TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL

SIGNAL GENERATOR SG-1207/U (HEWLETT-PACKARD MODEL 8642M) (NSN 6625-01-233-8615)

Distribution authorized to the Department of Defense and DOD contractors only for official use or for administration or operational purposes. This determination was made on 25 March 1987. Other requests for this document will be referred to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-MEP, Fort Monmouth, NJ 07703-5000.

DESTRUCTION NOTICE-Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

HEADQUARTERS, DEPARTMENT OF THE ARMY

1 MARCH 1987

- (5) SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK
- (1) DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL
- (2) IF POSSIBLE, TURN OFF THE ELECTRICAL POWER
- (3) IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH, OR LIFT THE PERSON TO SAFETY USING A DRY WOODEN POLE OR A DRY ROPE OR SOME OTHER INSULATING MATERIAL.
- (4) SEND FOR HELP AS SOON AS POSSIBLE
- (5) AFTER THE INJURED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

Α

WARNING

HIGH VOLTAGE

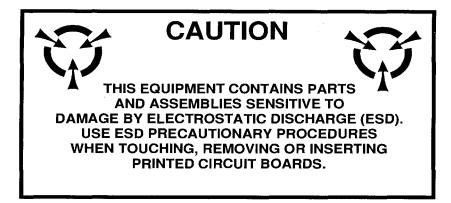
is used in the operation of this equipment

DEATH ON CONTACT

may result if personnel fail to observe safety precautions

Never work on electronic equipment unless there is another person nearby who is familiar with the operation and hazards of the equipment and who is competent in administering first aid. When technicians are aided by operators, they must be warned about dangerous areas.

Be careful not to contact high-voltage connections of 115-volt ac input when installing, or operating this equipment.


Whenever the nature of the operation permits, keep one hand away from the equipment to reduce the hazard of current flowing through vital organs of the body.

WARNING

Do not be misled by the term "LOW VOLTAGE" Potentials as low as 50 volts may cause death under adverse conditions.

For Artificial Respiration refer to FM 21-11.

В

ESD CLASS 1

NOTE

The symbol for static sensitive devices in military inventory is as depicted in the caution block above.

GENERAL HANDLING PROCEDURES FOR ESDS ITEMS

- USE WRIST GROUND STRAPS OR MANUAL GROUNDING PROCEDURES
- KEEP ESDS ITEMS IN PROTECTIVE COVERING WHEN NOT IN USE
- GROUND ALL ELECTRICAL TOOLS AND TEST EQUIPMENT

- PERIODICALLY CHECK CONTINUITY AND RESISTANCE OF GROUNDING SYSTEM
 USE ONLY METALIZED SOLDER SUCKER
- HANDLING ESDS ITEMS ONLY IN
- PROTECTED AREAS

MANUAL GROUNDING PROCEDURES

- MAKE CERTAIN EQUIPMENT IS POWERED
 DOWN
- TOUCH GROUND PRIOR TO REMOVING ESDS ITEMS

- TOUCH PACKAGE OF REPLACEMENT ESDS ITEM TO GROUND BEFORE OPENING
- TOUCH GROUND PRIOR TO INSERTING REPLACEMENT ESDS ITEMS

ESD PROTECTIVE PACKAGING AND LABELING

- •• INTIMATE COVERING OF ANTISTATIC MATERIAL WITH AN OUTER WRAP OF EITHER TYPE 1 ALUMINIZED MATERIAL OR CONDUCTIVE PLASTIC FILM OR HYBRID LAMINATED BAGS HAVING AN INTERIOR OF ANTISTATIC MATERIAL WITH AN OUTER METALIZED LAYER •
- LABEL WITH SENSITIVE ELECTRONIC SYMBOL AND CAUTION NOTE

CAUTION

Devices such as CMOS, NMOS, MNOS, VMOS, HMOS, thin-film resistors PMOS, and MOSFET used in many equipments can be damaged by static voltages present in most repair facilities. Most of the components contain internal gate protection circuits that are partially effective, but sound maintenance practice and the cost of equipment failure in time and money dictate careful handling of all electrostatic sensitive components.

The following precautions should be observed when handling all electrostatic sensitive components and units containing such components.

CAUTION

Failure to observe all of these precautions can cause permanent damage to the electrostatic sensitive device. This damage can cause the device to fail immediately or at a later date when exposed to an adverse environment.

- STEP 1 Turn off and/or disconnect all power and signal source and loads used with the unit.
- STEP 2 Place the unit on grounded conductive work surfaces.
- STEP 3 Ground the repair operator using a conductive wrist strap or other device using a 1-M series resistor to protect the operator.
- STEP 4 Ground any tools (including soldering equipment) that will contact the unit. Contact with the operator's hand provides a sufficient ground for tools that are otherwise electrically isolated.
- STEP 5 All electrostatic sensitive replacement components are shipped in conductive foam or tubes and must be stored in the original shipping container until installed.
- STEP 6 When these devices and assemblies are removed from the unit, they should be placed in the conductive work surface or in conductive containers.
- STEP 7 When not being worked on, wrap disconnected circuit boards in aluminum foil or in plastic bags that have been coated or impregnated with a conductive material.
- STEP 8 Do not handle these device unnecessarily or remove from their packages until actually used or tested.

D

This Manual includes copyright material reproduced by permission of Hewlett-Packard Company.

TECHNICAL MANUAL No. 11-6625-3165-14 Washington, DC

HEADQUARTERS DEPARTMENT OF THEARMY 1 MARCH 1987

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL

SIGNAL GENERATOR SG-1207/U (HEWLETT-PACKARD MODEL 8642M) (NSN 6625-01-233-8615)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms) or DA Form 2028-2 located in back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5000.

In either case, a reply will be furnished direct to you.

This manual is an authentication of the manufacturer's commercial literature which, through usage, has been found to cover the data required to operate and maintain this equipment. Since the manual was not prepared in accordance with military specifications, the format has not been structured to consider levels of maintenance.

i

Pane

TABLE OF CONTENTS

SECTION	0. 0-1	GENERAL INFORMATION Scope	r u C
	0-1	Consolidated Index of Army Publications and Blank Forms	C
	0-3	Maintenance Forms, Records, and Reports	C
		Report of Maintenance and Unsatisfactory Equipment	C
		Report of Packaging and Handling Deficiencies	C
		Discrepancy in Shipment Report (DISREP)	C
	0-4	Reporting Equipment Improvement Recommendations (EIR's)	C
	0-5	Administrative Storage	C
	0-6	Destruction of Army Electronics Materiel	(
	0-7	Description	(
	0-8	Technical Characteristics	(
	0-9	Storage	(
	0-10	Tools and Test Equipment Cross Reference	(
	0-11	Warranty Information	(
	0-12	Safety Considerations	ĺ
	0.2		
	Ι.	OPERATING INSTRUCTIONS	
	 1-1	Description and Use of Operator's Controls, Indicators, and	
	• •	Connectors	
	1-2	Installation	1
	1-3	Initial Inspection	1.
	1-4	Preparation For Use	1.
	1-4	Power Requirements	1.
		Power Cables	1. 1.
		HP-IB Address Selection	1· 1·
		Interconnections	1-
		Mating Connectors	1.
		Operating Environment	1.
	1-5	Operation under Usual Conditions	1.
	1-6	Turn-On Procedures	1.
	1-7	Operating Messages	1-
		Parameters Changed Messages	1-
		Execution Error Messages	1-
		Hardware Error Messages	1-
		Information Messages	1-
		Prompt Messages	1-
		Out-of-Lock Messages	1-
		Writing Messages	1.
		When Using the Instrument Locally	1.
		When Controlling the Instrument via HP-IB	1.
		Messages	1.

			Page
SECTION	I.	OPERATING INSTRUCTIONS-Continued	0
	1-8	Operating Procedures	1-45
	1-9	Setting Instrument Functions	1-46
		RF Frequency	1-46
		Amplitude	1-46
		Off On	1-47
		Modulation	1-47
			1-47
		Modulation Oscillator Output	
	1 10	Simultaneous Modulation Source	1-50
	1-10	Modifying Settings	1-51
		Tune Knob	1-51
		Step, Increment Set	1-51
		Knob Increment	1-52
		Knob Hold	1-52
		Entry Off	1-52
		Display Editing	1-53
	1-11	Making Relative Settings	1-53
		Amplitude Relative	1-53
		Frequency Relative	1-54
	1-12	Selecting Special Functions	1-54
		Help Function	1-54
		Special Functions	1-55
		Detailed Descriptions of all Special Functions	1-55
	1-13	Selecting a Sweep	1-61
	1 10	Stepped Frequency Sweep	1-61
		Phase Continuous Frequency Sweep	1-61
		Amplitude Sweep	1-62
		Sweep Time Calculations	1-63
	1-14	Recalling Instrument Settings	1-68
	1-14		1-68
		Save	
			1-68
	4 45	Sequence, Set Sequence	1-68
	1-15	HP-IB Remote Operation	1-69
		HP-IB Address	1-69
		HP-IB Capabilities	1-70
		Data Input	1-72
		Data Output	1-75
		Output Messages	1-76
		Clear	1-80
		Remote, Local	1-81
		Local Lockout, Set Local	1-83
		Service Request	1-83
		Status Byte	1-84
		System Controller	1-86
		-	

TM 11-6625-3165-14

		TABLE OF CONTENTS-Continued	
SECTION		OPERATING INSTRUCTIONS-Continued	Page
SECTION	1-15	HP-IB Remote Operation-Continued	
	1 10	Additional HP-IB Information	1-87
	1-16	Writing Messages to Display	1-90
	П.	THEORY OF OPERATION	
	2-1	Introduction	2-1
	2-2	A2 Modulation Module	2-3
	2-3	A6 FM/Counter/Timebase Module	2-5
	_ •	A6 FM Loop	2-6
		A6 Timebase	2-7
		A6 Counter	2-7
	2-4	A7 SAWR Loop Module	2-8
	2-5	A9 IF Loop Module	2-10
	2-6	All Reference Loop Module	2-12
	2-7	A12 Sum Loop/Divider Module	2-14
		Sum Loop	2-14
		Divider	2-14
	2-8	A13 Output Filters/ALC Module	2-16
	2-9	A14 Heterodyne Module	2-18
	2-10	A17 Regulators/Attenuator Drivers Module	2-20
		A18 Rectifier/Filter Module	2-20
		Power Supply	2-20
		A17 Drivers	2-20
	2-11	A 19 Doubler Module	2-23
	III.	DIAGNOSTICS	
	3-1	Introduction	3-1
	3-2	On-Site Service Strategy	3-1
	3-3	HP 8642 Service Design	3-1
	3-4	On-Site Service Overview	3-3
	3-5	Introduction to On-Site Troubleshooting	3-3
	3-6	To Begin Troubleshooting the 8642	3-5
		Instrument Level Diagnostics	3-9
	3A-1	Introduction	3-9
	3-8	Module Troubleshooting Order	3-14
		Power Supply Section	3-17
	3B-1	Introduction	3-17
	3B-2	Introduction	3-19

			Page
SECTION	III.	DIAGNOSTICS-Continued	Ŭ
		A17 Inputs Verification	3-20
	3B-3	Introduction	3-20
		A17 & A18 Module Substitution	3-21
	3B-4	Introduction	3-21
		Power Supply Diagnostics	3-22
		A17 Module Diagnostics	3-38
		Control Section Diagnostics	3-53
	3C-1	Introduction	3-53
		A4 Module Substitution	3-54
	3C-2	Introduction	3-54
	00 2	A3 Module Substitution	3-55
	3C-3	Introduction	3-55
	000	A1 Module Substitution	3-56
	3C-4	Introduction	3-56
	50 4	Control Section Diagnostics	3-57
		RF Section Diagnostics	3-73
		A2 Modulation Module	3-75
	3E-1	Introduction	3-75
	3E-1	A2 Module Substitution	3-75
	3E-2		3-76
	3E-2	Introduction	3-70
	ວ⊏ວ	A2 Inputs/Outputs Verification	-
	3E-3	Introduction	3-77
		A2 Module Diagnostics	3-78
	3F-1	A6 FM Loop/Counter/Timebase Module	3-105
	36-1	Introduction	3-105
	ລ⊏່ວ	A6 Module Substitution	3-106
	3F-2	Introduction	3-106
	05 0	A6 Inputs Verification	3-107
	3F-3	Introduction	3-107
		A6 Module Diagnostics	3-108
	~~ /	A7 SAWR Loop Module	3-141
	3G-1	Introduction	3-141
	~~ ~	A7 Module Substitution	3-142
	3G-2	Introduction	3-142
		A7 Inputs Verification	3-143
	3G-3	Introduction	3-143
		A7 Module Diagnostics	3-144
	<i>.</i>	A9 IF Loop Module	3-169
	3H-1	Introduction	3-169
		A9 Module Substitution	3-170
	3H-2	Introduction	3-170
		A9 Inputs Verification	3-171
	3H-3	Introduction	3-171
		A9 Module Diagnostics	3-172

			Page
SECTION	III.	DIAGNOSTICS-Continued	- 5-
		A11 Reference Loop Module	3-199
	31-1	Introduction	3-199
	011	A11 Inputs Verification	3-200
	31-2	Introduction	3-200
	012	A11 Module Substitution	3-200
	31-3	Introduction	3-201
	51-5	A11 Module Diagnostics	3-201
		A12 Sum Loop/Divider Module	3-231
	3J-1		3-231
	30-1	Introduction A12 Inputs Verification	3-231
	3J-2	ATZ Inputs verification	3-232
	3 J- 2	Introduction	3-232
	3J-3	A12 Module Substitution	
	3J-3	Introduction	3-233
		A12 Module Diagnostics	3-234
		A13 Output Filters/ALC Module	3-265
	3K-1		3-265
		A13 Module Substitution	3-266
	3K-2	Introduction	3-266
		A13 Module Inputs Verification	3-267
	3K-3	Introduction	3-267
		A13 Module Diagnostics	3-268
		A14 Heterodyne Module	3-295
	3L-1	Introduction	3-295
		A14 Module Substitution	3-296
	3L-2	Introduction	3-296
		A14 Inputs Verification	3-297
	3L-3	Introduction	3-297
		A14 Power Level Diagnostics	3-298
	3L-4	Introduction	3-298
		A14 Module Diagnostics	3-299
		A16 Attenuator Module	3-333
		A19 Doubler/Attenuator Module	3-335
	3N-1	Introduction	3-335
		A19 Module Substitution	3-336
	3N-2	Introduction	3-336
	0.112	A19 Inputs Verification	3-337
	3N-3	Introduction	3-337
		A19 Module Diagnostics	3-338
		Exceptional Cases	3-371
	30-1		3-371
	30-1	Introduction	3-371
	30-2 30-3	Exceptional Case Descriptions	3-371
		Troubleshooting Suggestions	
	30-4	Exceptional Case 1	3-372

V. MECHANICAL PROCEDURES 5-1 Introduction	
3O-6 Exceptional Case 3 3-37 IV. REPLACING A MODULE 4-1 4-1 Introduction 4 V. MECHANICAL PROCEDURES 5-1 5-1 Introduction 5	
IV. REPLACING A MODULE 4-1 Introduction 4 V. MECHANICAL PROCEDURES 5-1 Introduction 5	76
4-1Introduction4V.MECHANICAL PROCEDURES5-1Introduction5	76
V. MECHANICAL PROCEDURES 5-1 Introduction	
5-1 Introduction5	1-1
• • • • • • • • • • • • • • • • • • • •	
5-2 Tools 5	5-1
J-∠ I UUI3	5-3
5-3 Top Cover	5-4
	5-5
	5-6
5-6 Control Module A45	5-7
	5-8
5-8 Deleted	10
5-9 RF Module A2	11
5-10 Control Module A1 5-7	12
	14
5-12 LCD Display Incandescent Lamps 5-7	15
	16
	17
	19
5-16 Power Supply Module A18	20
5-17 Calibration Module A20	22
5-18 Deleted	23
	24
	25
VI. PERFORMANCE TESTS AND ADJUSTMENTS	
	5-1
	5-2
	5-2
	5-4
	5-5
	5-6
	5-7
	5-8

Page

SECTION	VI	PERFORMANCE TESTS AND ADJUSTMENTS-Co	ntinued
	6-1	Performance Tests-Continued	6-1
		AM Depth Test	6-9
		FM Test	6-10
		FM Deviation Test	6-11
	6-2	Adjustments	6-12

VII	STORAGE AND SHIPMENT	
7-1	Environment	7-1
7-2	Packaging	7-1

APPENDIX A REFERENCES

Scope	A-l
Forms	A-l
Technical Manuals	A-l
Miscellaneous	A-l
	Forms Technical Manuals

B MAINTENANCE ALLOCATION

Ι	INTRODUCTION,	B-1
B-1	General,	B-l
B-2	Maintenance Functions	B-l
B-3	Explanation of Columns in MAC, Section II	B-2
B-4	Explanation of Columns in Tool and Test Equipment	
	Requirements, Section III	B-3
B-5	Explanation of Columns in Remarks, Section IV	B-3
Π	MAINTENANCE ALLOCATION CHART,	B-4
III	TOOL AND TEST EQUIPMENT REQUIREMENTS	B-6
IV	REMARKS	B-9

С	AMPLI	TUDE	UNITS	CONVERSION		
C-l	General			• • • • • • • • • • • • • • • • • • • •	,.	C-l

GLOSSARY		G-1
----------	--	-----

TABLES

No.		Page		
1-1	AC Power Cables Available	1-24		
1-2	Out of Lock Messages			
1-3	Summary of Special Functions; Function to Code			
1-4	HP-IB Capability Reference Table			
1-5	Relationships Between Keystrokes and HP-IB Code Sequences	1-71 1-72		
1-6	Output Active Function String Formats	1-78		
1-7	Output Display; Binary Weight of Annunciators	1-81		
1-8	Error Code and Message Recovery Example Program	1-82		
1-9	HP-IB Status Byte Bit Definitions	1-86		
1-10	Signal Generator Function to HP-IB Code	1-88		
1-11	Signal Generator HP-IB Code to Function	1-89		
1-12	Special Functions That Can be Used to Write to the Display	1-91		
1-13	ASCII Character Codes	1-92		
3E-1	W14P2 Control Bits	3-96		
3F-1	W1P2 Control Bits	3-119		
3F-2	W1P2 Control Bits	3-121		
3F-3	A5J1 Control Bits	3-125		
3F-4	A5J1 Control Bits	3-127		
3H-1	W3P2 Control Bits	3-183		
3H-2	A5J3 Control Bits	3-187		
3J-1	W5P2 Control Bits	3-238		
3J-2	W5P2 Control Bits	3-240		
3J-3	A5J5 Control Bits	3-242		
3J-4	A5J5 Control Bits	3-244		
3L-1	W7P2 Control Bits	3-312		
3L-2	A5J7 Control Bits	3-315		
3N-1	Attenuator Relay Selection	3-350		
30-1	Troubleshooting Suggestions for Condition 4	3-375		
30-2	Exceptional Cases Troubleshooting Suggestions	3-376		
30-3	Service Special Functions for Exceptional Cases	3-378		

