \mathrm{~K}-50 \mathrm{~K}$	RX100
R1, R2 junction	P1-1	$100 \mathrm{~K}-148 \mathrm{~K}$	RX1000
L1, C2 junction	L1, C3 junction	0	
R6, C4 junction	P1-1	$900-1100$	
P1-4	P1-5	Infinite	
P1-4	P1-6	Infinite	
P1-4	Infinite		
R8, C12 junction	P1-1	$275-325$	
L4, R7 junction	P1-1	0	
C11, S2 junction	P1-6	Infinite	
C1 1, S2 junction	P1-4	0	S1, S2 activated

7-19. Oscillator-Mixer (A1A1A2A1A6) Testing
a. Continuity and Resistance Test (fig. 7-6 and FO-10). Remove the oscillator-mixer circuit card from the RF tuner and make the continuity and resistance checks in table 7-19 as follows:
(1) Set the multimeter (TS-352/U) to measure resistance. Unless otherwise specified, all measurements are made on the RX10 range.
(2) Reference designators listed in table 7-19 are abbreviated. For complete reference designation prefix with A1A1A2A1A6.
(3) Readings of less than 10 ohms are considered a short circuit.
(4) Unless otherwise specified, reed switches S1 and S2 are not activated.
b. Functional Test.
(1) After performing the resistance and continuity checks, insert the oscillator-mixer in the RF tuner.
(2) Align the RF tuner (para 7-13c).
(3) Test the RF tuner (para 6-17).
(4) If the requirements of paragraph 6-17 are not satisfied, replace transistors Q1 and Q2 on the oscillator-mixer and repeat (2) and (3) above.
(5) If the requirements of paragraph 6-17 still are not satisfied, replace the oscillator-mixer circuit card and repeat (2) and (3) above.

Table 7-19. Oscillator-Mixer Continuity and Resistance Checks
$\left.\begin{array}{llll}\hline & \begin{array}{c}\text { Multimeter } \\ (+) \text { Lead }\end{array} & & \begin{array}{l}\text { Multimeter } \\ (-) \text { Lead }\end{array} \\ \text { P1-5 } & \mathrm{P} 1-1 & 9.2 \mathrm{~K}-10.8 \mathrm{~K} \\ \text { (ohms) }\end{array}\right)$

7-20. IF Amplifier Assembly (A1A1A3) Testing

a. Electrical Tests. Refer to paragraph 6-18 for if. assembly testing.
b. Alignment, (fig. 7-7).
(1) Perform the preliminary teat procedure (para 6-18a).
(2) Adjust the signal generator for a cw output at $10.7 \mathrm{MHz} \pm 1 \mathrm{kHz}$, and a sufficient level for an indication on the electronic voltmeter.
(3) Adjust potentiometer R8 for maximum output, fully counterclockwise.

NOTE

Adjust the signal generator level as necessary in order to avoid limiting when adjusting coils L3 and L4.
(4) Adjust coils L3 and L4 for a peak indication on the electronic voltmeter.
c. Voltage Measurements (fig. 7-7 and FO-11).
(1) Preliminary.
(a) Perform the preliminary test procedure (para 6-18a).
(b) Remove the module cover from the IF amplifier.
(2) Quiescent voltages. With no input signal and the front panel RF GAIN control fully clockwise (no AVC), perform the dc voltage measurements listed in table 7-20 as follows:
(a) Connect the digital voltmeter between the IF amplifier chassis and the indicated test points. The digital voltmeter should indicate within the limits listed in table 7-20.

Table 7-20. IF Amplifier Quiescent Voltages

	Terminal	Dc volts	Remarks
U1	1	2.45-3.67	
	2	1.80-2.72	
	3	0	
	4	0	
	5	3.0-4.6	Same as TP2
	6	11.0-11.4	
	7	0	
	8	3.8-7.0	
	9	11.0-11.4	
	10	3.6-6.8	
U2			
	2	$1.80-2.72$	
	3	0	
	4	0	
	5	3.0-4.6	Same as TP2
	7	0	
	8	3.8-7.0	
	9	11.0-11.4	
	10	3.6-3.8	
Q1	Base	3.5-5.2	
	Emitter	3.0-4.5	
	Collector	3.04.6	Same as TP2

(b) Reference designators shown in table 720 are abbreviated. For complete reference designation prefix with A1A1A3.
(c) Voltage measurements of less than 0.1 volts are considered the same as O volt.
(3) Dynamic voltages (fig. 7-7 and FO-20). Adjust potentiometer R8 for maximum output, fully counterclockwise and perform the measurements listed in table 7-21 under the test conditions listed as follows:
(a) Use the electronic voltmeter (AN/URM145) with the high impedance probe for ac voltage measurements, and the digital voltmeter (AN/GSM64) for dc voltage measurements.
(b) Adjust the signal generator for a frequency of $10.7 \mathrm{MHz} \pm \mathrm{kHz}$, in the cw mode.
(c) Reference designators used in table 7-21
are abbreviated. For complete reference designation, prefix with A1A1A3.
(d) All voltages are measured with respect to chassis common.
7-21. Detector Assembly (A1A1A4) Testing
a. Electrical Tests. Refer to paragraph 6-19 for detector assembly testing.
b. Alignment.
(1) Perform the preliminary test. procedure (para 6-19a).
(2) Place the front panel FUNCTION switch in the AM position.
(3) With the signal generator (AN/USM-44B) connected in the test setup, adjust the generator for a frequency of $10.7 \mathrm{MHz} \pm 1 \mathrm{kHz}$, with $1 \mathrm{kHz}, 30$ percent modulation and a level of 50 millivolts.

Table 7-21. IF Amplifier Dynamic Voltages

TestPoint	Indication	Test condtions
P3-A	11.0-11.4 vdc	All conditions
P3-B	0	All conditions
P3-C	$5.4-8.6$ vdc	All condition
P3-H	0.01 vdc maximum	RF GAIN counterclockwise
	$5.4-8.6 \mathrm{vdc}$	RF GAIN clockwise (no AVC)
TP2	$1.0-5.0 \mathrm{vdc}$	RF GAIN clockwise (no AVC)
		BANDWIDTH $=10 \mathrm{kHz}$
		TP1 = 0.5 millivolts, 10.7 MHz
C18, C21 junction	7.13 mv ac	BANDWIDTH $=10 \mathrm{kHz}$
		TP1 = 25 millivolts, 10.7 MHz
C18, C21 junction	5.10 mv ac	BANDIWDTH $=75 \mathrm{kHz}$
		TP1 = 25 millivolts, $10,7 \mathrm{MHz}$
C8, C9 junction	25.45 mv ac	BANDWIDTH $=10 \mathrm{kHz}$
		TP1 $=0.5$ millivolts, 10.7 MHz
		RF GAIN clockwise (no AVC)
TP3	0.5 vac minimum	BANDWIDTH -10 kHz
		TP1-0.5 milllivolts, 10.7 MHz
		RF GAIN clockwise (no AVC)

(4) With the electronic voltmeter connected to the AUDIO output and the front panel VOL control at midrange, adjust coil L2 (fig. FO-20) for a peak indication on the electronic voltmeter.
(5) Place the front panel FUNCTION switch in the CW position.
(6) With the signal generator (AN/USM-44B) connected in the test setup, adjust the generator for a frequency of $10.7 \mathrm{MHz} \pm 500 \mathrm{~Hz}$, with a cw output of 50 millivolts.
(7) With the electronic voltmeter connector to the AUDIO output and the front panel VOL control at midrange, adjust capacitor C39 for a peak indication on the electronic voltmeter.
(8) Place the front panel FUNCTION switch in the FM position.
(9) With the FM signal generator connected to the test setup, adjust the generator for a frequency of $10.7 \mathrm{MHz} \pm 1 \mathrm{kHz}$ with 1 kHz modulating frequency deviated 15 kHz and a level of 50 millivolts.
(10) With the electronic voltmeter connected to the AUDIO output and the front panel VOL control at midrange, adjust coil L6 for a peak indication on the electronic voltmeter.
(11) Potentiometer R14 is adjusted at the radio assembly (A1A1) level. See paragraph 6-14b for adjustment.
C. Voltage Measurements (f g. 7-8 and FO-12).
(1) Preliminary,
(a) Perform the preliminary test procedure (para 6-19a).
(b) Remove the cover from the detector assembly.
(2) Quiescent voltages. With no input signal, and the front panel FUNCTION switch set at AM and the RF GAIN control fully clockwise, perform
the dc voltage measurements listed in table 7-22 as follows:
(a) Connect the digital voltmeter (AN/GSM-64) between the detector chassis and the indicated test points. The digital voltmeter should indicate within the limits listed ir table 7-22.
(b) Voltage measurements of less than 0.1 volts are considered the same as O volts.
(c) Reference designators shown in table 722 are abbreviated. For complete reference designation, prefix with A1A1A4.
(3) Dynamic voltages (fig. 7-8). Perform the measurements listed in table 7-23 under the test condition listed as follows:
(a) Use the electronic voltmeter (AN/URM145) with the high impedance probe for all 10.7 MHz measurements, the electronic voltmeter (ME30E/U) for all audio frequency measurements, and the digital voltmeter for dc voltage measurements.
(b) All voltages are measured with respect to chassis common.
(c) The signal generator frequency shall be 10.7 MHz $\pm \mathrm{kHz}$ and the level shall be 9.0 millivolts, as measured at test point TP1, for all modes.
(d) When the front panel FUNCTION switch is in the AM mode, the signal generator modulation shall be $1 \mathrm{kHz}, 30$ percent modulation,
(e) When the front panel FUNCTION switch is in the FM mode, the signal generator modulation shall be $1 \mathrm{kHz}, 15 \mathrm{kHz}$ deviated.
(f) When the front panel FUNCTION switch is in the CW mode, the signal generator shall have no modulation.
(g) Reference designators used in table 7-23 are abbreviated. For complete reference designation prefix with A1A1A4.