FIGURES

1-1	Operator's Controls, Indicators, and Connectors, Front View	1-1
1-2	Operator's Controls, Indicators, and Connectors, Rear View	1-19
1-3	Line Voltage and Fuse Selection	1-22
1-4	Hewlett-Packard Interface Bus Connections	1-26
1-5	Flowcharts for Sequence Dependency	1-74

FIGURES-Continued

	FIGURES-Continued	
No.		Page
1-6	The Status Byte and RQS Mask	1-85
	A1, A3, A4 Module Simplified Block Diagram	2-2
	A2 Module Simplified Block Diagram	2-4
	A6 Module Simplified Block Diagram	2-6
	A7 Module Simplified Block Diagram	2-9
	A9 Module Simplified Block Diagram	2-11
	A11 Module Simplified Block Diagram	2-13
	A12 Module Simplified Block Diagram	2-15
	A13 Module Simplified Block Diagram	2-17
	A14 Module Simplified Block Diagram	2-19
	A17 Module Simplified Block Diagram	2-21
	A18 Module Simplified Block Diagram	2-22
	A19 Module Simplified Block Diagram	2-24
3-100	RF Section Signal Flow Diagram	3-7
3A-100	Instrument Level Diagnostics	3-15
3B-1	Connector A17J1 Signal Locator	3-26
3B-2	Cable W13 Connector Locator	3-27
3B-3	Connector A18JI Signal Locator	3-3
3B-4	Cable Plug W9P2 Signal Locator	3-41
3B-6	Cable Plug W9P2 Signal Locator	3-43
3B-5	Cable Plug W9P2 Signal Locator	3-45
3B-100	A18 Rectifier/Filters Module and P/O A17 Power Supply	3-49
00 100	Regulators/Attenuator Drivers Module Diagnostics	0 +0
3B-200	P/O A17 Power Supply Regulators/Attenuator Drivers Module	
00 200	Diagnostics	3-51
3C-1	A4J1 Service Test Points Signal Locator	3-57
3C-2	A3J4 Service Test Points Signal Locator	3-63
3C-3	Connector AIA1JI Signal Locator	3-67
3C-100	Al, A3, and A4 Control Section Diagnostics	3-71
3E-1	Cable Plug W14P2 Signal Locator	3-97
3E-1 3E-2	Cable Plug W14P2 Signal Locator	3-97
3E-100	A2 Modulation Module Diagnostics	3-103
3E-100 3F-1		3-103
3F-2	Cable Plug W1P2 Signal Locator	3-119
••• =	Cable Plug WIP3 Signal Locator	3-122
3F-3	A5J1 Signal Locator (Solder Side View)	
3F-3	Cable Plug W1P2 Signal Locator	3-129
3F-4	Cable Plug W1P3 Signal Locator	3-130
3F-5	A5J1 Signal Locator (Solder Side View)	3-132
3F-100	A6 FM Loop/Counter/Timebase Module Diagnostics	3-139
3G-1	Cable Plug W2P2 Signal Locator	3-155
3G-2	A5J2 Signal Locator (Solder Side View)	3-158

FIGURES-Continued

	FIGURES-Continued			
No.		Page		
3G-3	Cable Plug W2P2 Signal Locator	3-161		
3G-4	A5J2 Signal Locator (Solder Side View)			
3G-100	A7 SAWR Loop Module Diagnostics			
3H-1	Cable Plug W3P2 Signal Locator	3-184		
3H-2	Cable Plug A5J3 Signal Locator	3-187		
3H-3	Cable Plug W3P2 Signal Locator	3-190		
3H-4	A5J3 Signal Locator (Solder Side View)	3-192		
3H-100	A9 IF Reference Module Diagnostics	3-197		
31-1	Cable Plug W4P2 Signal Locator	3-206		
31-2	A5J4 Signal Locator (Solder Side View)	3-209		
31-3	Cable Plug W4P2 Signal Locator	3-212		
31-4	A5J4 Signal Locator (Solder Side View)	3-214		
31-100	All Reference Loop Module Diagnostics	3-229		
3J-1	Cable Plug W5P2 Signal Locator	3-238		
3J-2	A5J5 Signal Locator (Solder Side View)	3-242		
3J-3	Cable Plug W5P2 Signal Locator	3-246		
3J-4	A5J5 Signal Locator (Solder Side View)	3-248		
3J-100	A12 Sum Loop/Divider Module Diagnostics	3-263		
3K-1	Cable Plug W6P2 Signal Locator	3-279		
3K-2	A5J6 Signal Locator (Solder Side View)	3-283		
3K-3	Cable Plug W6P2 Signal Locator	3-286		
3K-4	A5J6 Signal Locator (Solder Side View)	3-288		
3K-100	A13 Output Filters/ALC Module Diagnostics	3-293		
3L-1	Cable Plug W7P2 Signal Locator	3-312		
3L-2	A5J7 Signal Locator (Solder Side View)	3-315		
3L-3	Cable Plug W7P3 Signal Locator	3-318		
3L-4	A5J7 Signal Locator (Solder Side View)	3-321		
3L-5	Cable Plug W7P2 Signal Locator	3-324		
3L-6	A5J7 Signal Locator (Solder Side View)	3-326		
3L-100	A14 Heterodyne Module Diagnostics	3-331		
3N-1	Cable Plug W11P2 Signal Locator	3-347		
3N-2	A5J8 Signal Locator (Solder Side View)			
3N-3	Cable Plug WIIP2 Signal Locator 3-			
3N-4	A5J8 Signal Locator (Solder Side View)			
3N-100	A19 Doubler/Attenuator Module Diagnostics			
30-100	Exceptional Cases Troubleshooting Diagram			
4-100	Replacing a Module			
5-100	Mechanical Procedure Diagrams	5-29		

xi/(xii BLANK)

SECTION 0 INTRODUCTION

0-1. SCOPE.

This manual contains instructions for the operation and maintenance of Signal Generator SG1207/U. Throughout this manual, the Signal Generator SG-1207/U is referred to as either the Instrument, Signal Generator, 8642, 8642B, or 8642M.

0-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS.

Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.

0-3. MAINTENANCE FORMS, RECORDS, AND REPORTS.

a Report of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA PAM 738-750 as contained in Maintenance Management Update.

b. *Report of Packaging and Handling Deficiencies*. Fill out and forward SF 364 (Report of Discrepancy (ROD)) as prescribed in AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.73B/AFR 400-54.MCO 4430.3H.

c. *Discrepancy in Shipment Report (DISREP) (SF 361).* Fill out and forward Discrepancy In Shipment Report (SF 361) as prescribed in AR 55-38/NAVSUPINST 1610.33C/AFR 75-18/MCO P4610.19D.DLAR 4500.15.

0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR'S).

If your Signal Generator needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-PA-MA-D, Fort Monmouth, NJ 07703-5000. We'll send you a reply.

0-5. ADMINISTRATIVE STORAGE.

Refer to TM 740-90-1 for administrative storage procedures.

0-6. DESTRUCTION OF ARMY ELECTRONICS MATERIEL.

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

0-7. DESCRIPTION.

The Hewlett-Packard 8642M Signal Generator has a frequency range of from 100KHz to 2GHz and frequency resolution of 1Hz at all frequencies. The output is leveled and calibrated from +15dBm to -140dBm at all frequencies. Amplitude Modulation, Frequency Modulation, and Pulse Modulation modes are selectable. Frequency, modulation modes, output level, and most other functions can be remotely programmed via the interface.

0-8. TECHNICAL CHARACTERISTICS.

0-8. TECHNICAL CHARACTERISTICS-Continued.

MODULATION SPECIFICATIONS: (Internal and external AM, FM, OM, and Pulse Modulation)

Amplitude Modulation:	
Frequency Range100KHz to 1057.5MH	z
Modulation Depth	S
Frequency Response DC to 100KHz external, 20Hz to 100KHz international	
Sensitivity 0.1% per mv peak into 6000	ב
Maximum Input Level	
Distortion	6
(70 to 90% depth) modulation at a 1KHz rate to	
1057.5MHz	
Incidental OM	Z
post-detection noise bandwidth)	
Impedance	6
AM Input ConnectorFemale type BNC coaxial connector	r
Frequency Modulation:	
Frequency ResponseDC to 100KHz external,20Hz to 100KHz interna	١٤
in 1% increments	
Deviation≤300KHz (30MHz to 132.1875MHz), ≤375KHz (132.1875MHz t	
528.75MHz), and \leq 1.5MHz (above 528.75MHz) for a modulating the second state of the	١g
rate between DC and 100KHz	
Sensitivity 1 volt peak into 600n <u>+</u> 10% for maximum deviatio	
Maximum Input Level	
Distortion	0
Coupled deviation),and 0.4% (for 1/15maximum DC Coupled deviation) for a modulating rate between 20Hz and 100KHz	
Incidental AM	
Impedance	'
FM Input Connector	
Pulse Modulation:	л
Operating range	7
Pulse Modulation Input Connector	∠ \r
Impedance	
Pulse Repetition Rate Range	
Duty Cycle Maximum	
Pulse Duration Range 6µsec to 50msec (measured from (DC volts to turn on pulse	
to (DC volts turn off pulse))	')
Pulse First and Last Transition Duration (10% to 90% rise/fall time) 3µsec to 20mse	C
Pulse Amplitude	
Pulse Baseline Maximum Amplitude Less negative than -0.5V and les	
positive than +0.5V	
Pulse Topline Minimum Amplitude	е
positive than +3.5V	
0.2	

0-8. TECHNICAL CHARACTERISTICS-Continued.

MODULATION SPECIFICATIONS-Continued:

Pulse Modulation-Continued: RF Pulse Envelope Duration±5% of the input pulse duration RF Pulse Envelope First/Last Transition Duration (10%-90% rise/fall time). <0.5usec RF Pulse Envelope Overshoot/Undershoot<20% of the RF pulse envelope amplitude RF Pulse Envelope first and Last Settling Duration.......<1usec to within +1% of final value (measured from two 90% points) Phase Modulation: Maximum Deviation ... 100 radians (from 100KHz to 132.1875MHz). 25 radians (from 132.1875MHz to 264.375MHz), 50 radians (from 264.375MHz to 528.75MHz), 100 radians (from 528.75MHz to 1057.5MHz), 200 radians (from 1057.5MHz to 2.0GHz) Bandwidth DC to 15KHz external (DC coupled) and 20Hz to 15KHz internal and external (AC coupled) Resolution ... 0.7% of setting or 0.0004% of maximum deviation, whichever is greater Accuracy <u>+(5% of setting +0.09 radians) at 1KHz rate</u> Distortion...... <0.4% at 1KHz rate External Sensitivity......1 volt peak for selected peak phase deviation ØM Input ConnectorFemale type BNC coaxial connector Internal Modulation Oscillator: Output Level Accuracy (within 1 sec):.....+(4%+15mV) Distortion (>0.5V peak):.... <0.02% (20Hz to 15.8KHz), <0.15% (15.8KHz to 100KHz) **REAR PANEL CONNECTOR SPECIFICATIONS:** Interface Connector: Type.....ANSI/IEEE Standard 488-1978 interface with SH1, AH1, T1, 2 5, or 6, L1, 2, 3, or 4, SR1, RL1, PPO, DC1, ETO, and CO functions implemented Control All front panel functions, except power switch and increment knob, may be controlled through the interface X-Axis Connector.....0-10Vdc, +10% Z-Axis Connector.....TTL positive true for CRT display blanking during retrace External Reference Input 1,2,5 or 10MHz, +25ppm, >0.5p-p 500 Ω input

0-8. TECHNICAL CHARACTERISTICS-Continued.

OPERATING POWER REQUIREMENTS:	
Voltage	
Frequency	
Power Dissipation	
ENVIRONMENTAL REQUIREMENTS:	
Operating Temperature Range	0 to +55°C
Operating Altitude	
Operating Humidity	
OVERALL DIMENSIONS AND WEIGHT:	
Height	5.25 IN. (133mm)
Width	
Depth Weight	
Weight	71.5LB (32.7kg) NET
ACCESSORIES FURNISHED:	
Power Cable, 115V operation	1 each HPN 8120-1378
Fuse, 230V operation	1 each HPN 2110-0002
Fuse, 115V operation	1 each HPN 2110-0003
Front Handle Kit	1 each HPN 5061-9689

0-9. STORAGE.

The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature	55°C to +75°C
Humidity	5% to 95% (maximum wet-bulb temperature = 40°C)
Altitude	

0-10. TOOLS AND TEST EQUIPMENT CROSS REFERENCE.

The following list of test equipment is required for testing, and servicing the Signal Generator.

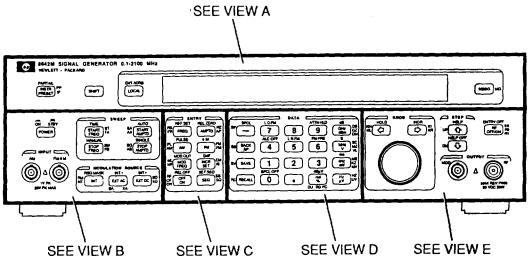
INSTRUMENT	CRITICAL SPECIFICATION	MODEL NUMBER
Digital Voltmeter	10mV to 600V, ±-05% of reading <u>+</u> 1 digit	HP 3490
Digital Multimeter	No substitute	JF 8020A
Oscilloscope Mainframe	See Plug-in Oscilloscope	TEK 5440
Plug-In Oscilloscope	10mV/div, 100MHz BW	TEK 5S14N
Probe	10:1	TEK P6056
Power Meter	10MHz to 2GHz, -27 to +7dBm <u>+</u> 1%	HP 432A

INSTRUMENT	CRITICAL SPECIFICATION	MODEL NUMBER
Thermistor Mount	10MHz to 2GHz, -27 to +7dBm +1%	HP 478A
Attenuator, Set	450KHz to 2GHz, 10dB, <u>+</u> 0.1dB, <1.3 SWR	WE-9918
Spectrum Analyzer	No substitute	TEK 492/1/2/3/21
Pulse Generator	50KHz max rate, <6µsec PW, <100nsec	HP 214B
	rise time	
Modulation Analyzer	No substitute	HP 8901A
Distortion Analyzer	0-5% AM, 0-2% FM distortion 0-4vpeak	HP 334A
	input	
Frequency Measurement	0-2GHz, <u>+</u> 1Hz	HP 5345A System
System		
Low Frequency	100Hz to 40MHz,<10Hz RES BW, 90dB	HP 3585A
Spectrum Analyzer	dynamic range	
Adapter	BNC to type N	UG-201A/U
Adapter	BNC to dual banana	POM 1656-2-60075
		ohm
Cable Assembly	502 BNC-BNC (2 each)0	POM BNC-C-3
BNC Tee		UG-274
Test Conn	BD ASSY PS TEST CONN	HP 08642-80053
Cable Assembly	Flat	HP 08642-60959
Cable Assembly	Long	HP 08662-60075
Cable Assembly	Short	HP 08662-60080
Adapter	(M) SMC to (M) SMC (4)	HP 1250-0827
Adapter	(F) BNC to (F) SMC (2)	HP 1250-0832
Adapter	(M) SMC TEE	HP 1250-0837
Adapter	(M) SMA to (F) SMC (2)	HP 1250-1697
Adapter	50 Pin Test Connector	HP 1251-5653
Adapter	16 Pin Test Connector	HP 1251-8105
Adapter	26 Pin Test Connector	HP 1251-8248
Adapter	34 Pin Test Connector	HP 1250-8601
Adapter	20 Pin Test Connector	HP 1251-8812
Adapter	14 Pin Test Connector	HP 1251-8823
Adapter	10 Pin Test Connector	HP 1252-0153
Adapter	Binding Post	HP 5021-0844
Test Lead Kit		HP 34118A

0-11. WARRANTY INFORMATION.

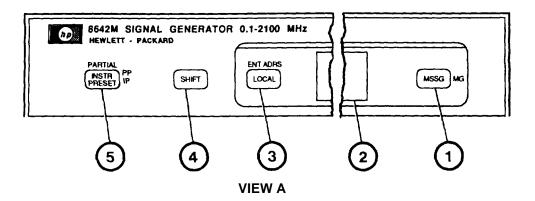
The HP 8642 is warranted by Hewlett-Packard Company for 1 year. Warranty starts on the date of shipment to the original buyer. Report all defects in material or workmanship to your supervisor who will take appropriate action.

0-12. SAFETY CONSIDERATIONS.


This product is a Safety Class I instrument; that is , one provided with a protective earth terminal. Before operating or servicing the Signal Generator, personnel should familiarize themselves with both the safety markings on the equipment and the safety information presented at the beginning of this manual.

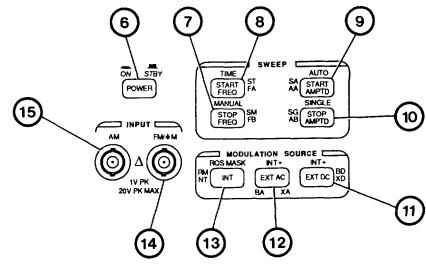
0-7/(0-8 BLANK)

SECTION I. OPERATING INSTRUCTIONS


1-1. DESCRIPTION AND USE OF OPERATOR'S CONTROLS, INDICATORS, AND CONNECTORS.

This paragraph describes all of the operator controls and indicators for the Signal Generator. Due to the large number of controls and indicators on the front panel, it is necessary to separate the panel into five different portions. Figure 1-1 (views A thru E) shows each portion of the front panel. The rear panel is shown in figure 1-2.

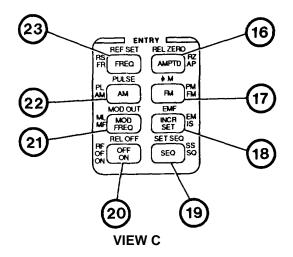
FRONT VIEW


Figure 1-1. Operator's Controls, Indicators, and Connectors, front view.