Table 7-22. Detector Quiescent Voltage

Table 7-22. Detector Quiescent Voltage-Continued

	Device	Terminal		Remarks
P1	C		0	
	D		$11.0-11.4$	FUNCTION switch to CW
	K	$11.0-11.4$	FUNCTION switch to FM	
	N		$11.0-11.4$	FUNCTION switch to CW
	P	$14.0-19.0$	FUNCTION switch to CW	
		FUNCTION switch to CW		

Table 7-22. Detector Dynamic Voltages

Test conditions	Test point	Indication
NOTE		
	Se paragraph 7-21c(3) for	
	additional test condition in. formation.	
FUNCTION switch to AM VOL counterclockwise	TP2	$144-360 \mathrm{mv}$ at 10.7 MHz
	TP6	$\begin{aligned} & 6.0-8.5 \mathrm{vdc} \\ & 14-35 \mathrm{mv} \text { at } 1 \mathrm{kHz} \end{aligned}$
	TP7	
	DIODE	-2.5 vdc minimum
VOL clockwise	AUDIO	3.5 vat 1 kHz minimum
FUNCTION switch to CW	TP4	$0.8-1.4 \mathrm{v}$ at 10.7 MHz
VOL counterclockwise	TP5	$10-35 \mathrm{mv}$ at 1 kHz
VOL clockwise	AUDIO	3.5 v at kHz minimum
FUNCTION switch to FM	DISCR	90.140 mv at 1 kHz
VOL counterclockwise	TP3	10.17 mv at 1 kHz .
VOL clockwise	AUDIO	$3,5 \mathrm{v}$ at 1 kHz minimum

7-22. Power Supply Assembly (A1A1A5) Testing

a. Electrical Tests. Refer to paragraph 6-20 for assembly testing.
b. Alignment. Refer to paragraph 6-2 e for adjustment of the power supply assembly.
c. Voltage Measuremerts (fig. 7-9, 7-10, and FO13).
(1) Preliminary.
(a) Perform the preliminary test setup (para 6-12),
(b) Remove the four screws that secure the power supply assembly to the chassis,
(c) Disconnect the power supply circuit card (A1A1ASA1) from the connector but leave the regulator circuit card (A1A1A5A2) installed with the transistor in the heatsink.
(d) Use module extender cable SM-D-747270 (part of maintenance item set) to connect the power supply circuit card to the radio chassis connector as shown in figure 7.16.
(e) Connect the equipment as shown in figure 7.16

Figure 7-16. Power supply voltage. measurement connections.
(f) Set the receiver front panel controls as follows:

	Control
RF GAIN	Clockwise (no AVC)
VOL	clockwise
LITE	OFF
FUNCTION	FM

(2) 115 vac 60 Hz voltage tests. Perform the voltage measurements listed in table 7-24 as follows:
(a) Use the digital voltmeter for all dc voltage measurements.
(b) All dc voltages are measured with respect to chassis common.
(c) Use the electronic voltmeter (ME30E/U) for all ac voltage measurements. Be sure the voltmeter case is not grounded when making measurements.
(d) Voltage measurements of less than 0.1 volts are considered the same as 0 volt.
(e) Reference designators shown in table 7. 24 are abbreviated. For complete reference designation, prefix with A1A1A5A1 for the powersupply circuit card or A1A1A5A2 for the regulator circuit card.
(f) Use Power Cable CX-10956/U connected to a nominal 115 vat, $60-\mathrm{Hz}$ power source for the measurements in table 7-24.
(3) Vehicular power voltage tests. Perform the voltage measurements listed ir table 7-25 for the same conditions listed in (2) above, except use a nominal 24 -volt dc vehicular power source. Use Power Cable CX-10958/U.

Table 7-24. Power Supply Ac Voltage Measurements

	Test point	Indication
P1-A to P1-P	$26-40 \mathrm{vac}$	
TP1	$30-50 \mathrm{mdc}$	
TP2	$16.6-9.6 \mathrm{vdc}$	Same as Q1 base
TP3	$16.0-9.0 \mathrm{vdc}$	Same as Q1 emitter
TP4	$11.0-11.4 \mathrm{vdc}$	Same as U1-5
E1	0	Same as TP1
E2	$30-50 \mathrm{vdc}$	Same as TP3
E3	$16.0-19.0 \mathrm{vdc}$	Same as TP2
E4	$16.6-19.6 \mathrm{vdc}$	Sams as U1-6 and U1-9
E5	$11.0-11.4 \mathrm{vdc}$	Same as U1-8
E6	$3.1-4.0 \mathrm{vdc}$	Same as U1-1 and Q2 base
E7	$10.5-12.8 \mathrm{vdc}$	Same as TP4, U 1-5, Q2 emitter
E8	$11.0-11.4 \mathrm{vdc}$	Same as TP3, U1-3
E9	$16.0-19.0 \mathrm{vdc}$	
U1-2	0	Same as Q2 collector
U1-4	$11.7-14.4 \mathrm{vdc}$	
U1-7	$11.0-11.4 \mathrm{vdc}$	
Q1 collector	$29.4-49.4 \mathrm{vdc}$	

Table 7-25. Power Supply Dc Voltage Measurements

Test point
P1-K $22-32 \mathrm{Vdc}$
TP1
TP2
TP4
EI
E2
E3
E4
ES
E6
E7
E6
U1-2
U1-4
U1-7
Q1 collector

Indication
$20-32 \mathrm{vdc}$ 16.6-19.6 vdc $16.0-19.0 \mathrm{vdc}$ $11.0-11.4 \mathrm{vdc}$ 0 20-32 vdc $16.0-19.0$ vdc $16.6-19.6$ vdc $11.0-11.4 \mathrm{vdc}$ $3.2-4.0 \mathrm{vdc}$ $10.5-12.8 \mathrm{vdc}$ $11.0-11.4 \mathrm{vdc}$ $16.0-19.0 \mathrm{vdc}$ 0
11.7-14.4 vdc
$11.0-11.4$ vdc $19.8-31.4$ vdc

Remarks

Same as Q1 base
Same as Q1 emitter
Same as U1-5
Same as TP1
Same as TP3
Sante as TP2
Same as U1-6 and U1-9
Same as U1-6
Same as U1-1 and Q2 base
Same as TP4, U1-5 and Q2 emitter
Same as TP3 and U1-3
Same as Q2 collector

7-23. Calibration oscillator Assembly (A1A1A6) Testing

a. Electrical Tests. Refer to paragraph 6-21 for assembly testing.
b. Voltage Measurements (fig. 7-11 and FO-14).
(1) Preliminary.
(a) Perform the preliminary test setup (pare (6-12).
(b) Remove the calibration oscillator assembly from the receiver by removing the two/ screws at opposite comers of the assembly.
(c) Remove the assembly cover by removing the two screws in the circuit card.
(d) Replace the circuit card in the receiver and attach a short jumper wire from the receiver chassis to the circuit card ground near one of the mounting holes.
(e) Connect the equipment as shown in fiqure 7-17
(f) Set the receiver FUNCTION switch to CAL.

Figure 7-17. Calibration oscillator vol tage measurement connections.
(2) Voltage tests. Perform the voltage measurements listed in table 7-26 as follows:
(a) Use the digital voltmeter for all dc voltage measurements.
(b) All voltages are measured with respect to chassis common.
(c) Use the the electronic voltmeter (AN/URM145) for all ac voltage measurements.
(d) Voltage measurements of less than 0.1 volt are considered the same as O.
(e) Reference designators shown in table 726 are abbreviated. For complete reference designation, prefix with A1A1A6.
(3) Disconnect the test setup and reinstall the
calibration oscillator assembly in the receiver by reversing the procedure given in b (1) above.

Table 7-26. Calibration Oscillator Voltage Measurements
Test point
Indication

TP1
Q1-emitter Q1-base Q1-collector Q1- case
2.0 vac minimum $5-7 \mathrm{vdc}$ 4.7-6.7 vdc

0

APPENDIX A

REFERENCES

DA Pam 310-1	Consolidated Index of Army Publications and Blank Forms. TB 43-0118 Field Instructions for Painting and Preserving Electronics Command Equipment Includ- ing Camouflage Pattern Painting of Electrical Equipment Shelters.
TM 11-5820-807-14\&P	Operator's, Organizational, Direct Support, and General Support Maintenance Manual (Including Repair Parts and Special Tools List) Accessory Kit MK-1517/UR (NSN 5820- $00-001-9328)$.
TM 11-6625-320-12	Operator's and Organizational Maintenance Manual: Voltmeter, Meter ME-30A/U and Voltmeters, Electronic ME-30B/U, ME-30C/U, and ME-30E/U.
TM 11-6625-366-15	Operator's, Organizational, Direct Support, General Support, and Depot Maintenance Manual: Multimeter TS-352B/U (NSN 6625-00-553-0142).
TM 11-6625-444-15	Operator's Organizational, Direct Support, General Support, and Depot Maintenance Manual: Digital Voltmeter AN/GSM-64.
TM 11-6625-508-10	Operator's Manual: Signal Generators AN/USM-44 and AN/USM-44A.
TM 11-6625-524-14-2	Operator's Organizational, Direct Support, and General Support Maintenance Manual: Voltmeter, Electronic AN/URM-145B (NSN 6625-00-437-4865).
TM 11-6625-700-10	Operator's Manual: Digital Readout, Electronic Counter AN/USM-207 (NSN 6625-00- 911-6368).
TM 11-6625-1703-15	Operator's, Organizational, Direct Support, General Support, and Depot Maintenance Manual: Oscilloscope AN/USM-281A (NSN 6625-00-228-2201).
TM 38-750	The Army Maintenance Management System (TAMMS).
Administrative Storage of Equipment.	

APPENDIX B

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

B-1. General

This appendix provides a summary of the maintenance operations for AN/URR-71. It authorizes categories fo maintenance for specific maintenance functions on reparable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

B-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean, preserve, drain, paint, or to replenish fuel/lubricants/hydraulic fluids or compressed air supplies.
d. Adjust. Maintain within prescribed limits by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to about optimum or desired performance.
f. Calibrate To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipment used in precision measurement. Consists of the comparison of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment/system.
h. Replace. The ace of substituting a serviceable like-type part, subassembly, model (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services
(inspect, test, service, adjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module/component/assembly, end item or system. This function does not include the trial and error replacement of running spare type items such as fuses, lamps, or electron tubes.
j. Overhaul. That periodic maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (e.g., DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like-new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a likenew condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc) considered in classifying Army equipment/components.

B-3. Column Entries.