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
1	MESSAGE push button	When pressed, queued-up operating messages are displayed. MSSG annunciator and flashing display are indications that messages are present. Press SHIFT MESSAGE push buttons to view previous messages.
2	Display	Displays various Signal Generator messages and settings. The cursor designates which Signal Generator function is active
	RMT LSTN TLK SRQ	These annunciators indicate the HP-IB status of the Signal Generator.
	START annunciator	Indicates that RF frequency sweep is selected and a start frequency is currently displayed or that a sequence is being set.
	FREQ annunciator REL annunciator	Indicates the RF frequency is being displayed. Indicates the current RF frequency is displayed in relative units
	EMF annunciator	Indicates the current amplitude is in EMF units.
	SPCL annunciator	Indicates a special function is currently selected.
	SWPNG annunciator	Indicates that either an RF frequency or amplitude sweep is currently taking place.
	HILO annunciators	Used to indicate whether the external modulation source level is too high or too low to obtain the displayed depth or deviation. Reference level is $1V$ peak, $\pm 5\%$. Not used for pulse modulation.
	OM FM AM annunciators	Indicate the type or types of modulation selected.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
	START annunciator	When the START annunciator in the left portion of the display appears with the AMPTD annunciator, a start amplitude is currently displayed. When this annunciator appears without the AMPTD annunciator, a sequence is being set.
	INT EXT AC DC	Combinations of these annunciators display the current status of the modulation source for the displayed modulation type.
	AMPTD annunciator REL annunciator	Indicates that the output amplitude is being displayed. Indicates the current output amplitude is displayed in relative units.
	STOP annunciator	 Indicates that: 1) stop frequency of the RF frequency sweep is currently being displayed, or 2) stop amplitude of amplitude sweep is currently being displayed, or 3) that sequence is being set.
	MSSG annunciator	When displayed, select the Message push button to display a queued-up message.
3	LOCAL push button	Used only when external controller is connected to Signal Generator. When used, Signal Generator is switched out of remote operation.
3A	ENT ADRS	Used to display or change address. Press SHIFT then LOCAL to display present address. Press SHIFT, LOCAL, desired number from 00 to 30, then HZ μ V push buttons to enter new address.
4	SHIFT push button	Allows for access to the functions labeled in blue. To bypass the power-up checks, press and hold SHIFT push button down during power-up until instrument settings are displayed. Pressing Shift twice clears any messages and returns the display to showing normal instrument settings.
5	INSTR PRE SET	Sets the Signal Generator to an initialized state. Push for on.

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
5A	PARTIAL	Sets the Signal Generator to another initialized state without affecting certain instrument settings. RF Frequency, Amplitude Reference, EMF Mode, and Sweep Mode are not affected. AM Depth, FM Deviation, Phase Deviation, Pulse Modulation, Modulation Output Level, Start Frequency, Stop Frequency, Frequency Reference, Start Amplitude, and Stop Amplitude are turned off but previously entered values remain. Push Shift then INSTR PRE SET for on.


VIEW B

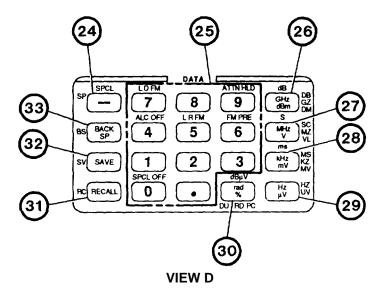
	CONTROL, INDICATOR,	FUNCTION
KEY	OR CONNECTOR	FUNCTION
6	POWER switch	Changes Signal Generator from standby to on. Push in for on and push in again for standby.
7	STOP FREQ push button	Used to enter or display a stopping frequency in sweep mode. Press to display present stop value in the display. Press and use data entry push buttons to enter a new stop frequency. Stop frequency may be less than or greater than start frequency.
7A	MANUAL	Used to activate sweep circuitry, but does not start a sweep. TUNE knob or the STEP push buttons control frequency/amplitude sweep. Beginning frequency/ amplitude is controlled by START push button, ending frequency/amplitude is controlled by STOP push button, and step size is controlled by TIME push button. Sweep time of each step is controlled by operator. Press SHIFT then STOP FREQ push button to activate.
8	START FREQ push button	Used to enter or display a starting frequency in sweep mode. Press to display present start value in the display. Press and use data entry push buttons to enter a new start frequency. Start frequency may be less than or greater than stop frequency.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
8A	TIME	Used to enter and display time interval between START FREQ to STOP FREQ or START AMPTD to STOP AMPTD. Press SHIFT and hold START FREQ to show present time value in display. To enter a new time, press SHIFT, START FREQ push button, enter desired time using data entry push buttons, and press MHz V (sec) or KHz mV (msec) push button. Allowable values for frequency time range are 275msec (5msec for phase continuous sweep) to 999sec in 1msec increments. The minimum calculated step size is 1Hz. Allowable values for amplitude time range are 20msec to 999sec in 1msec increments. The minimum calculated step size is 0.1dB.
9	START AMPTD push button	Used to enter or display a starting amplitude in sweep mode. Press to display present start value in the display. Press and use data entry push buttons to enter a new start amplitude. Start amplitude may be less than or greater than stop amplitude.
9A	AUTO	Used to start frequency/amplitude sweep, restarting at end of each sweep. Beginning frequency/amplitude is controlled by START push button, ending frequency/amplitude is controlled by STOP push button, and sweep time is controlled by TIME push button. Press SHIFT then START AMPTD push button to activate.
10	STOP AMPTD push button	Used to enter or display a stopping amplitude in sweep mode. Press to display present stop value in the display. Press and use data entry push buttons to enter a new stop amplitude. Stop amplitude may be less than or greater than start amplitude.

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
10A	SINGLE	Used to start frequency/amplitude sweep, stopping at end of each sweep. After one complete sweep, all values remain at stopping point value. Beginning frequency/amplitude is controlled by START push button. Ending frequency/amplitude is controlled by STOP push button. Sweep time is controlled by TIME push button. Press SHIFT then STOP AMPTD push button to activate.
11	EXT DC push button	Selects an external, dc-coupled signal to modulate the Signal Generator RF Output. External signal is connected to AM/PULSE/FM/OM connector. Push for on.
11A	INT + (EXT DC)	Selects an external, dc-coupled signal and internal modulation oscillator signal to be summed together to modulate the Signal Generator RF Output.
12	EXT AC push button	Selects an external, ac-coupled signal to modulate the Signal Generator RF Output. External signal is connected to AM/PULSE/FM/OM connector. Push for on.
12A	INT + (EXT AC)	Selects an external, ac-coupled signal and internal modulation oscillator signal to be summed together to modulate the Signal Generator RF Output.
13	INT push button	Selects Signal Generator internal modulation oscillator to modulate the RF Output. Push for on.
13A	RQS MASK	Used for remote operation only. Displays or changes service request status byte value. Press SHIFT then INT push button to display present value. Press SHIFT, INT, desired decimal number from 0 to 255, then HZ μ V push buttons to enter new value.

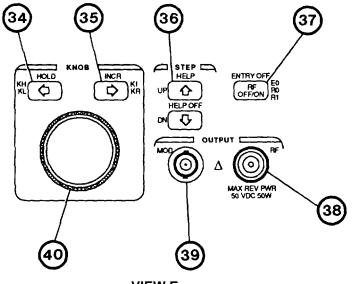
KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
14	FM/OM connector	BNC female connector with 600 ohms input impedance used to connect an externally supplied DC to 100KHz, 1 volt peak <u>+</u> 5% signal for frequency modulation of Signal Generator RF output. FM deviation is selectable from 300KHz to 1.5MHz for a 1 volt peak signal. Also used for phase modulation.
15	AM connector	BNC female connector with 600 ohms input impedance used to connect an externally supplied DC to 100KHz, 1 volt peak \pm 5% signal for amplitude modulation of Signal Generator RF output. AM Depth is selectable from 0 to 99.9% with 1 volt peak signal.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
16	AMPTD push button	Used to enter an output amplitude level. Push and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a new amplitude. New value may be entered in dBm, V, mV, μ V, or dB μ V (RAD % push button). Amplitude is shown with a cursor above display indicating it is the active function.
16A	REL ZERO	Used to store the current RF output frequency/amplitude setting as the new frequency/amplitude reference. After pressing, display will show 0MHz/0dB. All subsequent frequency/amplitude settings will be entered and displayed as MHz/dB relative to the stored frequency/amplitude reference value.


	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
17	FM push button	Used to activate frequency modulation mode. When using internal source, push FM then INT to activate internal modulation oscillator. Push FM and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a FM deviation in GHz, MHz, KHz, or Hz. When external signal source is used for FM mode, press FM and enter FM deviation in GHz, MHz, KHz, or Hz for a 1 volt peak signal applied to FM connector. Actual FM deviation is controlled by amplitude of input signal and FM deviation selection. FM deviation is shown with a cursor above display indicating it is the active function. May be used simultaneously with either AM or Pulse Modulation.
17A	PHASE (OM)	Used to activate Phase modulation mode. When using internal source, push SHIFT FM then INT to activate internal modulation oscillator. Push SHIFT FM and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a OM deviation from 0 to 100 radians. When external signal source is used for OM mode, press SHIFT FM and enter 0 to 100 radians for a 1 volt peak signal applied to OM connector . Actual OM deviation is controlled by amplitude of input signal and OM deviation selection. OM deviation is shown with a cursor above display indicating it is the active function. May be used simultaneously with either AM or Pulse Modulation.
18	INCR SET push button	Used to enter a new increment value or display a previously stored increment value. Push to display stored increment. Press and use numeric push buttons to enter a new increment. TUNE KNOB or STEP push buttons can increase or decrease selected functions by INCR SET stored value. Both frequency and amplitude functions can be entered.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
18A	EMF	The EMF mode enables you to display and enter amplitude values in EMF units. Press SHIFT, INCR SET, then OFF ON push button to activate EMF mode. The EMF amplitude is set by selecting the desired AMPTD function.
19	SEQ push button	The SEQ push button enables you to sequentially step through the recall registers in ascending sequence. Range is determined by SET SEQ.
19A	SET SEQ	Used to select a particular range of recall registers to be viewed. Press SHIFT SEQ push buttons and enter desired start and stop registers from 00 to 50.
20	OFF ON push button	The OFF ON push button toggles an active function off or on with a single push button stroke. When OFF ON is used to activate a function, it turns on to the default value or value previously stored. The OFF ON push button can also be used to turn on or turn off the EMF mode, a Reference Set value, the Knob Hold mode, or the Help mode (off only).
20A	REL OFF	Used to turn off Frequency/Amplitude Relative Mode. Press SHIFT OFF ON.
21	MOD FREQ push button	Used to enter a Modulation frequency when using internal modulation oscillator in AM, FM, and OM modulation modes. MOD connector output frequency is also entered by MOD FREQ push button. Push and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a new modulation frequency. New value may be entered in KHz or Hz. Modulation frequency is shown in display.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
21A 	MOD OUT	Used to control the output level from the MOD connector. Press SHIFT MOD FREQ push buttons and enter an output level from 0 to 3Vpk using either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button Modulation output level is shown with a cursor above display indicating it is the active function.
22	AM push button	Used to activate amplitude modulation mode. When using internal source, push AM then INT to activate internal modulation oscillator. Push AM and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a modulation depth from 0 to 99.9%. When external signal source is used for AM mode, press AM and enter 0% to 99.9% full scale modulation for a 1 volt peak signal applied to AM connector . Actual AM depth is controlled by amplitude of input signal and AM depth selection. Depth is shown with a cursor above display indicating it is the active function. May be used simultaneously with either FM or Phase Modulation.
22A	PULSE	Used to activate Pulse modulation mode. When using internal source, push SHIFT, AM then INT to activate internal modulation oscillator. When using external signal source, press SHIFT AM then EXT DC push buttons. Press SHIFT AM, and OFF ON push buttons to activate mode. Trigger voltage is ± 1.5 volts.
23	FREQ push button	Used to enter an RF frequency. Push and use either data entry push buttons, TUNE KNOB, STEP push buttons, or the OFF ON push button to enter a new frequency. New value may be entered in GHz, MHz, KHz, or Hz. Frequency is shown with a cursor above display indicating it is the active function.


1-12

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
23A	REF SET	Used to enter or display the frequency/amplitude reference. Press SHIFT, FREQ to display present value. Press SHIFT, FREQ, and using the data entry push buttons, enter the new frequency/amplitude reference value. Displayed value will be offset from the stored frequency/amplitude reference value. All subsequent settings will be entered and displayed as offset from the stored frequency/amplitude reference value.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
24	- push button	Used to enter negative numeric value for all Signal
		Generator Functions. Push for minus.
24A	SPCL	Used to select special functions. Push SHIFT SPCL
		push button, followed by a valid special function
		number. (All of the single-digit special functions are
		labeled in light grey print above digit push buttons.)
25	Numeric push buttons	Used to enter numeric value with decimal point for all
		Signal Generator Functions. After data is entered,
		terminator push buttons (KHz mV, etc) are pressed to
		enter value. Press desired push button.
26	GHz dBm push button	Used to internally store entries from numeric push
		buttons. Frequency functions are assigned GHz.
		Amplitude functions are assigned dBm/dB
		(REF/EMF). Push for on.
27	MHz V push button	Used to internally store entries from numeric plush
		buttons. Frequency functions are assigned MHz.
		Amplitude functions are assigned volts. Time
		functions are assigned seconds. Push for on.
	1	

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
28	kHz mV push button	Used to internally store entries from numeric push buttons. Frequency functions are assigned kHz. Amplitude functions are assigned millivolts. Time functions are assigned milliseconds. Push for on.
29	Hz μV push button	Used to internally store entries from numeric push buttons. Frequency functions are assigned Hz. Amplitude functions are assigned microvolts. Push for on.
30	rad % push button	Used to internally store entries from numeric push buttons. ØM (Phase modulation) is assigned radians. AM depth is assigned percent. Amplitude functions are assigned dbµV. Push for on.
31	RECALL push button	Used to recall a previously stored Signal Generator operational setup. When selected, front panel settings change to recalled settings. Push RECALL and register number (00 thru 50) to recall a stored setup.
32	SAVE push button	Used to store a Signal Generator operational setup. All front panel controls and indicators, except Messages, HP-IB Address, Local/Remote Mode, Sequential settings, and Special functions can be stored. Push SAVE and register number (00 thru 50) or STEP push buttons to store a setup.
33	BACK SP push button	Clears one digit at a time starting with least significant digit and is used only during data entry and before any terminator push button is pressed.

VIEW E

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
34/35	→ ←push buttons	Used to select desired digit to be modified by positioning cursor in display. If cursor positioned over 3rd digit, knob will increment/decrement 3rd digit. \rightarrow moves cursor to right, \leftarrow moves cursor to left. Will not move cursor from one function to another (frequency to amplitude). Push to move.
34A	HOLD	Used to maintain TUNE KNOB control over one function, while allowing any other function to be controlled by STEP or data entry push buttons. Dual cursors indicate the function that is controlled by the TUNE KNOB while a single cursor indicates the function controlled by STEP or data entry push buttons. Push SHIFT, \leftarrow , OFF ON to activate.
35A	INCR	Used to set the TUNE KNOB increment to the value entered and stored as INCR SET. Press SHIFT \rightarrow to transfer the increment value to the TUNE KNOB.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
36	STEP (UP/DOWN) push buttons	Used to vary values shown with cursor in display. UP push button increases value and DOWN push button decreases value. Step size is determined by default value or value previously stored in INCR SET. Frequency, Start Frequency, Stop Frequency, Amplitude, Start Amplitude, Stop Amplitude, AM Depth, FM Deviation, ØM Deviation, Modulation Frequency, Modulation Output, Sweep Time, Manual Sweep, Save, Recall, and Help can be controlled by the STEP push buttons. Press for on. Press and hold to repeat.
36A	HELP	The Help function enables you to display the numbers and descriptions of special functions. Press SHIFT STEP (UP) push button to activate, SHIFT STEP (DOWN) push button to deactivate.
37	RF OFF/ON push button	Used to turn RF OUTPUT connector on or off. Provides a convenient and rapid way to toggle the RF Output off and on without changing the attenuators. When RF output is on, Signal Generator has a normal RF signal at RF OUTPUT connector
37A	ENTRY OFF	Used to disable the active function as well as all TUNE KNOB related functions. When activated, display will not show cursors. TUNE KNOB and STEP push buttons will not change displayed values. Press SHIFT RF OFF/ON to activate.
38	RF OUTPUT connector	Type N female connector with output impedance of 50 ohms used to connect Signal Generator to a load. Supplies RF output over entire frequency range of 100KHz to 2.0GHz. Reverse power protection up to 50 W.
39	MOD connector	Used to supply a 20Hz to 100KHz sinewave signal for modulation. Output level is 0 to 3V peak. Output impedance is 600Ω . Leave open for normal operation. Connector mates with BNC plug.

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
40	TUNE KNOB	Used to vary values shown with cursor in display. Clockwise rotation increases value and counterclockwise rotation decreases value. Step size is either determined by value stored in INCR SET or cursor positioning push buttons. Frequency, Start Frequency, Stop Frequency, Amplitude, Start Amplitude, Stop Amplitude, AM Depth, FM Deviation, ØM Deviation, Modulation Frequency, Modulation Output, Sweep Time, Manual Sweep, and Help can be controlled by the TUNE KNOB.

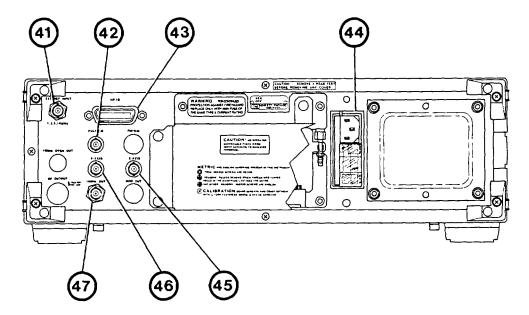


Figure 1-2. Operator's Controls, Indicators, and Connectors, rear view.

KEY	CONTROL, INDICATOR, OR CONNECTOR	FUNCTION
41	EXT REF INPUT connector	Used to connect a 1,2 , 5, or 10Mhz external reference to Signal Generator. Input power can be no less than 0.5Vp-p. Maximum input is ± 5 volts. Leave open for normal operation. Impedance is 500 Ω . Connector mates with BNC plug.
42	Pulse connector	BNC female connector with 50 ohms input impedance used to connect an externally supplied DC to 50KHz, 1 to 15 volt peak signal for pulse modulation of Signal Generator RF output. Trigger voltage is 1.5 volts. Accepts TTL levels.
43	HPIB Interface connector	Used as input and output connector for external devices during remote operation. Connector has 24 pins with metric posts.