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies and modules with the next higher assembly.
b. Column 2, Component/ Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for purpose of having the group numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a " work time" figure in the appropriate subcolumn(s), the lowest maintenance function at the indicated category of maintenance. If
the number or complexity of the tasks within the listed maintenance function vary at different' maintenance categories, appropriate "worktime" figures will be shown for each category. The number of man-hours specified by the "worktime" figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Boards, cards, and modules to be repaired at Specialized Repair Activities (SRAs) are designated by code " L " placed next to the "worktime" in subcolumn " H " of column 4. This also is supplemented with a footnote stating that the particular repair will be performed by SRAs. Subcolumns of column 4 are as follows:

C -Operator/Crew
O - Organizational
F - Direct Support
H - General Support
D - Depot
e Column 5, Tools and Equipment. Column 5
specifies by code, those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.

B-4. Tool and Test Equipment Requirements (Table 1)

a. Tool or Test Equipment Reference Code The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test equipment.
c. Nomenclature This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National/ NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test equipment.
e. Tool Number. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers (5-digit) in parentheses.

RECEIVING SET, RADIO AN/URR-71

(1) Denotes a combined effort by the operat or/crewman and organizational repairman. Initial testing and replacement is performed by the orfanizational repaimman.
(2) Intermediate level repairs are performed by the Direct "F" or General " H " Support, depending on the complexity of the repair.
(3) The Specialized Repair Activity (SRA), identified by "L" next to the repair function, will repair Printed Circuit Cards and Conformally Coat ed Boards (PCB).

B-4

RECEIVING SET, RADIO AN/URR-71

	Paragraph	Page
Adjustments:		
Initial	.3-4	3-3
Radio assembly(A1A1)	.6-14	6-13
Administrative storage	..1-4	1-1
Agc characteristic test	.6-13m	6-13
Alignment:		
Radio, GS	.7-13c	7-19
Local oscillator	.7-1.3c(1)	7-19
RF amplifier	7-13d(2)	[7-20
AM:		
Reception.	.3-5c	3-3
Whip sensitivity test	6-131	6-12
Sensitivity test	.6-13c	6-7
Ancillary items, maintenance	.4-14	4-4
Antenna repair	. $4-13 \mathrm{c}$	4-4
Antijamming procedures	. 3-9	[3-4
Audio output test.	. $5-13 j$	6-1]
Battery installation	. .2-5a	2-3
Battery compartment (theory).	.5-12a	5-5
Block diagram analysis.	. $5-2$	5-1
Calibration.	..1-7	1-1
Calibration oscillator		
Disassembly	.7-6i	7-5
Functioning.	.5-2c	5-1
Reassembly	.7-90	7-15
Testing, DS	6-21	6-22
Testing, GS	.7-23	7-30
Checking unpacked equipment	..2-4	2-2
Circuit card repairs7-8b	7-5
Cleaning.	.4-6	4-1
Common names	.1-9	1-1
Control panel assembly:		
Disassembly	7-8b	7-4
Reassembly	7-9h	7-17
Testing, DS	.6-16	6-15
Testing, GS	.7-12	7-19
Controls:		
Damage from improper settings	.3-1	3-1
Operator/crew, description	.3-2	3-1
CW sensitivity test	.6-13d	6-8
Description		
Antenna AS-2887/UR	.1-6c	1-1
Field Pack CW-1005/UR	.1-6d	1-1
Receiver R-1518/UR	.1-6b	1-1
Receiving Set, Radio AN/URR-71	. 1-6a	1-1
Destruction of Army electronics materiel	.1-3	1-1]
Detector assembly:		
Disassembly	.7-6g	7-4
Functioning.	.5-2e	5-1
Reassembly	.7-9c	7-15
Testing, DS	.6-19	6-20
Testing, GS	[.7-21	7-25
Dial light test .	.6-13b	6-7
Dial readout error test	.6-13h	6-9
Diode output test	.6-13k	6-11
Disassembly:		
Receiver, DS	.6-6	6-4
Receiver, GS	. $1.7-6$	7-3
1A1(radio receiver).	.6-6a	6-4
1A1A1 (radio assembly)	. 6-6b	6-5

	Paragraph	Page
Disassembly- Continued		
1A1A1A1 (control panel)	7-fb	7-4
1A1A1A2 (gear and tuner assembly)	7-6c	7-4
A1A1A2A1 (RF tuner assembly).	7-4	7-4
A1A1A2A1A1 (tuner subassembly).	7-6e	7-4
A1A1A3(if. amplifier)	. 7.7 -6f	7-4
A1A1A4 (detector assembly).	7-6g	7-4
A1A1A5 (power supply)	7-6 h	7-5
A1A1A6 (calibration oscillator)		7
A1A2 (dust cover)	6-ba(2)	6-5
Discriminator output test	6-13i	6-10
Dust cover:		
Disassembly	6-60(2)	6-5
Functioning	5-11	5-5
Reassembly	6-9d	6-6
Testing	6-22	6-22
Electrical tests, preliminary teat setup 6-12		6-6
Emergency conditions, operation und	.3-7	3-3
Fm sensitivity test ..6-13e		6-8
Forms and records	1-2	1-1
Frequency calibrator accuracy test.	6-1.1pf	6-8
Frequency modulation reception	.3-5d	3-3
Functioning:		
AM receiver subsystem	5-7	5-3
Calibration oscillator	5-2c	
Detector assembly		5-1
Dust cover	5-11	5-5
FM receiver subsystem	.5-9	5-
Gear and tuner assembly	.5-3	5-2
IF aseembly	5-2d	5-1
Of equipment, general	5-1	-1
Oscillator mixer	5-6	5
Power supply	.5-2f	5
Preselector	5-4	5-
RF amplifiers	.5-5	$5-3$
Fuse replacement	.4-1.1.b	4-4
Gear and tuner assembly:		
Alignment	7-13c	7-19
Disassembly	.7-6c	7-4
Functioning	5-3	5-2
Reassembly	.7-9f	7-16
Testing, DS	6-17	6-17
Testing, GS	7-13	7-19
IF amplifier		
Adjustment	6-14	6-13
Disassembly	.7-6f	7-4
Function.	. 5-2d	5-1
Installation	6-9a(5)	6-6
Reassembly	. $7-9 \mathrm{~d}$	7-16
Removal	. $6-6 \mathrm{bb}(1)$	6-5
Testing, DS	6-18	6-18
Testing, GS	7-20	7-25
Initial adjustments	3-4	3-3
Injection Level test	6-13g	6-9
Inspection, DS	. 6-139	6-9
Inspection, GS	7-7	7-5
Installation:		
Battery	2.5a	2-3
Fixed configuration	2-4	2-4
Manpack configuration	2-5b	2-3
Vehicular configuration	. . 2-6	2-6