	CONTROL, INDICATOR,	
KEY	OR CONNECTOR	FUNCTION
44	Line Power Module	Used as power input connector for Signal Generator. Also contains line fuse and voltage selection facilities. Voltage selection provided for operation from 100, 120, 220, or 240 VAC. Number visible in window displays nominal line voltage for which the Signal Generator is set to operate. Power input connector accepts female end of power cable (supplied). Protective grounding conductor connects to Signal Generator through this connector. Line power fuse is 3 amp, 250 volts for 100/120 VAC operation and 2 amp, 250 volts for 220/240 VAC operation. Remove power cable, slide plastic window over connector, and pull extractor to remove fuse.
45	Z-Axis connector	Connection providing a TTL positive true blanking pulse for external oscilloscope display blanking during retrace. Leave open for normal use. Connector mates with BNC plug.
46	X-Axis connector	Connection providing a 0 to 10Vdc ±10% voltage stepped output for use with an external oscilloscope. Leave open for normal use. Connector mates with BNC plug.
47	10MHz connector	Used for a signal reference to synchronize external devices to Signal Generator. Output power is >1.4Vp-p at 50 Ω . Output frequency is 10MHz. Output impedance is 75 Ω . Leave open for normal operation. Connector mates with BNC plug.

1-2. INSTALLATION.

The following paragraphs provide the information needed to install the HP 8642 Synthesized Signal Generator. Included is information pertinent to initial inspection, power requirements, line voltage selection, power cables, interconnection, and environment.

1-3. INITIAL INSPECTION.

WARNING

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers and panels).

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Section VI. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection.

1-4. PREPARATION FOR USE.

Power Requirements

The Signal Generator requires a power source of 100 Vac (90 to 105 Vac), 120 Vac (108 to 126 Vac), 220 Vac (198 to 231 Vac), or 240 Vac (216 to 252 Vac), 47.5 to 440 Hz single phase. Power consumption is 260 VA maximum (270 VA during attenuator switching).

WARNING

This is a Safety Class 1 product (i.e., provided with a protective earth terminal). An uninterruptible safety earth ground must be provided from the power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an external autotransformer for voltage reduction, make sure that the common terminal is connected to the earthed pole of the power source.

CAUTION

BEFORE PLUGGING THIS INSTRUMENT into the Line voltage, be sure the correct voltage and fuse have been selected.

A rear-panel, line power module permits operation from 100, 120, 220, or 240 Vac. The number visible in the window (located on the module) indicates the nominal line voltage to which the instrument must be connected. Verify that the line voltage selection card and the fuse are matched to the power source. Refer to Figure 1-3, Line Voltage and Fuse Selection.

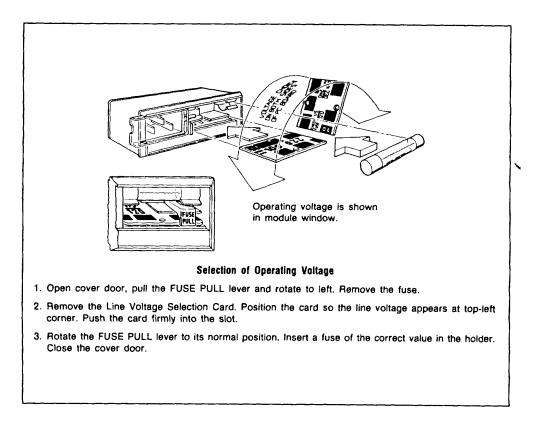


Figure 1-3. Line Voltage and Fuse Selection.

Two fuses are supplied with each instrument. One fuse has the proper rating for 110/120 Vac line operation (HP part number 2110-0003; 3A, 250V, non-time-delay). The other fuse is rated for 200/220 Vac operation (HP part number 2110-0002; 2A, 250V, non-time-delay).

One fuse is installed in the instrument at the time of shipment. The rating of the installed fuse is selected according to the line voltage specified by the customer. If the voltage is not specified, the rating of the installed fuse will be selected according to the country of destination.

WARNING

For protection against fire hazard, the line fuse should only be a 250V normal blow fuse with the correct current rating.

Power Cables

WARNING

BEFORE CONNECTING THIS INSTRUMENT, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cord. The line plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two conductor outlet is not sufficient protection.

This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Table 1-1 for the part numbers of the power cables and line plugs available.

HP-IB Address Selection

The Signal Generator's address is set to 19 at the factory both in RAM memory and an internal switch located inside the instrument. The address stored in RAM remains valid through switching the power from standby to on and unplugging of the ac power cord (unless the internal battery power is lost which would cause RAM memory to be lost). If RAM memory is ever lost, the address on the internal switch is read and becomes the address at turn on. Refer to HP-IB operation for procedures to set the Signal Generator's HP-IB address.

Interconnections

Interconnection data for the Hewlett-Packard Interface Bus is provided in Figure 1-4, Hewlett-Packard Interface Bus Connections.

Mating Connectors

Interface Connector. The HP-IB mating connector is shown in Figure 1-4. Note that the two securing screws are metric.

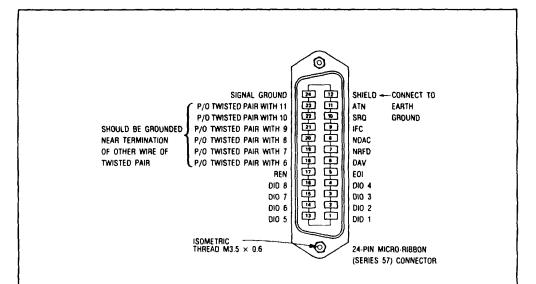
<u>Coaxial Connectors</u>. Coaxial mating connectors used with the Signal Generator should be either the 50-ohm BNC male connectors or 50-ohm Type-N male connectors that are compatible with those specified in US MIL-C-39012.

Plug Type	Cable HP Part Number	C D	Plug Description	Cable Length (inches)	Cable Color	For Use In Country
250V [E] [] [] [] [] [] [] [] [] [] [8120-1351 8120-1703	0 6	Straight*BS1363A 90°	90 90	Mint Gray Mint Gray	United Kingdom, Cyprus, Nigeria, Rhodesia, Singapore
	8120-1369 8120-0696	04	Straight*NZSS198/ASC112 90°	79 87	Gray Gray	Australia, New Zealand
	8120-1689 8120-1692	7 2	Straight*CEE7-Y11 90°	79 79	Mint Gray Mint Gray	East and West Europe, Saudi Arabia, Egypt, So. Africa, India (unpolarized in many nations)
	8120-1378 8120-1398 8120-1754 8120-1378 8120-1521 8120-1676	5 5 7 1 6 2	Straight*NEMA5-15P 90° Straight*NEMA5-15P Straight*NEMA5-15P 90° Straight*NEMA5-15P	80 80 36 80 80 36	Black Black Black Jade Gray Jade Gray Jade Gray	United States, Canada, Japan (100V or 200V), Mexico, Phillipines, Taiwan
	8120-2104	3	Straight*SEV1011 1959-24507 Type 12	79	Gray	Switzerland
	8120-0698	6	Straight*NEMA6-15P			United States, Canada
	8120-1957 8120-2956	2 3	Straight*DHCK107 90°	79 79	Gray Gray	Denmark
	8120-1860	6	Straight*CEE22-VI (Systems Cabinet use)			
Part number shown for plug is industry identifier for plug only. Number shown for cable is HP Part Number for com- plete cable including plug. E = Earth Ground; L = Line; N = Neutral						

Table 1-1. AC Power Cables Available

Operating Environment

Temperature	0°C to +55°C
Humidity	5 to 95% (maximum wet bulb temperature = 40°C)
Altitude	<4570 meters (15,000 feet)
Airflow	5.8 mm (0.23 in.) minimum clearance underneath the instrument and sufficient clearance at the instrument's right side for air flow that is not obstructed.


1-5. OPERATION UNDER USUAL CONDITIONS.

Operating procedures are broken down into individual functions and are provided starting in paragraph 1-8. Operating messages that may be encountered during operation and maintenance are listed in paragraph 1-7.

1-6. TURN-ON PROCEDURES.

- 1. Apply power to the Signal Generator. Signal Generator will perform a self test for approximately 30 seconds. Verify that the fan on the rear panel is operating.
- 2. After 30 seconds, verify that the display has no operating message indications. If MSSG Annunciator is on or display is flashing, press MSSG push button and see paragraph 1-7 for explanation. Verify the following condition exists on the Signal Generator front panel:

RF Frequency	100MHz
Start Frequency	
Stop Frequency	
Frequency Reference	
Amplitude	
Start Amplitude	
Stop Amplitude	OFF(-135dBm)
Amplitude Reference	ΟFF(1.0μV)
EMF Mode	OFF
AM Depth	OFF(50% Internal)
FM Deviation	OFF(50KHz Internal)
Phase Deviation	
Pulse Modulation	
Modulation Frequency	
Modulation Output Level	OFF (1V)
Frequency Sweep Mode	AUTO
Amplitude Sweep Mode	
Sweep Time	500msec
All other controls and indicators	OFF

Logic Levels

The Hewlett-Packard Interface Bus logic levels are TTL compatible, i.e., the true (1) state is 0.0 Vdc to +0.4 Vdc and the false (0) state is 2.5 Vdc to +5 Vdc.

Programming and Output Data Format

Refer to Section III, "Operation".

Mating Connector

HP 1251-0293; Amphenoi 57-30240.

Mating Cables Available

HP 10631A, 1 metre (3.3 ft.), HP 10631B, 2 metres (6.6 ft.) HP 10631C, 4 metres (13.2 ft.), HP 10631D, 0.5 metres (1.6 ft.)

Cabling Restrictions

- 1. A Hewlett-Packard Interface Bus system may contain no more than 2 metres (6.6 ft.) of connecting cable per instrument.
- 2. The maximum accumulative length of connecting cable for any Hewlett-Packard Interface Bus system is 20 metres (65.6 ft.).

Figure 1-4. Hewlett-Packard Interface Bus Connections.

1-7. OPERATING MESSAGES.

Some operator actions and Signal Generator failures cause operating messages. If a message appears in the display, or MSSG Annunciator lights, or the display flashes, press MSSG push button to display message.

Operating Messages are grouped into seven categories as follows:

Beremeters Changed	-
-	Local: These messages are automatically displayed except for C32 and C33.
•	
	HP-IB: All of these messages can be output via HP-IB using "OC"
Execution Error Messages	"OC". Parameters Changed messages (message code is prefixed with "C") inform you that the Signal Generator has changed some other setting to allow a new setting. Some of the Signal Generator's functions cannot occur simultaneously with other functions, so the Parameters Changed message indicates the Signal Generator has automatically adjusted or turned off the functions that are preventing the new setting. These messages occur immediately after executing a command that causes some other parameter to automatically change. HP-IB: You can read only the first Parameters Changed message if more than one has occurred. For example, assume that more than one Parameters Changed message has occurred since either the Status Byte was cleared or since the last time "OC" was executed. Then a Parameters Changed message. Local: These messages are output via HP-IB using "OE". Execution Error messages (message code is prefixed with "E") describe the Signal Generator's reason for not executing an attempted setting. Some settings are not possible because functions are coupled together due to limitations of internal circuit configuration. This coupling will sometimes limit the execution of a setting because one function limits the setting of the other. When your setting attempt cannot occur, the Signal Generator explains the restriction. Execution Error messages occur immediately after executing a command that does not execute. HP-IB: You can read only the first Execution Error message if more than one has occurred. For example, assume that more
	than one Execution Error message has occurred since either the Status Byte was cleared or since the last time "OE" was executed. Then reading an Execution Error message using "OE"

Hardware Error Messages	Local: These messages are all queued up and can be displayed using the MSSG push button. HP-IB: All of these messages are output via HP-IB using "OH". Hardware Error messages (message number is prefixed with "H") signal the presence of either an internal circuit hardware problem or a firmware problem that you might be able to resolve. Hardware Error messages may occur independently of function execution. A maximum of 20 Hardware Error messages can be queued up to be accessed either by the MSSG push button on the front panel, or via HP-IB using "OH". If you are unable to repair the hardware error, refer to Section III for more information.
Information Messages	Local: These messages are automatically displayed when you execute a function. HP-IB: Most of these messages can be output via HP-IB using the Output Display capability after you execute a function. 11, 12, 159, and 160 cannot be read via HP-IB. To understand a way to read 141 through 149 and 151 through 159, refer to that message description on the following page. Information messages (message code is prefixed with "I") provide useful information about instrument settings or conditions.
Prompt Messages	Local: These messages are automatically displayed when you execute a function. HP-IB: Most of these messages can be output via HP-IB using the Output Display capability after you execute a function. P91 cannot be read via HP-IB. Prompt messages (message code is prefixed with "P") instruct you towards completion of die task or function selection you begin.
Out-of-Lock Messages	Out-of-lock messages might appear as queued up messages during operation. (These messages will be disabled if Special Function 119, Disable Settling, is selected.) If any of these messages occur, the instrument might not be functioning properly and need to be serviced. However, some of the messages might be displayed because you have exceeded the instrument's limits. The out-of-lock messages are listed in the Table 1-2. The solution column provides the number(s) of the solution(s) listed below that might eliminate the out-of-lock condition. IF THE PRESCRIBED SOLUTION DOES NOT ELIMINATE THE MESSAGE, THE INSTRUMENT SHOULD BE SERVICED. Also, these messages can be output using "OH".

0

Writing Messages The messages listed (message code is prefixed with "V")might occur when you are accessing the special functions. When using the instrument locally you will usually be able to view each message whenever it occurs. When using the instrument via HP-IB, you can access some messages using the "OE" or "OH" commands. Messages accessed this way can be output in the form of a message code number or an actual alphanumeric message string. In the following message listing, the message code number that can be output over HP-IB is provided to the far right of the message. If no message code number is provided, then that message can only be read over HP-IB using Output Display (unless otherwise stated), which is also described in Data Output. The messages that can be output using "OE" or "OH" can also be made to issue a service request.

Messages are displayed in a format that shows the wording of the message followed by an alphanumeric code. (Alphanumeric codes combine a letter and a number; for example, C31.) The message listing lists the messages as they are displayed, with the alphanumeric code to the right of the message wording (not to be confused with the message code number in the right margin of the listing). The messages are listed in alphanumeric order.

When Using the Instrument Locally. You will usually be able to view each message whenever the Signal Generator is ready to give you information. That is, you don't need to do anything to the instrument to see a message. However, when you execute some instrument functions, a message is queued up and can be displayed using the MSSG push button (these messages are noted in the listing). The MSSG annunciator in the right portion of the display notifies you that a message is queued up. To read queued up messages, just select the MSSG push button repeatedly. When you read "END OF MESSAGE LIST .00" you know there are no more messages in that list.

When Controlling the Instrument via HP-IB. You can access most of the messages using the "OC", "OE", and "OH" commands. Messages accessed this way can be output in the form of a message code number or as an actual alphanumeric message string. In the message listing in this instruction, the message code number that can be output over HP-IB is provided to the far right of the message. If no message code number is provided in the listing, then that message can be read over HP-IB using Output Display (unless otherwise stated). If any unique message retrieval procedures exist for a message, they will be described in the individual message description. Also, any message that cannot be read via HP-IB will be noted.

Many of the messages that can be output over HP-IB can be made to initiate a service request.

.00

NO MESSAGES

No messages are queued up to be displayed or output over HP-IB.

HP-IB: This message may be output with "OH" (or "MG" in combination with Output Display). NO MESSAGE .00 0

No message is available for output over HP-IB. This message is never displayed locally. HP-IB: This message may be output with "OC" or "OE".

FM was turned off. OM was selected when FM was on. FM	I cannot be done si
OM.	
PHASE MOD TURNED OFF	.C13
OM was turned off. FM was selected when OM was on. with FM.	OM cannot be do
PULSE MOD TURNED OFF	.C14
Pulse modulation was turned off. Either START AMPTD, (HP-IB codes: AA, AB, or AM) when pulse modulation was when amplitude sweep or AM are on.	

SWEEP TIME ADJUSTED

Sweep time was adjusted to the minimum allowed setting. The sweep time setting was less than the minimum allowed for the type of sweep selected. Either a Stepped Frequency Sweep was set with the sweep time set less than 275 ms, or amplitude sweep was set with the sweep time set less than 20 ms.

FREQ SWEEP TURNED OFF

RF frequency sweep was turned off. Either FREQ, START AMPTD, or STOP AMPTD was selected (HP-IB codes: FR, AA, AB) when RF frequency sweep was on.

The end of the copied list has been reached. This message is viewed after displaying the entire

END OF MESSAGE LIST

copied message list (by repeatedly selecting the MSSG push button). HP-IB: This message may be output with "OH" (or "MG" in combination with Output Display).

FR.SWP+PULSE TURNED OFF

RF frequency sweep with pulse modulation was turned off. Either START AMPTD or STOP AMPTD was selected (HP-IB: AA or AB) when RF frequency sweep was on with pulse modulation.

AMPTD REF SET TO 1.00UV

Amplitude reference was set to 1.00 μ V. The amplitude reference was set to the dB μ V reference (which is 1.00 µV) due to the selection of dBµV (HP-IB: DU). Subsequent amplitude displays will be in dBuV.

ADJUSTED .002UV RESOLN'N

Amplitude setting was adjusted to 0.002 uV resolution. In EMF mode, if an attempt is made to set an increment or amplitude reference with an odd number of nanovolts (for example, 0.501, 0.503, $0.505 \,\mu$ V, etc.), that value will be adjusted up to an even number of nanovolts.

INCR+AMPTD REF CHANGED

The increment setting and amplitude reference were changed. Changing between EMF and non-EMF amplitude modes could cause the increment and amplitude settings to be reset to allowable values.

AM TURNED OFF

AM was turned off. Either START AMPTD, STOP AMPTD, or PULSE (SHIFT AM) was selected (HP-IB codes: AA, AB, or PL) when AM was on. AM is not possible with pulse modulation or amplitude sweep.

FM TURNED OFF

up a turn a d aff ~ • • imultaneously with

one simultaneously

r AM was selected ation is not possible

2001

2002

0

2003

2004

2011

2013

2014

2012

2021

2022

1-30

.C22

.C21

.C12

.00

.C1

.C2

.C3

.C4

C11

.E1

.C31

.C23

.C32

.C33

.C41

.C42

FR.SWP+AM TURNED OFF

RF frequency sweep and AM were turned off. Either START AMPTD or STOP AMPTD was selected (HP-IB codes: AA, AB) when RF frequency sweep was on with AM.

AMPTD SWP TURNED OFF

Amplitude sweep was turned off. One of the following functions was selected when amplitude sweep was on: START FREQ, STOP FREQ, AMPTD, AM, or PULSE (SHIFT AM). (HP-IB codes: FA, FB, AP, AM, PL).

AA.OFF....30DB MAX SPAN

Start amplitude setting was turned off because the new stop amplitude setting was set more than 30 dB away from the start amplitude setting. This message is queued up until it is read, amplitude sweep is turned off, or the start amplitude is set again.

AB.OFF...30DB MAX SPAN

Stop amplitude setting was turned off because the new start amplitude setting was set more than 30 dB away from the stop amplitude setting. This message is gueued up until it is read, amplitude sweep is turned off, or the stop amplitude is set again.

INCR ADJUSTED

AMPTD REF ADJUSTED

Increment setting adjusted.

Amplitude reference setting adjusted.

Changing between EMF and non-EMF amplitude modes could cause the increment and/or amplitude settings to be reset to allowable values.

NEXT STEP NOT POSSIBLE

Next step is not possible. The current setting cannot be stepped up or down (as attempted) with the increment set value. To clear the message without changing instrument settings, select the SHIFT push button twice. If you want to read a message that might more specifically describe the setting problem, attempt a data setting similar to the step attempt that caused this error message.

NOT POSSIBLE. ABOVE MAX

Not possible above the maximum setting ever allowed. The attempted setting is above the function's maximum possible setting (independent of other functions.)

NOT POSSIBLE. BELOW MIN

Not possible below the minimum setting ever allowed. The attempted setting is below the function's minimum possible setting (independent of other functions.)

SELECT MOD.PREFIX FIRST

Select the type of modulation first. A modulation source was selected when a modulation setting Before selecting the modulation source, select any of the following was not displayed. modulation types: AM, FM, ϕ M (SHIFT FM), or PULSE (SHIFT AM).

HP-IB: Specify the modulation type code (AM, FM, PM, or PL) before the modulation source prefix code (NT, XA, XD, BA, or BD).

1-31

2023

2031

2032

2033

2041

2042

4001

4002

4003

4004

.E4

.E2

Select the type of sweep first.	A sweep mode (auto, manual	, or single) was selected without
specifying the sweep type (frequ	uency or amplitude sweep). Sel	ect START FREQ, STOP FREQ,

TM 11-6625-3165-14

4005

4006

4007

4009

4011

4012

type code (FA, FB, AA, or AB) before the sweep mode code (SA, SM, or SG). PLEASE SELECT FUNCTION

Please select an active function. A data value was attempted during manual sweep or when no active function existed. Select a valid function before attempting to enter a data value. HP-IB: Precede the data entry with a function prefix code.

START AMPTD, or STOP AMPTD before selecting the sweep mode. HP-IB: Specify the sweep

SP6 PREVENTS INT+EXT.FM

SELECT SWP.PREFIX FIRST

Special Function 6 (FM Pre-Emphasis On) prevents the selection of a summed internal and external FM source. Select Special Function 206 (FM Pre-Emphasis Off) to select INT+(EXT AC), INT+(EXT DC), or Special Function 112 (Internal + External Low Rate FM). HP-IB: Select SP206 before selecting FM source codes FMBA, FMBD, or SP112.

TURN.OFF.SWP FIRST...SP123

Turn off the frequency sweep before attempting those settings because Special Function 123 (Phase Continuous Frequency Sweep) is the type of frequency sweep currently selected. Turn off either START FREQ or STOP FREQ and then try your setting again.

HP-IB: Turn off the frequency sweep with FAOF or FBOF, then retry settings.

SP9+AM LIMIT MAX AMPTD

Special Function 9 (Attenuator Range Hold) selected with the current AM setting limits amplitude levels attainable. Turn off Attenuator Range Hold (with Special Function 209) and/or reduce AM to a depth that will allow the amplitude setting, or refer to sequence dependency in paragraph 1-15.

FUNCTION OFF.NO STEP

The active function is off so its value cannot be stepped. Turn on or set the active function to a valid setting before using the Step push buttons.

FUNC DISALLOWS OFF/ON

The active function cannot be turned off or on. You attempted to turn off or turn on either FREQ. MOD FREQ, or sweep TIME (SHIFT START FREQ) (HP-IB codes FR, MF, or ST).

ONLY OFF/ON IS ACTIVE

Only the OFF ON push button can be selected. Select an active function other than PULSE (SHIFT AM), EMF (SHIFT INCR SET), or KNOB HOLD (SHIFT <-) before entering data. HP-IB: Don't send data immediately after selecting PL, EM, or KH.

NO ACTIVE FUNCTION

Currently no function is active. Select an active function and then try your setting again. .E14 4014

NOTHING TO BACKSPACE

There is no data in the display to backspace. Select an active function before using BACK SP.

4008

4010

.E13 4013

1-32

.E12

.E11

E10

.E5

.E6

.E7

.E8

BAD PREFIX RECEIVED	.E18	4018
A bad prefix has been detected by the Signal General hift functions.	or. Terminator p	ush buttons do not have
IP-IB: The Signal Generator received a set of chara alid HP-IB code or use the HP-IB Device Clear comm		
AXIMUM OF 10 DIGITS	.E19	4019
his message is never displayed locally.		
IP-IB: The Signal Generator ignored some digits in i ignificant leading zeros).	the entry. Only s	send 10 digits (including
IUMBER OUT OF RANGE	.E20	4020
he attempted setting exceeds a numeric value whumber. Select a value within the Signal Generator's s		esented internally as a
MPTD LIMITS MAX AM	.E24	4024
he amplitude setting limits the maximum AM setting he attempted AM setting and try again.	. Reduce either	the amplitude setting or
AM LIMITS MAX AMPTD	.E25	4025
The AM setting limits the maximum amplitude setting. Ittempted amplitude setting and try again.	Reduce either the	e AM setting or the
ONLY INT/EXT.DC PULSE	.E26	4026
Only an internal or external dc source is possible with i	nulse medulation	With pulse modulation

The push button you have selected cannot be preceded by the SHIFT push button. Select a valid shift function. HP-IB: Select the proper function code without SH. SH should only be used with the Display

Output capability or to get back the normal display of instrument settings (HP-IB code: SHSH). Refer to Output Display information in paragraph 1-15.

INVALID TERMINATOR

NO CURSOR TO MOVE

INVALID SHIFT FUNC

This message is never displayed locally.

the Knob before attempting to move cursors.

HP-IB: Invalid terminator received. Send correct terminator code for function you are trying to set.

BA

M

NI

AN

AN

O

Only an internal or external dc source is possible with pulse modulation. With pulse modulation, select only INT or EXT DC. For other modulation sources, select the modulation type of AM, FM, or ϕ M (SHIFT EM) before selecting the modulation source.

HP-IB: Send only PLNT or PLXD, or ensure codes AM, FM, or PM are sent before XA, BA, or BD.

1-33

4015

4016

4017

.E15 Currently no function is active so no cursor can be moved. Select an active function to activate

.E16

PULSE MOD ONLY Pulse modulation can only be off or on. Since knob rotation, cursor positioning push buttons, a modulation function. HP-IB: Select a function code before UP, DN, KL	and Step push buttons cannot	
AM PREVENTS PULSE MOD	., or rat.	4028
AM is not possible with pulse modulation. Turn modulation.		
PULSE MOD PREVENTS AM	.E29	4029
Pulse modulation is not possible with AM. Tu selecting AM.	rn off pulse modulation (HP-IE	B: PLOF) before
TURN OFF EMF FOR DBM	.E30	4030
When in the EMF mode, dBm units are not p amplitude units.	oossible. Turn off EMF before	e selecting dBm
NO RELATIVE AMPTD SWP	.E31	4031
Relative values for amplitude sweep cannot be s	set directly. Convert the desire	d relative setting
value to absolute units, then set the amplitude		ct only FREQ or
AMPTD (HP-IB code FR or AP) before attempting	g relative settings.	
NO RELATIVE FREQ SWP	.E32	4032
Relative values for frequency sweep are not post or AP) before attempting relative settings.	sible. Select only FREQ or AN	IPTD (HP-IB: FR
ONLY FREQ/AMPTD REL	.E33	4033'
No relative units are possible with the requested FR or AP) before attempting relative settings.	I setting. Select only FREQ or	AMPTD (HP-IB:
AP.REF DISALLOWS DBmV	.E34	4034
An amplitude reference cannot be set in dB μ V. S select REL ZERO (HP-IB: APRZ).	Set amplitude to the desired val	ue in $dB\mu V$, then
AP.SWP DISALLOWS DBmV	.E35	4035
An amplitude sweep cannot be directly set in dB absolute units, then set the amplitude sweep in al		setting value to
FM COUPLED FUNC LIMIT	.E38	4038
FM is coupled with an attempted setting. You are attempting to set functions in an incorrect order. executing Special Function 0 or 100 when one s settings.	This message could also have	been caused by
INT+EXT.FM PREVENT SP6	.E39	4039
Special Function 6 (FM Pre-Emphasis) cannot be with an external source. Select a single FM sour 5; HP-IB: FMNT, FMXA, FMXD, or SP5) be sequence dependency in paragraph 1-15.	rce (INT, EXT AC, EXT DC, or	Special Function

TM 11-6625-3165-14

PM LIMITS MIN FREQ The OM setting limits the minimum RF frequency value that can be selected. Either reduce OM deviation, or select an RF frequency that allows the OM deviation, or refer to sequence

dependency in paragraph 1-15.

PM LIMITS MAX FREQ

The OM setting limits the maximum RF frequency value that can be selected. Either reduce OM deviation, or select an RF frequency that allows the OM deviation, or refer to sequence dependency in paragraph 1-15.

FREQ LIMITS MAX PM

The RF frequency setting limits the maximum value of OM deviation that can be selected. Set the RF frequency to a value in a band that allows the desired value of OM deviation, or select a OM deviation that is allowed to the current RF frequency, or refer to sequence dependency in paragraph 1-15.

FR.SWP+AUTO LIMITATION

Stepped Frequency Sweep cannot sweep in the Auto sweep mode under the following conditions:

Setting start and stop end-points if one end-point is less than 4.130860 MHz with a second endpoint greater than 132.187500 MHz.

Setting a Stepped Frequency Sweep across 1057.500000 MHz.

If neither of these restrictions apply to the attempted setting, refer to sequence dependency in paragraph 1-15.

TURN OFF SWEEP FIRST

Turn off frequency sweep first. To access Special Function 123 (Phase Continuous Frequency -Sweep), turn off the start and the stop frequency that was set for the Stepped Frequency Sweep. If this solution does not apply to your attempted setting, refer to sequence dependency in paragraph 1-15.

FREQ SWP + SP8 LIMIT

Stepped Frequency Sweep cannot sweep in the auto sweep mode across 132.187500 MHz. Select manual or single sweep, or refer to sequence dependency in paragraph 1-15.

FR.SWP+SP223 LIMIT.TIME

Special Function 223 (Stepped Frequency Sweep) limits the minimum sweep time that can be selected. Either turn off frequency sweep (HP-IB: FAOF FBOF) before setting the sweep time, or refer to sequence dependency in paragraph 1-15.

4041

4042

4045

4040

4047

4046

4048

.E42

.E45

.E46

.E47

.E48

.E40

FREQ.SWP+SWP.TIME LIMIT

The start or stop frequency setting is limited by the currently selected combination of:

Phase Continuous Frequency Sweep (Special Function 123), and the current sweep time setting, and possibly the current start and stop frequency settings, and possibly FM.

To resolve this error, either

1. Turn off frequency sweep (HP-IB: FAOF FBOF) and then possibly select Stepped Frequency Sweep (Special Function 223), or

.E49

.E50

.E51

.E52

.E53

- 2. Select a valid sweep time setting, or
- 3. Possibly turn off FM, or
- 4. Refer to sequence dependency in paragraph 1-15.

SP123 LIMITS MIN TIME

The minimum sweep time that can be selected is limited by the currently selected combination of:

Phase Continuous Frequency Sweep (Special Function 123), and the current start and stop frequency settings, and possibly FM.

To resolve this error, either:

- 1. Turn off frequency sweep (HP-IB: FAOF or FBOF) and then possibly select Stepped Frequency Sweep (Special Function 223), or
- 2. Select a valid sweep time setting, or
- 3. Possibly turn off FM, or
- 4. Refer to sequence dependency in paragraph 1-15.

SP123 LIMITS MAX TIME

The maximum sweep time that can be selected is limited by the currently selected combination of:

Phase Continuous Frequency Sweep (Special Function 123), and the current start and stop frequency settings, and possibly FM.

To resolve this error, either:

- 1. Turn off frequency sweep (HP-IB: FAOF FBOF) and then possibly select Stepped Frequency Sweep (Special Function 223), or
- 2. Select a valid sweep time setting, or
- 3. Possibly turn off FM, or
- 4. Refer to sequence dependency in paragraph 1-15.

AP.SWP PREVENTS FR.SWP

Amplitude sweep and frequency sweep cannot be done simultaneously. Turn off amplitude sweep (HP-IB: AAOF ABOF) before attempting frequency sweep.

FM PREVENTS AUTO SWP

FM during Stepped Frequency Sweep is only possible in manual and single sweep modes. Possibly refer to sequence dependency in paragraph 1-15.

4049

4050

4051

4052

4053

AUTO SWP PREVENTS FM

FM during Stepped Frequency Sweep is only possible in manual and single sweep modes. Possibly refer to sequence dependency in paragraph 1-15.

FR.SWP+FM...LIMIT

FM is coupled with frequency sweep and one of those settings is limiting the setting of the other. This message could also have been caused by executing Special Function 0 or 100 when one special function was coupled to other instrument settings. Either set FM deviation to a value that is allowed by start and stop frequencies, or set start and stop frequencies to values that allow the FM setting, or refer to sequence dependency in paragraph 1-15.

DCFM+SP117+216 LIMIT

DC-coupled FM, Special Function 117 (DCFM Update Mode), and Special Function 216 (DCFM Correction On) are coupled with Special Function 123 (Phase Continuous Frequency Sweep), and one of those settings is limiting the selection of a frequency sweep. To resolve this error, either:

- 1. Turn off FM. or
- 2. Select a non-dc-coupled FM source, or
- 3. Turn off Special Function 117, or
- 4. Turn on Special Function 116 (DC FM Correction Off), or
- 5. Select a combination of those special functions, or
- 6. Refer to sequence dependency in paragraph 1-15.

PM PREVENTS AUTO SWP

ØM during Stepped Frequency Sweep is only possible in manual and single sweep modes. Possibly refer to Figure 1-5.

AUTO SWP PREVENTS PM

ØM during Stepped Frequency Sweep is only possible in manual and single sweep modes. Possibly refer to Figure 1-5.

FREQ SWEEP + PM LIMIT

ØM is coupled with frequency sweep and one of those settings is limiting the setting of the other. Either set ØM deviation to a value that is allowed by start and stop frequencies, or set start and stop frequencies to values that allow the ØM setting, or refer to sequence dependency in paragraph 1-15. .E63 4063

AMPTD SPAN 30DB MAX

An amplitude span of 30 dB is the maximum possible span. Either select an amplitude sweep setting within the 30 dB span limitation or turn off the other amplitude sweep start or stop value (HP-IB: AAOF or ABOF).

AP.SWP LIMITS MIN TIME

The minimum sweep time possible for amplitude sweep is 20 ms. Either select another sweep time or turn off amplitude sweep (HP-IB: AAOF ABOF).

AP.SWP PREVENTS SP9

Special Function 9 (Attenuator Range Hold) is not possible during amplitude sweep. Turn off amplitude sweep (HP-IB: AAOF ABOF) and set amplitude (HP-IB: AP) before selecting attenuator range hold (HP-IB: SP9).

.E55

.E54

4059

4064

4065

4055

4056

4057

4058

4054

.E56

.E58

.E57

.E59

.E64

SP9 PREVENTS AP.SWP	.E66	4066
Amplitude sweep is not possible when Special		
Select Attenuator Range Hold Off (Special Func	, 0 1	•
AM PREVENTS AP.SWP	.E68	4068
Amplitude sweep is not possible when AM is selecting amplitude sweep.	selected. Turn off AM (HP-IB:	AMOF) before
AP.SWP PREVENTS AMPTD	.E69	4069
Output amplitude cannot be set during amplitude		
AAOF ABOF) before selecting the output amplit		
AMPTD SWP PREVENTS AM	.E70	4070
AM is not possible during an amplitude sweep.	Turn off amplitude sweep (HP-IB:	AAOF ABOF)
before selecting AM.		
AP.SWP PREVENTS AP.OFF	.E71	4071
Output amplitude cannot be turned off during a		nplitude sweep
(HP-IB: AAOF ABOF) before turning off the outp	•	4070
AP.SWP PREVENTS PULSE	.E72	4072
Pulse modulation is not possible during an ampl IB: AAOF ABOF) before selecting pulse modula		de sweep (HP-
AP.SWP PREVENTS SP4	.E73	4073
Special Function 4 (ALC OFF) is not possible		
sweep (HP-IB: AAOF ABOF) before selecting Al		••••••••••••••••••••••••••••••••••••••
SP4 PREVENTS AP.SWP	.E74	4074
Amplitude sweep is not possible when Special F		Select Disable
ALC OFF (Special Function 204) before selectin		
SP9 LIMITS MIN AMPTD	.E75	4075
Special Function 9 (Attenuator Range Hold) lim	its the minimum amplitude that ca	in be selected.
To resolve this problem, either 1. Select Attenuator Range Hold Off (Special Fi	unction 200) or	
 Select Attendator Range Floid On (Special Floid) Select an amplitude within the held amplitude 		
3. Refer to sequence dependency in paragraph	•	
SP9 LIMITS MAX AMPTD	.E76	4076
Special Function 9 (Attenuator Range Hold) limit	its the maximum amplitude that ca	an be selected.
To resolve this problem, either		

- 1. Select Attenuator Range Hold Off (Special Function 209), or
- 2. Select an amplitude within the held amplitude range selected, or
- 3. Refer to sequence dependency in paragraph 1-15.

TM 11-6625-3165-14

.E82

.E83

.E84

.E85

SP4 PREVENTS PULSE

Pulse modulation is not possible when Special Function 4 (ALC Off) is selected. Select Disable ALC Off (Special Function 204) before selecting pulse modulation.

1-39

HP-IB: Send SP204 before PL.

- Select an AM setting allowed with the held range and amplitude setting selected, or
- 4. Refer to sequence dependency in paragraph 1-15.

SP9 PREVENTS PULSE

Pulse modulation is not possible when Special Function 9 (Attenuator Range Hold) is selected. Select Attenuator Range Hold Off (Special Function 209) before selecting pulse modulation.

PULSE PREVENTS SP9

Special Function 9 (Attenuator Range Hold) is not possible when pulse modulation is selected. Turn off pulse modulation (HP-IB: PLOF) and set output amplitude (HP-IB: AP) to the desired level before selecting attenuator range hold (HP-IB:SP9).