	Paragraph	Page
Items comprising an operable equipment 1-8		1-1
Jamming:		
Antijamming procedure	.3-9	3-4
Recognition and identification of	.3-8	3-3
Maintenance:		
Ancillary items	.4-14	4-4
Duties, operator and organizational.	.4-2	4-1
Forms and records.	.1-2.1	1-1
Receiver fuse are replacement	. $4-13 \mathrm{~b}$	4-4
Manpack or fixed configuration:		
Installation.	.2-5	2-3
Movement, preparation for	.3-10	3-4
Operating procedures:		
General	.3-5	3-3
AM reception	.3-5c	3-3
CW reception	. 3 -5b	[3-3
Equipment starting	3-3a	3-3
Equipment stopping.	.3-6	3-3
FM reception	. 3-5dd	-3-3
Under emergency conditions	.3-7	-3-3
Under normal conditions	.3-5	-3-3
Operator/crew PMCS.	.4-5	4-1
Organizational PMCS	.4-11	4-4
Oscillator mixer:		
Functioning	.5-6	5-3
Testing.	7-19	7-24
Panel meter test	.6-13a	6-6
Physical tests and inspection	.6-11	6-6
Power supply:		
Adjustment	.6-20)	6-22
Disassembly	. .7-6 h	7-5
Functioning	. 5-pf	5-2
Installation .	.6-9a(2)	6-5
Reassembly	.7-9b	7-15
Removal .	. .6-6b(4)	6-5
Testing, DS	.6-20	8-21
Testing, GS	.7-22	7-28
Preliminary starting procedures	.3-3	3-2
Preparation for movement:		
Fixed configuration	3-10b	3-4
Manpack configuration .	. 3-11a	-3-4
Vehicular configuration	3-11	3-5
Preselector:		
Functioning	5-4	5-2
Testing	.7-15	7-21
Preventive maintenance:		
Operator/crew	. 4-4	4-1
Organizational 4-11	4-4
Purpose and use $1-5$	1-1
Radio assembly:		
Adjustments	6-14	6-13
Disassembly, DS	. 6.6 b	6-5
Disassembly, GS	. 7-6a	7-4
Reassembly, DS.	6-9a	6-5
Reassembly, GS	. $7-9 \mathrm{i}$	7-18
Testing, DS. . .	. 6 -15	6-14
Testing, GS $7-11$	7-19
Reassembly:		
Receiver, DS	6-9	6-5
Receiver, GS.	. $77-9$	7-15
AlA 1 (radio assembly)	7-9 i	7-16
A1A1A1 (control panel)	. $7.7-\mathrm{gh}$	7-17
A1A1A2 (gear and tuner assembly)	7-9f	7-16
A1A1A2A1 (RF tuner)	7-9g	7-17
A1A1A2A1Al (tuner subassembly)	7-9,	7-15
A1A1A3 (IF amplifier)	7-9]	7-16