SP9 PREVENTS SP4

Special Function 4 (ALC Off) is not possible when Special Function 9 (Attenuator Range Hold) is selected. Select Attenuator Range Hold Off (Special Function 209) before selecting ALC off. HP-IB: Send SP209 before SP4.

SP4 PREVENTS SP9

Special Function 9 (Attenuator Range Hold) is not possible when Special Function 4 (ALC Off) is selected. Disable ALC Off (Special Function 204) before selecting attenuator range hold. HP-IB: Send SP204 before SP9.

AM PREVENTS SP4

Special Function 4 (ALC Off) is not possible when AM is selected. Turn off AM before selecting ALC off.

HP-IB: Send AMOF before SP4.

PULSE PREVENTS SP4

Special Function 4 (ALC Off) is not possible when pulse modulation is selected. Turn off pulse modulation before selecting ALC off.

HP-IB: Send PLOF before SP4.

SP4 PREVENTS AM

AM is not possible when Special Function 4 (ALC Off) is selected. Select Disable ALC Off (Special Function 204) before setting AM.

HP-IB: Send SP204 before AM.

1. Select Attenuator Range Hold Off (Special Function 209), or

.E77

.E78

.E79

.E80

.E81

- 2. Reduce the amplitude setting to get the desired AM setting, or

value of AM that can be selected. To resolve this problem, either

AMPTD+SP9 LIMIT MAX.AM The amplitude selected with Special Function 9 (Attenuator Range Hold) limits the maximum

TM 11-6625-3165-14

4077

4078

4079

4080

4081

4082

4083

4084

4085

7001

7002

INVALID SPCL FUNCTION .E86 4086 An invalid special function number was selected. Select a special function number that exists. SOME SPCLS STAYED ON .E87 4087 Some special functions remained selected after you selected Special Function 0 or 100 because certain special functions were coupled to other instrument settings. (This message will only occur if more than one special function remains on. Special Function 0 or 100 not turning off just one special function will display a message describing the reason that one special function was not turned off.) View the special functions to see which are still on by selecting SPCL (SHIFT -) (HP-IB: Use SP and read the display; refer to the Output Display information discussion in HP-IB Remote Operation. The special functions might remain selected because of a sequence dependency problem. Possibly refer to sequence dependency in paragraph 1-15. 0.9 HZ LIMIT REACHED 4088 .E88 A maximum RF frequency change of 0.9 Hz can be accumulated using Special Function 240 (Decrement Frequency 0.1 Hz) or Special Function 241 (Increment Frequency 0.1 Hz). To get another 0. 1 Hz step, directly set the RF frequency to 1 Hz resolution. SAVE/RECALL MAX = 50 E.92 4092 The maximum recall register number is 50. Select register numbers only between 00 and 50. **RECALL NOT DEFINED** .E93 4093 No instrument settings are saved in this register. The register could have been cleared with Special Function 251 (Clear Recall Registers) or because of a hardware error. This error E93 occurs simultaneously with hardware error H10. SEQ NOT SET...4 DIGITS .E94 4094 Sequence was not set, 4 digits are required. Try the sequence setting again using two digits fork both the start and stop sequence register numbers. ADRS VALID 0-30 ONLY .E95 4095 HP-IB addresses are valid only between 0 and 30. Select an HP-IB address between 00 and 30, or select 31 for Listen Only capability. MASK VALID ONLY 0-255 .E96 4096 The RQS mask is valid only between decimal 0 and 255. Set the RQS mask between those

HIT AMPTD=CLEAR RVS.PWR

values.

Press the AMPTD push button to reset the reverse-power-protect circuitry. A reverse-power condition has been sensed. After this condition is eliminated, select the AMPTD push button to reset the protection circuitry.

.HI

HP-IB: Send AP after the condition is eliminated. Message H2 will always occur after the reverse-power-protect circuitry is reset in response to message H1.

RVS.PWR PROTECT CLEARED .H2

The reverse-power protect circuitry was previously tripped but is now reset.

7010

7011

RECALL ERROR FOUND

A recall error has been found. This message could be due to a hardware failure (for example, loss of RAM memory). The message means that a recall register that was recalled had no instrument settings saved in it. The register could have been cleared with Special Function 251 (Clear Recall Registers) or because of a hardware error. This error H10 occurs in conjunction with execution error E93.

MSSG BUFFER OVERFLOWED

The message buffer has overflowed. Some messages were lost.

INSTRUMENT PRESET

Instrument Preset is being executed. This message cannot be read via HP-IB using Output Display because it automatically clears from the display after execution completes.

PARTIAL PRESET

Partial Preset is being executed. This message cannot be read via HP-IB using Output Display because it automatically clears from the display after execution completes.

YYMMDD = FIRMWARE CODE

This message is an example of the Signal Generator's display of the current firmware version which is accessed with Special Function 249. In this example, YYMMDD represents the numbers that will appear in the display where YY is the last two digits of the year, MM is the number of the month, and DD is the day of the month. For example, 570218 would be February 18. 1957.

KNOB INCR TURNED OFF

Knob increment mode was turned off. Cursor positioning push buttons (HP-IB: KL or KR) turn off the Knob Increment mode.

SETTINGS DISPLAY OFF

Special Function 135 (Disable Display) was selected and the display of the instrument settings is disabled.

Special Function 235 (Re-enable Display) re-enables the display of instrument settings.

PHASE STEP DOWN 1 DEG

PHASE STEP UP 1 DEG

The RF signal's output phase was stepped down by 1 degree.

The RF signal's output phase was stepped up by 1 degree.

These messages are activated with Special Function 250.

SPCL FUNC VERIFY OFF

Special Function 111 (Special Function Verify Off) was selected and the automatic Special Function verification is disabled. A special function description will not be displayed automatically whenever a special function is selected. The display of special function descriptions can be re-enabled with Special Function 211.

ENTERING SERVICE MODE

Entering the Service Mode. Special Function 3 was just selected. Either refer to Section I, Remote Operation information about writing messages to the display. Select any function to exit this mode.

.122

.H10

.H11

.11

.12

.13

.111

.123

.125

.124

.121

SYS CONTROL DISABLED

HP-IB system control capabilities were just disabled. The HP-IB address was just set which disables the Signal Generator's system control capabilities accessed with Special Function 3. .132

ADRS=LISTEN ONLY

The instrument is configured as a listen-only device over HP-IB.

LISTEN ONLY DISABLED

The instrument is no longer configured as a listen-only device. The instrument's HP-IB address setting was changed from 31 to a value between 00 and 30.

WAIT FOR FM LOOP LOCK

Wait for the Signal Generator's internal FM circuitry to complete its setting. This message cannot be read via HP-IB using Output Display because it automatically clears from the display after execution completes. This message is displayed when switching from a dc-coupled FM source to a non-dc-coupled FM source. No additional external settling time allowance is necessary to settle within 100 Hz of the selected frequency.

RF.FREQ=DISPLAY -0.9 HZ	.149
RF.FREQ=DISPLAY -0.8 HZ	.148
RF.FREQ=DISPLAY -0.7 HZ	.147
RF.FREQ=DISPLAY -0.6 HZ	.146
RF.FREQ=DISPLAY -0.5 HZ	.145
RF.FREQ=DISPLAY -0.4 HZ	.144
RF.FREQ=DISPLAY -0.3 HZ	.143
RF.FREQ=DISPLAY -0.2 HZ	.142
RF.FREQ=DISPLAY -0.1 HZ	.141
RF.FREQ=DISPLAY +0.1 HZ	.151
RF.FREQ=DISPLAY +0.2 HZ	.152
RF.FREQ=DISPLAY +0.3 HZ	.153
RF.FREQ=DISPLAY +0.4 HZ	.154
RF.FREQ=DISPLAY +0.5 HZ	.155
RF.FREQ=DISPLAY +0.6 HZ	.156
RF.FREQ=DISPLAY +0.7 HZ	.157
RF.FREQ=DISPLAY +0.8 HZ	.158
RF.FREQ=DISPLAY +0.9 HZ	.159

The current RF output frequency is now summed with one of these 0.1 Hz steps listed in messages 141 through 149 and 151 through I59 that were accessed with either Special Function 240 (Decrement Frequency by 0.1 Hz) or Special Function 241 (Increment Frequency by 0.1 Hz). The RF frequency addition is automatically deleted with any specific frequency setting or change. These messages are queued up and can be displayed using MSSG.

HP-IB: Execute "MG" and read the display. Perform this entire process repeatedly to see the RF frequency addition message. Note that reading these messages over the bus (using MG) could cause transient hardware and service messages to be deleted from the message list.

CRUNCH CRUNCH MMMMMMM

.160

Amplitude sweep is possible and is currently being set. This message cannot be read via HP-IB using Output Display because it automatically clears from the display after execution completes.

.131

.133

.140

SPCLS OFF.ENTER NUMBER

All special functions are off. To select a special function, select its number.

HIT MSSG FOR EACH MSSG

More than one message is in the message list, select MSSG (HP-IB CODE: MG) to see each message.

HP-IB: Note that when retrieving a message list using the "OH" command when more than one message exists, this is the first message you will receive in the list. Refer to the Output Messages discussion in paragraph 1-15.

OFF/ON SELECTS EMF ON

The EMF mode is off. Select OFF ON (HP-IB: EMON) to select EMF on.

OFF/ON SELECTS EMF OFF

The EMF mode is on. Select OFF ON (HP-IB: EMOF) to select EMF off.

HIT OFF/ON = HOLD FUNC

Knob Hold is off, to hold the active function on the Knob, select OFF ON.

HP-IB: Send the HP-IB code of the desired active function followed by KHON.

HIT OFF/ON = HOLD OFF

Knob Hold is on, to turn off the Knob Hold function, select OFF ON (HP-IB: KHOF).

USE KNOB/UP/DN/NUMBER

The Help function allows you to view the descriptions and code numbers of special functions. Select either the Knob, Step push buttons, or a function's number.

RELEASE ALL KEYS

Release all push buttons. At turn on, it appears that a push button is being held down. Release all push buttons to continue. If a push button is not being held down, your instrument may need servicing (refer to the Service Manual). This message cannot be read via HP-IB using Output Display because it automatically clears from the display after the push button is released. Also, HP-IB operation is halted when a push button is held down with this message displayed.

SPCL 3 ENTRY ERROR

This message occurs if the characters entered were not valid.

ENTER SERVICE CMD

This message occurs if the ASCII code entered was not recognized as valid.

MESSAGE 1 CLEARED

This message occurs when 6 5 5 is selected.

MESSAGE 2 CLEARED

This message occurs when 6 6 5 is selected.

MESSAGE 1 IS FULL

This message might occur after attempting to enter codes into an already full message. This message sets the Execution Error bit in the 8642 Status Byte.

MESSAGE 2 IS FULL

This message might occur after attempting to enter codes into an already full message. This message sets the Execution Error bit in the 8642 Status Byte.

.P91

.V16

V90

.V91

.V92

.V93

.P1

.P0

.P2

.P3

P4

.P5

.P11

.V12

21092

21093

MESSAGE 1 UNDEFINED

This message might occur when manipulating message 1. The message means that message 1 has not been initialized or RAM memory was lost. To initialize the message, select 6 5 5. This message sets the Hardware Error bit in the 8642 Status Byte.

.V94

.V95

MESSAGE 2 UNDEFINED

This message might occur when manipulating message 2. The message means that message 2 has not been initialized or RAM memory was lost. To initialize the message, select 6 6 5. This message sets the Hardware Error bit in the 8642 Status Byte.

	Message		Message Code Number	Solution	Comments
A19	OUT OF LOCK ERROR	.D0	3000	1, 2	Doubler ALC loop is out of lock.
A19	TRANSIENT FAILURE	.D1	3001	1, 2	Doubler ALC loop had been out of lock but now appears to be in lock.
A6A2	OUT OF LOCK ERROR	.F0	5000	3	Internal hardware cannot phase lock to the external reference.
A6A2	TRANSIENT FAILURE	.F1	5001	3	Internal hardware had not been able to phase lock to the external reference but now appears to be in lock.
A6A1	OUT OF LOCK ERROR	.F2	5002	2, 3	FM phase lock loop cannot track and lock to the time base.
A6A1	TRANSIENT FAILURE	.F3	5003	2, 3	FM phase lock loop had not been able to track and lock to the time base but now appears to be able to track and lock to the time base.
A13	OUT OF LOCK ERROR	.00	14000	1, 2	Output Section ALC loop is out of lock.
A13	TRANSIENT FAILURE	.01	14001	1, 2	Output Section ALC loop had been out of lock but now appears to be in lock.
A11	OUT OF LOCK ERROR	.R0	17000	2, 3	Reference phase lock loop is out of lock.
A11	TRANSIENT FAILURE	.R1	17001	2, 3	Reference phase lock loop had been out of lock but now appears to be in lock.
A12	OUT OF LOCK ERROR	.S0	18000	2, 3	Sum loop is out of lock.
A12	TRANSIENT FAILURE	.S1	18001	2, 3	Sum loop had been out of lock but now appears to be in lock.
A9	OUT OF LOCK ERROR	.T0	19000	3	IF phase lock loop is out of lock.
A9	TRANSIENT FAILURE	.T1	19001	3	IF phase lock loop had been out of lock but now appears to be in lock.
A14	OUT OF LOCK ERROR	.X0	23000	3	Heterodyne module SAW loop is out of lock.
A14	TRANSIENT FAILURE	.X1	23001	3	Heterodyne module SAW loop had been out of lock but now appears to be in lock.
A7	OUT OF LOCK ERROR	.Z0	25000	3	SAW loop is out of lock
A7	TRANSIENT FAILURE	.Z1	25001	3	SAW loop had been out of lock but now appears to be in lock.

Table 1-2. Out of Lock Messages

Out of Lock Solutions

- 1. Either reduce the amplitude level, reduce the AM depth, or reduce the external modulation input level.
- 2. Either reduce the FM or ØM deviation, reduce the modulation frequency, change the external modulation rate, or change the external modulation level.
- 3. Either the external reference is not operating properly or connections are faulty at the rear panel connector, EXT REF INPUT. (The internal hardware may still be faulty even though the message is gone; that is, the message would appear again if you connected another external reference to the instrument.)

21094

21095

1-8. OPERATING PROCEDURES.

Operation is broken down into the following functions:

SETTING INSTRUMENT FUNCTIONS (paragraph 1-9)

- RF Frequency
- Amplitude
- OFF ON
- Modulation
- Modulation Oscillator Output
- Simultaneous Modulation Source

MODIFYING SETTINGS (paragraph 1-10)

- Tune Knob
- Step, Increment Set
- Knob Increment
- Knob Hold
- Entry Off
- Display Editing

MAKING RELATIVE SETTINGS (paragraph 1-11)

- Amplitude Relative
- Frequency Relative

SELECTING SPECIAL FUNCTIONS (paragraph 1-12)

- Help Function
- Special Functions
- Detailed description of all Special Functions

SELECTING A SWEEP (paragraph 1-13)

- Stepped Frequency Sweep
- Phase Continuous Frequency Sweep
- Amplitude Sweep
- Sweep Time Calculations

RECALLING INSTRUMENT SETTINGS (paragraph 1-14)

- Save
- Recall
- Sequence, Set Sequence

HP-IB REMOTE OPERATION (paragraph 1-15)

- HP-IB Address
- HP-IB Capabilities
- Data Input
- Data Output
- Output Messages
- Clear
- Remote, Local
- Local Lockout, Set Local
- Status Byte
- System Controller
- Additional HP-IB Information

WRITING MESSAGES TO DISPLAY (paragraph 1-16)

1-9. SETTING INSTRUMENT FUNCTIONS

RF FREQUENCY

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- Press FREQ push button.
 Enter the desired RF frequency from 100KHz to 2GHz using the numeric push buttons.
 Select GHz, MHz, KHz, or Hz.
- 3. Verify entered frequency is displayed along with cursor and FREQ annunciator.

AMPLITUDE

- Press AMPTD push button. Enter the desired level from -140 to +15dBm using the numeric push buttons. Select dBm, V, mV, μV, or dBμV.
- 2. Verify entered amplitude is displayed along with cursor and AMPTD annunciator.
- If EMF amplitude is required, proceed as follows: Press SHIFT, INCR SET, then OFF ON push buttons to activate the EMF mode.

NOTE

Any previous amplitude setting will be automatically changed to reflect its equivalent EMF voltage setting.

Enter the desired level from -140 to +15dBm using the numeric push buttons. Select V, mV, μ V, or dB μ V.

Verify entered EMF amplitude is displayed along with cursor and EMF annunciator. To Exit EMF mode, press SHIFT, INCR SET, then OFF ON push buttons.

- 4. To turn off RF output amplitude and harmonics without adjusting the output attenuators, press RF OFF ON push button.
- 5. To turn on the amplitude to its previously selected value, press RF OFF ON push button.

OFF ON

- 1. If function is on, press function push button (AM,FM etc) then OFF ON push button to deactivate function without changing last stored value.
- 2. If function is off, press function push button (AM,FM etc) then OFF ON push button to activate function using last stored value.

MODULATION

- 1. Set AM as follows:
 - Press SHIFT, then INSTR PRESET push button.
 - If internal modulation oscillator is used, Press AM then INT push button.
 Press MOD FREQ push button and enter desired modulation frequency from 20Hz to 100KHz.
 Press AM push button and enter desired depth from 0 to 99.9%.
 Verify entered data is displayed along with cursor, AM, and INT annunciator.
 - If external modulation signal is used, Connect 1 Vpeak ±5% sinewave external input to AM connector.

CAUTION

Do not apply more than 15V peak to the AM input connector.

Select EXT AC or EXT DC push button as required. Adjust external input frequency from DC to 100KHz for desired modulation rate. Press AM push button and enter desired depth from 0 to 99.9%.

NOTE

When using external source, modulation depth setting sets the input sensitivity per volt and not actual depth. Any voltage change on the AM input connector will change AM depth.

Verify entered data is displayed along with cursor, AM, EXT, and AC/DC annunciator.

NOTE

AM can be used simultaneously with FM or (ÆM) Phase Modulation. Combinations of internal and external modulation are possible using INT + function.

• To deactivate AM mode, press AM then OFF ON push buttons.

MODULATION-Continued

- 2. Set FM as follows:
 - Press SHIFT, then INSTR PRESET push button.
 - If internal modulation oscillator is used, Press FM then INT push button.
 Press MOD FREQ push button and enter desired modulation frequency from 20Hz to 100KHz.
 Press FM push button and enter desired deviation from 300KHz to 1.5MHz.
 Verify entered data is displayed along with cursor, FM, and INT annunciator.
 - If external modulation signal is used, Connect 1 Vpeak ±5% sinewave external input to FM/ØM connector.

CAUTION

Do not apply more than 15V peak to the FM/ÆM input connector.

Select EXT AC or EXT DC push button as required. Adjust external input frequency from DC to 100KHz for desired modulation rate. Press FM push button and enter desired deviation from 300KHz to 1.5MHz.

NOTE

When using external source, modulation deviation setting sets the input sensitivity per volt and not actual deviation. Any voltage change on the FM/ÆM input connector will change FM deviation.

Verify entered data is displayed along with cursor, FM, EXT, and AC/DC annunciator.

NOTE

FM can be used simultaneously with AM or Pulse Modulation. Combinations of internal and external modulation are possible using INT + function.

• To deactivate FM mode, press FM then OFF ON push buttons.

MODULATION-Continued

- 3. Set ØM (Phase modulation) as follows:
 - Press SHIFT, then INSTR PRESET push button.
 - If internal modulation oscillator is used,
 - Press SHIFT, FM, then INT push buttons.

Press MOD FREQ push button and enter desired modulation frequency from 20Hz to 15KHz.

Press SHIFT then FM push buttons and enter desired deviation from 0 to 200 radians.

Verify entered data is displayed along with cursor, \emptyset M, and INT annunciator.

 If external modulation signal is used, Connect 1 Vpeak ±5% sinewave external input to FM/ØM connector.

CAUTION

Do not apply more than 15V peak to the FM/ÆM input connector.

Select EXT AC or EXT DC push button as required.

Adjust external input frequency from DC to 1 5KHz for desired modulation rate. Press SHIFT then FM push buttons and enter desired deviation from 0 to 200 radians.

NOTE

When using external source, modulation deviation setting sets the input sensitivity per volt and not actual deviation. Any voltage change on the FM/ÆM input connector will change ÆM deviation.

Verify entered data is displayed along with cursor, $\oslash M,$ EXT, and AC/DC annunciator.

NOTE

AEM can be used simultaneously with AM or Pulse Modulation. Combinations of internal and external modulation are possible using INT + function.

• To deactivate ØM mode, press SHIFT, FM then OFF ON push buttons.

MODULATION-Continued

- 4. Set Pulse modulation as follows:
 - Press SHIFT, then INSTR PRESET push button.
 - If internal modulation oscillator is used, Press SHIFT, AM, then INT push button.
 Press MOD FREQ push button and enter desired modulation frequency from 10Hz to 50KHz.
 Press SHIFT, AM, then OFF ON push buttons.
 Verify entered data is displayed along with cursor, PULSE and INT annunciator.
 - If external modulation signal is used, Press SHIFT, AM, then EXT DC push buttons. Connect ±20 volt external input to Pulse connector (trigger voltage is ±1.5V).

CAUTION

Do not apply more than 20 volts to the Pulse input connector.

Adjust external input frequency from DC to 50KHz for desired modulation rate.

Press SHIFT, AM, then OFF ON push buttons.

Verify entered data is displayed along with cursor, PULSE, EXT, and DC annunciators.

NOTE

Pulse modulation can be used simultaneously with FM or AEM (Phase Modulation).

• To deactivate Pulse Modulation mode, press SHIFT, AM, then OFF ON push buttons.

MODULATION OSCILLATOR OUTPUT

- 1. Press SHIFT, then INSTR PRESET push button.
- 2. Press MOD FREQ push button and enter desired output frequency from 20Hz to 100KHz.
- 3. Verify MOD.FR and entered value is displayed.
- 4. Press SHIFT then MOD FREQ push buttons and enter desired output level from 0 to 3Vpeak.
- 5. Verify entered data is displayed along with cursor and MOD OUT. Signal is available for use at MOD connector.

SIMULTANEOUS MODULATION SOURCE

- 1. Select Internal + External AC as follows:
 - Set desired modulation mode (AM/FM/ØM) using internal oscillator as specified in setting MODULATION procedure.
 - Connect an external AC-coupled signal to the connector of the modulation mode selected in step 1. Set signal level to 1 Vpeak ±5%. Set signal frequency to desired rate.
 - Press SHIFT then EXT AC push buttons.
 - Verify entered data is displayed along with INT, EXT, and AC annunciators.
- 2. Select Internal + External DC as follows:
 - Set desired modulation mode (AM/FM/ØM) using internal oscillator as specified in setting MODULATION procedure.
 - Connect an external DC-coupled signal to the connector of the modulation mode selected in previous step. Set signal level to 1 Vpeak ±5%. Set signal frequency to desired rate.
 - Press SHIFT then EXT DC push buttons.
 - Verify entered data is displayed along with INT, EXT, and DC annunciators.

1-10. MODIFYING SETTINGS

TUNE KNOB

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. Press \rightarrow or \leftarrow to position cursor in the display over digit to be changed.
- 3. Turn the Tune KNOB to change digit to desired value.

STEP, INCREMENT SET

- 1. Press desired function push button (FREQ, AMPTD, etc) then INCR SET push button and enter desired value.
- 2. Press STEP (UP/DOWN) push buttons to modify the displayed value with the cursor by the amount stored in step 1.

KNOB INCREMENT

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. Press desired function push button (FREQ, AMPTD, etc) then INCR SET push button and enter desired value.
- 3. Press SHIFT then \rightarrow push buttons.
- 4. Turn the Tune KNOB to modify the displayed value with the cursor by the amount stored in step 2.

NOTE

When changing active functions, Knob Increment will continue to remain selected, which means that with any functions, the Knob will change the function's setting by the increment set value.

3. Press SHIFT then RF OFF ON push buttons to turn off Tune KNOB.

KNOB HOLD

- 1. Press desired function push button (FREQ, AMPTD, etc) then SHIFT, ←, then OFF ON push buttons.
- 2. Select any other desired function.

NOTE

Two cursors over the function value indicate Tune KNOB hold (step 1). Single cursor indicates active function (step 2).

- 3. Use Step, Data, and, the OFF ON push buttons to change the active function, and the Tune Knob to change the HOLD function.
- 4. Press SHIFT then <- push buttons to turn off Tune KNOB hold.

ENTRY OFF

1. Press SHIFT then RF OFF/ON to disable Knob Hold, Knob Increment, Tune Knob, Step, and Data push buttons until an active function is selected.

NOTE

All cursors will disappear from the display showing there is no active function.

DISPLAY EDITING

- 1. Press BACK SP push button to erase least significant digit.
- 2. Press SHIFT then SHIFT to resume normal operational display.

1-11. MAKING RELATIVE SETTINGS

AMPLITUDE RELATIVE

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. If amplitude reference value is to be transferred from present amplitude output:
 - Verify displayed amplitude value is the desired reference value.
 - Press SHIFT then AMPTD push buttons.

NOTE

Amplitude that was present in display is now stored reference value. Displayed amplitude will be zero. All subsequent amplitude entries will now be offset from the reference setting stored.

• Verify AMPTD and REL annunciators are on.

3. If amplitude reference value is to be entered:

• Press SHIFT then FREQ push buttons and enter the desired reference setting.

NOTE

Displayed amplitude and all subsequent amplitude entries will now be offset from the reference setting entered in previous step.

- Verify AMPTD and REL annunciators are on.
- 4. To deactivate Relative Mode, press SHIFT then OFF ON push buttons.

FREQUENCY RELATIVE

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. If frequency reference value is to be transferred from present frequency output:
 - Verify displayed frequency value is the desired reference value.
 - Press SHIFT then AMPTD push buttons.

NOTE

Frequency that was present in display is now stored reference value. Displayed frequency will be zero. All subsequent frequency entries will now be offset from the reference setting stored.

- Verify FREQ and REL annunciators are on.
- 3. If frequency reference value is to be entered:
 - Press SHIFT then FREQ push buttons and enter the desired reference setting.

NOTE

Displayed frequency and all subsequent frequency entries will now be offset from the reference setting entered in previous step.

- Verify FREQ and REL annunciators are on.
- 4. To deactivate Relative Mode, press SHIFT then OFF ON push buttons.

1-12. SELECTING SPECIAL FUNCTIONS.

HELP FUNCTION

- 1. On Signal Generator, press SHIFT then STEP (UP) push buttons.
- 2. Select the desired mode of accessing special function descriptions 0 through 251,
 - Use Tune KNOB to scroll past special functions.
 - Use STEP (UP) push button to increment to the next special functions number and description.
 - Enter the number of the desired special function to be viewed.

NOTE

Help function only allows the operator to view numbers and descriptions of special functions and does not activate the special function mode..

3. Press SHIFT then STEP (DOWN) push buttons to deactivate Help mode.

SPECIAL FUNCTIONS

- 1. Press SHIFT then push buttons and enter the number of the desired special function (activate or deactivate).
- 2. Press SHIFT then push buttons to view the current special function modes active.

NOTE

Use Help function, Table 1-3, or see listing for information on special functions available.

DETAILED DESCRIPTIONS OF ALL SPECIAL FUNCTIONS

NO. DESCRIPTION

- **0 Special Functions 4 through 9 Off.** This special function turns off Special Functions 4 through 9. (Sometimes all these special functions will not be turned off if the instrument state is dependent on a special function. A message will be displayed to notify you if a special function remained on after you selected Special Function 0.) Special functions can also be turned off individually.
- **3 Service Mode**. This special function causes the Signal Generator to enter its service mode. Refer to para 1-16 for information about writing messages to the display, or refer to Section III for information about servicing the instrument. Select any function to exit this mode if this push button was accidentally selected.
- **4 ALC Off.** This special function opens the output leveling loop to provide (typically) a 5dB improvement in third order intermodulation at a 2kHz offset. Typical output level accuracy is +2dB when ALC Off is selected.
- 5 *External Low Rate FM ON.* See number 112.
- 6 *FM Pre-emphasis On*. Special Function 6 can be selected to pre-emphasize internal or external FM modulating signals with a 7501ts time constant. (Pre-emphasis boosts high frequencies in the modulating signal prior to modulating the carrier.).
- 7 **Low Distortion FM/ÆM On**. This special function switches shaper circuitry into the FM/OM loop, reducing total harmonic distortion.
- **9** Attenuator Range Hold On. When Attenuator Range Hold is selected, the Signal Generator's output attenuators are fixed and the output ALC loop controls signal amplitude. This produces a 30dB range with monotonic, step-to-step amplitude increments.
- **100 All Special Function Codes Less than 200 Off.** This special function turns off special functions 4 through 9, 111 through 119, 121 through 123, 134, and 135. (Sometimes all these special functions will not be turned off if the instrument state is dependent on a special function. A message will be displayed to notify you if a special function remained on after you selected Special Function 100.) Special functions can also be turned off individually.

			Code
Function	Special Function Description	Select	off
RF Frequency			
	Decrement Frequency by 0.1 Hz	240	
	Increment Frequency by 0.1 Hz	241	
	Phase Adjust by Knob or Step Keys	250	
	Phase Decrement 1°	242	
	Phase Increment 1°	243	
	Phase Decrement 5°	244	
	Phase Increment 5°	245	
Amplitude	ALC Off	4	204
	Attenuator Range Hold	9	209
	Disable Settling	119	219
FM	External Low Rate FM	5	205
	Internal + External Low Rate FM	112	212
	FM Pre-Emphasis	6	206
	Low Distortion FM/(M	7	207
	Negative FM Polarity	115	215
	DC FM Correction Off	116	216
	DC FM Update Mode	117	217
	AC-Coupled DC FM	118	218
	Prefer Heterodyne Band	8	208
	Disable Settling	119	219
ФМ	Low Distortion FM/ Φ M	7	207
	Negative Φ M Polarity	114	214
	Disable Settling	119	219
Modulation	Modulation Frequency Correction Off	113	213
Oscillator	Calibrate Modulation Frequency Bands Again	248	
Sweep	Sweep Up and Down	121	221
	Linear Amplitude Sweep	122	222
	Phase Continuous Frequency Sweep	123	223
	Disable Settling	119	219
Miscellaneous	Special Functions 4-9 Off		0
	All Special Functions < 200 Off		100
	Special Function Verification Off	111	211
	Display Firmware Information	249	
	Disable Display	135	235
	Turn Off LCD Lighting	134	234
	Clear Recall Registers	251	
Service	Service Mode	3	

Table 1-3. Summary of Special Functions; Function to Code

NO. DESCRIPTION

- **111 Disable the Automatic Special Function Verification Display.** This special function disables the automatic display of the special function description that normally occurs after each special function is selected.
- **112** *Internal* + *External Low Rate FM On.* This special function and number 5 typically provide 0.4 Hz to 200 kHz external ac-coupled FM with the Signal Generator remaining in a phase locked state. Input coupling required for these functions makes the Signal Generator especially sensitive to dc voltage fluctuations. Therefore, relatively small dc voltage changes can cause the Signal Generator to lose phase lock, requiring one to two seconds to regain the locked condition. Special functions 112 or 5 is turned off when another FM modulation source is selected.
- **113** *Modulation Frequency Correction Off.* This special function disables the singleband calibration of the modulation frequency oscillator that normally occurs whenever the modulation oscillator frequency is set or the internal modulation oscillator is put into use. When this calibration is disabled, the typical modulation frequency switching time is decreased by approximately 200 ms.
- **114 Negative ÆM Polarity**. This special function causes a positive voltage applied to the external FM/OM INPUT to cause a phase lag and a negative voltage applied to cause a phase lead.
- **115** *Negative FM Polarity.* This special function causes a positive voltage applied to the external FM/OM INPUT to cause a negative frequency shift and a negative voltage applied to cause a positive frequency shift.
- **116 DC FM Correction Off.** This special function prevents the initial frequency correction that occurs when de-coupled FM is selected. Normally, when de-coupled FM is selected, the FM phase lock loop is open, causing an offset in the selected RF output frequency. To correct this initial offset, the de-coupled signal is momentarily switched off, while an internal counter is used to determine the amount of RF frequency offset. The frequency offset is then corrected, and the de-coupled signal is switched back on (DC FM Correction). Disabling this correction causes a decrease in switching time by approximately 200ms.
- **117 DC FM Update Mode On.** With the FM loop unlocked, RF output frequency changes with a change in applied dc signal and with the normal drift of an unlocked VCO that occurs over time and temperature. In the DC FM Update Mode, the Signal Generator measures and displays these RF frequency changes.

NO. DESCRIPTION

- **118 AC-Coupled DC FM On**. When the Signal Generator is in the normal ac-coupled FM mode, the external signal is applied to the FM loop through circuitry that uses a phase lock loop to ensure the accuracy of the output signal. In dc-coupled FM (DC FM), the phase lock loop is unlocked and the external signal is applied directly to the unlocked VCO. With Special Function 118 selected, the input signal is ac-coupled to the unlocked FM VCO blocking any applied dc component. (Typical low-frequency corner frequency is 1 Hz.) Using DC FM avoids the phase shifts associated with ac-coupled FM circuitry and allows maximum stereo separation. An external dc-coupled FM source must be in use with Special Function 118 to get these benefits.
- **119 Disable Settling**. This special function allows the Signal Generator's microprocessor to respond to new commands without waiting for the internal circuitry to settle, improving response time by up to 40 ms. When using this special function, it's possible to select a function before the previous function has finished settling. Also Special Function 119 disables out-of-lock messages.
- **121** *Sweep Up and Down On.* Sweep Up and Down is a type of sweep that causes the Signal Generator to sweep from the start end-point to the stop end-point and then from the stop end-point to the start end-point in the same amount of time (during auto or single sweep modes).
- **122** *Linear Amplitude Sweep.* This special function selects a linearly stepped output rather than the usual logarithmically stepped output. Use a sweep time greater than 900ms to obtain maximum sweep resolution.
- **123** *Phase Continuous Frequency Sweep*. Phase Continuous Frequency Sweep enables the Signal Generator to frequency sweep between two end-points in a linear, phase continuous manner.
- **134** *Turn Off LCD Lighting*. This special function turns off the LCD back-lighting in the display.
- **135** *Disable Display.* Special Function 135 causes the Signal Generator to execute commands without displaying the instrument state (useful in secure environments).
- **204** *Disable ALC Off.* This special function re-enables the output leveling loop that was disabled with Special Function 4.
- **205** *External Low Rate FM Off.* This special function turns off the FM modulation source selected with Special Function 5. When Special Function 5 is turned off in this way, the Signal Generator selects external, ac-coupled FM.
- **206** *FM Pre-Emphasis Off.* This special function turns off the pre-emphasis selected with Special Function 6.
- **207** *Low Distortion FM/ÆM Off.* This special function switches out the shaper circuitry inserted with Special Function 7.

NO. DESCRIPTION

- **209** *Attenuator Range Hold Off.* This special function turns off Attenuator Range Hold selected with Special Function 9.
- **211 Special Function Verify On.** This special function re-enables the automatic display of the special function description disabled with Special Function 111.
- **212** Internal + External Low Rate FM Off. This special function turns off the FM modulation source selected with Special Function 112. When Special Function 112 is turned off this way, the Signal Generator selects internal and external, ac-coupled FM summed together.
- **213** *Modulation Frequency Correction On.* This special function re-enables the singleband calibration that normally occurs whenever the modulation oscillator frequency is set or the internal modulation oscillator is put into use.
- **214** *Positive OM Polarity.* This special function disables Special Function 114 and reenables the normally selected phase relationships. A positive voltage applied to the external FM/OM INPUT causes a phase lead and a negative voltage applied causes a phase lag.
- **215** *Positive FM Polarity.* This special function disables Special Function 115 and reenables the normally selected frequency-shift relationships. A positive voltage applied to the external FM/OM INPUT causes a positive frequency shift and a negative voltage applied causes a negative frequency shift.
- **216 DC FM Correction On.** This special function re-enables the correction disabled by Special Function 116.
- **217** *DC FM Update Mode Off.* This special function disables the DC FM update that occurs with Special Function 117.
- **218 AC-Coupled DC FM Off.** This special function re-selects the dc coupling to the FM circuitry disabled with Special Function 118.
- **219** *Re-enable Settling.* This special function re-enables the settling disabled with Special Function 119.
- **221 Sweep Up and Down Off.** This special function re-enables the normal sweep disabled with Special Function 121. Special Function 221 sets the Signal Generator to repeatedly sweep from the start end-point to the stop end-point (during auto or single sweep modes).
- **222** *Logarithmic Amplitude Sweep.* This special function selects the normally selected logarithmic stepped output disabled with Special Function 122.
- **223** *Phase Continuous Frequency Sweep Off.* This special function turns off the Phase Continuous Frequency Sweep selected with Special Function 123.
- **234** *Turn On LCD Lighting.* This special function turns on the LCD lighting disabled with Special Function 134.