	Paragraph	Page
Reassembly - Continued		
A1A1A4 (detector assembly)	. 7 -9, c	7-15
AlAlA5 (power supply)	.7-9b	7-15
A1A1A6 (calibration oscillator)	-7-9a	7-15
AlA2 (dust cover)	.6-9b	6-6
Receiver parts removal	4-13	4-4]
Receiver R-1518/UR:		
Disassembly	.6-fa	6-4
Reassembly	.6-91c	6-6
Testing, DS.	.6-13	6-6
Reed switch replacement	.7-8c	[7-5]
Repainting and refinishing	.4-7	4-1)
Repair and replacement:		
DS	.6-8	6-5
GS	.7-8	7-5
RF amplifiers:		
Functioning	. 5-5	5-3
First testing	7-16	[7-22]
Second testing	7-17	7-23
Third testing	-7-18	7-23
RFI filter functioning	.5-12d	5-6
RF motherboard:		
Installation	-7-9e	7-16
Removal	7-5e	7-4
Testing	. 7-14	7-21
RF tuner assembly:		
Disassembly	.7-6d	7-4
Reassembly	. $7-9 \mathrm{~g}$	7-17
Shelter requirements.	[-2-2	2-1
Siting .	2-1	2-1
Testing:		
Al (receiver)DS	6-13	6-6
A1A1 (radio assembly) DS	.6-13	8-6
A1A1 (radio assembly) GS.	7-111	7-19
AlAlAl (control panel) DS.	-6-16	6-15
A1A1A1 (control panel) GS.	[7-19	7-19
A1A1A2 (gear and tuned) DS	6-17	6-17)
A1A1A2 (gear and tuner) GS	7-13	7-19
A1A1A2A1A1A1 (RF motherboard) GS	[7-14]	7-21
A1A1A2A1A2 (preselector) GS	7-15	7-21
A1A1A2A1A3 (first RF amplifier) GS	7-16	7-22
A1A1A2A1A4 (second RF amplifier) GS	7-17	7-23
A1A1A2A1A5 (third RF amplifier) GS	7-18	7-23
A1A1A2A1A6 (oscillator mixer) GS	7-19	7-24
A1A1A3 (IF amplifier) DS	. 6-18	6-18
A1A1A3 (IF amplifier) GS	7-20	7-25
A1A1A4 (detector assembly) DS.	6-19	6-20
A1A1A4 (detector assembly) GS	.7-21	$77-25$
A1A1A5 (power supply) DS	6-20	6-21
A1A1A5 (power supply) GS	7-22	7-28
AlA1A6 (calibration oscillator) DS	6-21	6-22
A1A1A6 (calibration oscillator) GS	[7-23	7-30
A1A2 (dust cover) DS.	.6-22	6-22
A1A3 (antenna) DS	6-23]	6-23
Tools and test equipment:		
D S	6-2	6-1
GS	. $7-2$	7-1
Organizational	. 4-3	4-1
Troubleshooting:		
DS	6-4	6-1
GS	7-4	7 7-1
Operators	. 4-10	4-2
Organizational	4-10	4-2
Tuner subassembly:		
Disassembly	7-6)	7-4
Reassembly	7-9\%	7-16
Unpacking	2-3]	2-1
Vehicular configuration	2-6	2-6

By Order of the Secretary of the Army:

Official:
 PAUL T. SMITH
 Major General, United States Army
 The Adjutant General

Distribution:

Active Army:
USASA (2) USAES (2)

COE (2)
USAICS (3)
TSG (1)
USAARENBD (1)
MAAG (1)
DARCOM (1)
TRADOC (2)
OS Maj Comd (4)
LOGCOMDS (3)
MICOM (2)
TECOM (2)
USACC (4)
MDW (1)
Armies (2)
Corps (2)
HISA (Ft Monmouth) (33)
Svc Colleges (1)
USASESS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)
USAIS (2)
USARMIS (1)
Instls (2) except
Ft Gordon (10)
Ft Huachuca (10)
Ft Careen (5)
Ft Richardson (ECOM Oft) (2)
LBAD (14)
SAAD (30)
TOAD (14)
SHAD (3)
Ft Gillem (10)
Sig FLDMS (1)
USAERDAA (1)
USAERDAW (1)
Units org under fol TOE:
(1 copy each unit))
11-500 (AA-AC)
29-134
29-136

NG: None

USAR: None
For explanation of abbreviations used, see AR 310-50.

FRED C. WEYAND
General, United States Army Chief of Staff

DEPARTMENT OF THE ARMY II1
orficial musiniess 1
CommanderUS Army Electronics CommandATTN: DRSEL-MA-QFort Monmouth, New Jersey 07703

Commander
US Army Electronics Command ATTN: DRSEL-MA-Q Fort Monmouth, New Jersey 07703

Figure FO-1. Block diagram, AN/ URR-71.

REFERENCE	
HESIGNATION	
HIGHEST USED	NOT USED
FLI	CRI
SI	
BTI	
J2	

NOTES:

1. WHEN EXTERNAL POWER IS APPLIED, THE FOLLOWING CONNECTIONS ARE PROVIDED BY THE APPLICABLE MK-1517/UR CABLES

110 VAC OPERATION:
SHORT PIN C TO H AND SHORT PINS A AND B TO PINK. APPLY $\| O$ VAC (HOT) TO PIN L AND $\| O V A C(N E U T R A L) T O$
PIN C AND GROUND TO PIN F
220 VAC OPERATION
SHORT PIN C TO B AND SHORT PIN ATOK
APPLY 220 VAC (HOT) TO PIN L AND 220 VAC (NEUTRAL)
TO PINH AND GROUND TO PIN F
24 VDC VEHICULAR OPERATION:
SHORT PIN K TO E. APPLY + 24 VDC TO PIN L AND THE 24VDC RETURN TO PIN F.
2. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIA 2 .

Figure FO-4. Simplified schematic diagram, RF tuner.

NOTES:

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIAIAZAIA2.
2. UNLESS OTHERWISE SPECIFIED:

RESISTOR VALUES ARE IN OHMS, $1 / 4 W \pm 5 \%$.

NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIAIAZAIA3
2. UNLESS OTHERWISE SPECIFIED

NOTES:
. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLE TE DESIGNATION PREFIX WITH AIAIA2AIA4.
2. UNLESS OTHERWISE SPECIFIED: RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}+5 \%$

NOTES: $\begin{aligned} & \text { 1. PARTIAL REFERENCE DESIGNATIONS ARE }\end{aligned}$ SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIAIA2AIAS.
2. UNLESS OTHERWISE SPECIFIED:

RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W} \pm 5 \%$
ELIALOS3

NOTES

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIAIA2AIA6.
2. UNLESS OTHERWISE SPECIFIED: RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W} \pm 5 \%$.

EL1AL057

Figure FO-13. Schematic diagram, power supply

NOTES:
I. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION PREFIX WITH AIAIAGAI.
2. UNLESS OTHERWISE SPECIFIED: RESISTOR VALUES ARE IN OHMS, $1 / 8 W \pm 5 \%$.
CAPACITOR VALUES ARE IN PICOFARADS.
EL1ALO58

Figure FO-15. Receiver parts location.

PARTIAL VIEW INSIDE COVER

NOTE:
FOR COMPLETE REFERENCE DESIGNATION PREFIX ALL SYMBOLS WITH IAIA2.

3
$(A 2)$
ELIAL060

Figure FO-16. Dust cover parts location.

1	KEY to fig $\mathrm{FO}-17$ If amplifier assembly
2	Actuator switch
3	Washer
4	Screw
5	Cover
6	Washer
7	Screw
8	Post
9	Ckt card assy, if. amplifier
10	Power supply assembly
11	Screw
12	Washer
13	Ckt card assy,
13 A	power supply Insulating washer
14	Ckt card assy, regulator
15	Transformer

16	Post
17	Connector
18	Connector
19	Connector
20	Cable assembly
21	Screw
22	Cable assembly
23	Screw
24	Screw
26	Screw
27	Connector
28	Post
29	Cetector assembly
30	Circuit card assembly, detector
31	Cost
32	Screw
33	Connector
34	Washer

1 Resistor, variable
2 Lamp
3 Detent assembly
4 Switch-resistor
5 Gasket
6 Connector
7 Capacitor, variable
8 Switch
9 Switch
10 Switch
11 Capacitor
12 Screw
13 Knob
14 Connector
15 Washer
16 Washer
17 Nut
18 Knob
17 Nut
18 Knob
19 Knob
20 Capacitor
21 Fuseholder
22 Fuse
23 Knob
24 Packing
24 A Knob
25 Washer
26 Knob
27 Gasket
28 Meter
29 Switch
29 Switch
30 Detent assembly
31 Capacitor
32 Jack
33 Pin
34 Cam

NOTES
1 POEFIX ALL REFERENCE DESIGNATIONS IN THIS
AREA WITH AIAIAZAI.
2 PREFIX \triangle Ll REFERENCE DESIGNATIONS IN THIS
AREA WITH AIAIACAII

1 Spacer

2 Setscrew
3 Swivel (coupling)
4 Collar (gear clamp)
5 Gear
6 Screw
7 Washer
8 Terminal lug
9 Spring
10 Cap screw
11 Rf tuner and amplifier assy
12 Tuner subassembly
13 Ckt card assy, oscillator mixer
14 Ckt card assy, 3rd rf amplifier
15 Ckt card assy, 2nd rf amplifier
16 Ckt card assy, 1st rf amplifier
17 Ckt card assy, preselector
18 Screw
19 Cover
20 Screw
21 Washer
22 Washer
23 Screw
24 Ckt card assy, motherboard
25 Washer
26 Nut
27 Spacer
28 Variable inducator
29 Spacer
Figure FO-19. Gear and tuner assembly, parts location.

Figure FO-20. Test point and adjustments location.

Cano A								bano E		
		caon	Sticiser	coos	manruse	coove		cous		rem
	$\frac{1}{3}$		$\stackrel{1}{2}$		\%om					
veow	-		。	velow	0,000	suxan				
	:	$\substack{\text { sener } \\ \text { gut } \\ \text { numare }}$:	${ }_{\text {cosen }}^{\substack{\text { cen } \\ \text { gue }}}$		${ }_{\text {anco }}^{\text {ane }}$				
	:				0		cose			
	-	mere	,	0010						

muct ficiver		m" spilu beir	
$\begin{gathered} \text { ST FIG (GRAY)... } \\ \text { DECIMAL (GOLD). } \\ 20 \text { FIG (RED). } \end{gathered}$		(ST FIG,(ORANGE)FIG (ORANGE)	
(4) $822 \mathrm{OH}+100$			
couen		Mutreute	
Steck	\bigcirc		
Sateme	$\stackrel{2}{2}$	${ }_{10}^{10}$	${ }_{2}$
$\xrightarrow{\text { amanese }}$	$\stackrel{3}{\square}$	${ }^{1.000}$	3
	:		
	:		
saty	:		
neme			
500	frem	vowr	3
yent ivis			


```
    OA MG&HES
CUAGAMOEP N0497
USAMC MAT RONS SPT ACTV
ATIN AMXMD-MP
LEXINGTOM KY 40511-5101
If 11-5320-770-14
    K402, 1, EA DR . 1263
```



```
    LUNE 4
```


[^0]: *Do this check before each deployment to a mission location. This will permit any existing problems to be corrected before the mission starts. The check does not need to be done again until redeployment.