NO. DESCRIPTION

235 *Re-enable Display.* This special function re-enables the display of settings disabled with Special Function 135.

240 Decrement Frequency by 0.1Hz.

241 Increment Frequency by 0.1Hz.

These special functions change the RF signal's output frequency in 0.1 Hz steps each time the special function is selected. Changing frequency in these ways cause a message to be queued up in the message list that provides the total increment or decrement.

- 242. Phase Decrement 1 Degree.
- 243. Phase Increment 1 Degree.
- 244. Phase Decrement 5 Degrees.
- 245. Phase Increment 5 Degrees.

These functions change the RF signal's output phase by the indicated amount each time the special function is selected.

- **248 Calibrate the Modulation Frequency Bands Again.** This special function enables you to initiate the calibration sequence that normally only occurs during instrument power up. This function can be used, for example, to recalibrate the modulation oscillator frequency bands if normal modulation frequency correction has been disabled with Special Function 113. Calibration typically takes one to two seconds.
- **249 Display Firmware Information.** This special function displays the current firmware version with a message such as "YYMMDD = FIRMWARE CODE .13". In this example YYMMDD represents the numbers that will appear in the display where YY is the last two digits of the year, MM is the number of the month, and DD is the day of the month. For example, 841225 would be December 25, 1984.
- **250** *Phase Adjustment from Knob and Step Up and Step Down Keys.* This function enables control over the RF signal's output phase in one degree steps using either the Knob or Step Push buttons.
- 251 *Clear Recall Registers.* This special function clears all recall registers.

1-13. SELECTING A SWEEP

STEPPED FREQUENCY SWEEP

NOTE

Calculations for step size/number of steps to sweep time are provided under SWEEP TIME CALCULATIONS below.

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. Press START FREQ push button and enter desired start frequency.
- 3. Press STOP FREQ push button and enter desired stop frequency.
- 4. Press SHIFT then START FREQ push buttons and enter desired sweep time.
- 5. Select desired sweep mode;
 - For AUTO sweep, press SHIFT then START AMPTD push button. Verify data entry is correct and START, FREQ, SWPNG and STOP Annunciators are on.
 - For Manual sweep, press SHIFT then STOP FREQ push button. Turn Tune KNOB for sweep.
 - For Single sweep, press SHIFT then STOP AMPTD push button.
- 6. To deactivate sweep mode, Press START FREQ, OFF ON, STOP FREQ, and then OFF ON push buttons.

PHASE CONTINUOUS FREQUENCY SWEEP

NOTE

Calculations for minimum sweep span, maximum sweep span, sweep time, and X-axis steps are provided under SWEEP TIME CALCULATIONS listed below.

- 1. On Signal Generator, verify not in stepped frequency sweep mode.
- 2. Press SHIFT then push buttons and enter 1 2 3.
- 3. Press START FREQ push button and enter desired start frequency.
- 4. Press STOP FREQ push button and enter desired stop frequency.
- 5. Press SHIFT then START FREQ push buttons and enter desired sweep time.

PHASE CONTINUOUS FREQUENCY SWEEP-Continued

- 6. Select desired sweep mode;
 - For AUTO sweep, press SHIFT then START AMPTD push button. Verify data entry is correct and START, FREQ, SPCL, SWPNG and STOP Annunciators are on.
 - For Manual sweep, press SHIFT then STOP FREQ push button. Turn Tune KNOB for sweep.
 - For Single sweep, press SHIFT then STOP AMPTD push button.
- 7. To deactivate sweep mode, Press START FREQ, OFF ON, STOP FREQ, and then OFF ON push buttons. Press SHIFT then push buttons and enter 2 2 3. Press SHIFT then SHIFT push buttons.

AMPLITUDE SWEEP

NOTE

Calculations for step size/number of steps to sweep time are provided under SWEEP TIME CALCULATIONS below.

- 1. On Signal Generator, press SHIFT then INSTR PRESET push buttons.
- 2. Press START AMPTD push button and enter desired start amplitude.
- 3. Press STOP AMPTD push button and enter desired stop amplitude.
- 4. Press SHIFT then START FREQ push buttons and enter desired sweep time.
- 5. Select desired sweep mode;
 - For AUTO sweep, press SHIFT then START AMPTD push button. Verify data entry is correct and FREQ, SWPNG, START, AMPTD, and STOP Annunciators are on.
 - For Manual sweep, press SHIFT then STOP FREQ push button. Turn Tune KNOB for sweep.

•For Single sweep, press SHIFT then STOP AMPTD push button.

6. To deactivate sweep mode, Press START AMPTD, OFF ON, STOP AMPTD, and then OFF ON push buttons.

SWEEP TIME CALCULATIONS

1. Calculations for Stepped Frequency Sweep:

Calculate number of steps automatically selected as follows:

• The number of steps is the minimum of:

1023 or I Start Frequency (*in Hz*) - Stop Frequency (*in Hz*) I or

[INTEGER OF (<u>Sweep Time (*in ms*)</u>) -1] Min. Dwell Time (*in ms*)

Calculate sweep step size automatically selected as follows:

• The sweep size is the maximum of:

1 Hz or <u>I Start Frequency (*in Hz*) - Stop Frequency (*in Hz*) I 1023</u>

or

I Start Frequency (in Hz) - Stop Frequency (in Hz) I

[INTEGER OF (<u>Sweep Time (*in ms*)</u>) -1] Min. Dwell Time (*in ms*)

Calculate sweep time to select desired number of steps as follows:

- Dwell Time =80msec when using special function 119 =135msec when not using special function 119.
- First, determine the desired number of steps is between the specified limits.
- The maximum number of frequency steps equals the minimum of:

1023 or <u>I Start Frequency (in Hz) - Stop Frequency (in Hz) I</u> 1Hz

• The minimum number of frequency steps equals the minimum of:

- If the desired number of steps is equal to the maximum, use a sweep time setting (in msec) equal to or greater than the result of the following equation: (Number of steps +1) X Min. Dwell Time (in msec)
- If the desired number of steps is less than the maximum, use a sweep time setting (in msec) equal to or greater than the result of the above equation but less than the following equation:

(Number of steps +2) X Min. Dwell Time (in msec)

Calculate sweep time to select desired step size as follows:

- First, determine the desired step size is between the specified limits.
- The maximum step size equals the maximum of:

1 Hz or <u>I Start Frequency (*in Hz*) - Stop Frequency (*in Hz*) | <u>275 ms</u> [INTEGER OF (Min. Dwell Time (in ms)- 1]</u>

• The minimum step size is equal to the maximum of:

1Hz or I<u>Start Frequency On Hz)</u> - <u>Stop Frequency On Hz)</u> I 1023

• If the desired step size is equal to the minimum, use a sweep time setting (in msec) equal to or greater than the result of the following equation:

[(<u>I Start Frequency</u> (*in Hz*) - Stop Frequency (*in Hz*)]).+ 1] X Min. Dwell Time (*in ms*) Step Size (*in Hz*)

• If the desired step size is greater than the minimum, use a sweep time setting (in msec) equal to or greater than the result of the above equation but less than the following equation:

[(<u>I Start Frequency</u> (*in Hz*) - stop Frequency (*in Hz*) |) + 2] X Min. Dwell Time (*in ms*) Step Size (*in Hz*)

2. Calculations for Phase Continuous Frequency Sweep:

Divide Number = 1 for frequencies up to 132.187500MHz

- = 4 for frequencies from 132.1875001 to 264.375000MHz
- = 2 for frequencies from 264.375001 to 528.750000MHz
- = 1 for frequencies from 528.750001 to 1057.500000MHz
- = 0.5 for frequencies from 1057.500001 to 2000MHz

Calculate the minimum possible (non-zero) frequency sweep span for a desired sweep time setting as follows:

• Minimum non-zero frequency sweep span (in Hz) equals the maximum of

1 Hz or <u>0.2 Hz per second</u> Divide Number X Sweep Time (*in* s)

• If the result is not an integer, use the next highest integer.

Calculate the maximum frequency sweep span for a desired sweep time setting as follows:

• Maximum frequency span (in Hz) equals the minimum of

<u>400 000 Hz</u>

Divide Number

or

[INTEGER OF (<u>500 kHz per second</u> Divide Number X Sweep Time (*in ms*))]

Calculate the minimum (fastest) sweep time setting for a desired (non-zero) frequency span as follows:

• Minimum sweep time (in msec) equals the maximum of

5 msec

or

I Start Frequency (in Hz) - Stop Frequency (in Hz)I X Divide Number X 0.002msec

• If the result is not an integer number of msec, use the next highest integer number of msec.

Calculate the maximum (slowest) sweep time setting for a desired (non-zero) frequency span as follows:

• Maximum sweep time (in sec) equals the minimum of

999 sec

or

I Start Frequency (in Hz) - Stop Frequency (in Hz)I X Divide Number X 5sec

Calculate the required sweep time to select a desired number of X-axis steps (1023 maximum) as follows:

Desired Number of Steps X 1msec

3. Calculations for Amplitude Sweep:

Calculate number of steps automatically selected as follows:

• The number of steps is the minimum of: <u>I Start Amplitude (*in dBm*) - Stop Amplitude (*in dBm*)</u> 0.1 *dB* or [INTEGER OF (<u>Sweep Time (*in ms*</u>) - 1] 3 *ms*

Calculate sweep step size automatically selected as follows:

• The sweep size is the maximum of:

0.1 *dB*

or

<u>I Start Amplitude (*in dBm*) - Stop Amplitude (*in dBm*) I [INTEGER OF (Sweep Time (*in ms*) - 1] 3 *ms*</u>

Calculate sweep time to select desired number of steps as follows:

- First, determine the desired number of steps is between the specified limits.
- The maximum number of amplitude steps equals the minimum of:

I Start Amplitude (in dBm) - Stop Amplitude (in dBm) I

0.1 dB

• The minimum number of amplitude steps equals the minimum of:

• If the desired number of steps is equal to the maximum, use a sweep time setting (in msec) equal to or greater than the result of the following equation:

(Number of steps +1) X 3msec

• If the desired number of steps is less than the maximum, use a sweep time setting (in msec) equal to or greater than the result of the above equation but less than the following equation:

(Number of steps +2) X 3msec

Calculate sweep time to select desired step size as follows:

- First, determine the desired step size is between the specified limits.
- The maximum step size equals the maximum of:

0.1 dB

or

I Start Amplitude (in dBm) - Stop Amplitude (in dBm) I

5

- The minimum step size is equal to 0.1 dB.
- If the desired step size is equal to the minimum, use a sweep time setting (in msec) equal to or greater than the result of the following equation:

[(<u>I Start Amplitude (*in dBm*) - Stop Amplitude (*in dBm*) |</u>) + 1] X 3 *m*s Step Size (*in dB*)

• If the desired step size is greater than the minimum, use a sweep time setting (in msec) equal to or greater than the result of the above equation but less than the following equation:

[(<u>I Start Amplitude (*in dBm*) - Stop Amplitude (*in dBm*) I</u>) + 2] X 3 ms Step Size (*in dB*)

1-14. RECALLING INSTRUMENT SETTINGS

NOTE

The DN = 00 message shows the current register number, and (UP = 01) message shows the next register number (UP = 01).

SAVE

- 1. Press SAVE push button and,
 - Enter desired register from 00 to 50 for specific register.
 - Press STEP (UP) push button to save in next available register.
 - Press STEP (DOWN) push button to save in most recently accessed register.

RECALL

- 1. Press RECALL push button and,
 - Enter desired register from 00 to 50 for specific register.
 - Press STEP (UP) push button to recall instrument state stored in next available register.
 - Press STEP (DOWN) push button to recall most recently accessed register.

SEQUENCE, SETSEQUENCE

- 1. Press SHIFT then SEQ push buttons and enter the starting and ending registers.
- 2. Press SEQ push button to recall settings of next register.

NOTE

The NEXT message shows the next register to be called in sequence.

1-15. HP-IB REMOTE OPERATION.

The 8642 is fully programmable via the Hewlett-Packard Interface Bus (HP-IB) which can be operated with any Hewlett-Packard computing controller or computer for automatic system applications. For more information about HP-IB, refer to one or all of the following documents:

- IEEE Standard 488-1978,
- ANSI Standard MCI.1,
- "Improving Measurements in Engineering and Manufacturing" (HP part number 59520058) (the Hewlett-Packard catalog of Electronic Systems and Instruments), or
- "Tutorial Description of the Hewlett-Packard Interface Bus" (HP part number 5952-0156).

All front-panel functions are programmable over HP-IB except Knob rotation and switching the Power from Standby to On.

HP-IB ADDRESS

The Signal Generator's address is set to 19 at the factory both in RAM memory and on an internal switch located inside the instrument. You can change the address in RAM from the front panel.

The address stored in RAM remains valid through switching the Power from Standby to On and unplugging of the ac power cord. However, if the internal battery power is lost, RAM memory is lost and the Signal Generator reads the address on the internal switch. The internal switch address hen becomes the address at turn on. At any time the instrument's HP-IB address can be displayed from the front panel.

Available Addresses. Any address from 00 to 30 can be assigned to the instrument.

Setting an address of 31 establishes the Signal Generator as a listen-only device. The listenonly mode causes the instrument to allow either HP-IB or local operation. However, any push buttons pressed while the Signal Generator is receiving HP-IB information could suspend the instrument in an unknown state. Also, with this address setting, the HP-IB control lines should be left open-circuited: IFC, ATN, REN, SRQ, and EOI.

- 1. To Display the current address from the front panel:
 - Press SHIFT then LOCAL push button.
- 2. To Change the current address from the front panel:
 - Press SHIFT then LOCAL push button and enter the new address from 00 to 31. Press Hz μ V push button.

NOTE

Setting the address from the front panel when the instrument is in its service mode will disable any activated HP-IB control capabilities.

HP-IB CAPABILITIES

The 8642 Signal Generator is designed to be compatible with a controller that interfaces in terms of the 12 bus messages summarized in the HP-IB Capability Reference Table. The bus functions are discussed in more detail in the following text. The Signal Generator's complete capability (as defined by IEEE Standard 488 and the identical ANSI Standard MC1.1) is described at the bottom of Table 14.

In remote mode, all front-panel controls are disabled except the Power switch and the Local push button (the Local push button can be disabled by configuring the instrument in Local Lockout). The Signal Generator will respond to each HP-IB message below according to its associated listen or talk address. (Each of these capabilities is described in more detail on the pages that follow.)

Input Data. When addressed to listen (with REN true), the Signal Generator stops talking and can respond to input data.

Output Data. When addressed to talk, the Signal Generator stops listening and can send output data.

Clear (Selected Device Clear SDC). When addressed to listen (with REN true), the Signal Generator stops talking and responds to SDC by clearing any uncompleted entries or messages.

Clear (Device Clear DCL). Regardless of the addressed state of the Signal Generator (whether addressed to listen or to talk), it stops talking and responds to DC', by clearing any uncompleted entries or messages.

Local. When addressed to listen (with REN true), the Signal Generator stops talking ant responds to the Local command by returning from remote control to local control.

Local Lockout. Regardless of the addressed state of the Signal Generator (whether addressed to listen or to talk), it responds to the Local Lockout command by disabling the front-panel Local push button.

Clear Lockout and Set Local. Regardless of the addressed state of the Signal Generator (whether addressed to listen or to talk), it responds to the Clear Lockout and Set Local command by re-enabling the front-panel Local push button and returning from remote control to local control.

Require Service. Regardless of the addressed state of the Signal Generator (whether addressed to listen or to talk), it can send the Require Service message.

Status Byte. When addressed to talk, after receiving the Serial Poll Enable (SPE) bus command, the Signal Generator outputs the Status Byte.

Abort. Regardless of the addressed state of the Signal Generator (whether addressed to listen or to talk), it responds to the Abort command and stops listening or talking.

HP-IB Capabilities Local Mode. Besides having the above capabilities while remote, the following capabilities are also available from the local mode:

- Require Service
- Status Byte
- Data (Output)

HP-IB Capability	Applicable	Response	Related Commands and Controls*	Interface Functions*
Data	Yes	All front-panel functions, special functions, and remote- only functions are programmable (except Knob Rotation). The Signal Generator can send status byte, message, and setting information. The front-panel LSTN and TLK annunciators turn on as appropriate when the instrument is addressed.	MLA MTA EOI	T6 L3 AHI
Trigger	No	The Signal Generator does not have a device trigger capability.	GET	DTO
Clear	Yes	The Signal Generator responds equally to DCL and SDC bus commands. The Clear capability does not reset instrument parameters.	DCL SDC	DC1
Remote	Yes	The Signal Generator's remote mode is enabled when the REN bus line is true. However, it remains in local (i.e., the keyboard is active) until it is first addressed to listen. The output signal is unchanged when the Signal Generator enters the remote mode. The front- panel RMT annunciator turns on when in remote mode.	REN MLA	RL1
Local	Yes	The Signal Generator returns to front-panel control when it enters the local mode. The output signal is unchanged. Responds either to the GTL bus command or the front-panel LOCAL key. The LOCAL key will not work if the instrument is in the Local Lockout State.	GTL	RL1
Local Lockout	Yes	Local Key is disabled during Local Lockout so only the controller or the POWER switch can return the Signal Generator to local.	LLO	RL1
Clear Lockout/ Set Local	Yes	Generator returns to local and Local Lockout is no longer true when the REN bus lines goes false.	REN	RL1
Pass Control/ Take Control	No	The Signal Generator cannot pass or take control of HP-IB. However it does have limited control capability that is intended for servicing the instrument. This control capability is accessed with Service Special Functions.	ATN IFC	C1 C2 C3 C28
Require Service	Yes	The Signal Generator sets the SRQ bus line true if one of the following conditions exists and it has been enabled by the RQS mask to send the message for that condition: Parameter Changed, Error, Ready, Local/Remote, Execution Error, Hardware Error, or End of Sweep.	SRO	SRI
Status Byte	Yes	The Signal Generator responds to a Serial Poll Enable (SPE) bus command by sending an 8-bit byt3 when addressed to talk. Bit 6 (ROS bit) is true if Signal Generator had sent the Require Service Message. Each bit requires different conditions for clearing.	SPE SPD MTA	T6
Status Bit	No	The Signal Generator does not respond to a parallel poll.	ATN EOI	PPO
Abort	Yes	The Signal Generator stops talking or listening. erlace Functions are defined in IEEE Std 488 (and the identical	IFC	T6, L3

Table 1-4. HP-IB Capability Reference Table

column

Complete HP-IB capability as defined in IEEE Std 488 (and the identical ANSI Standard MC1.1) is: SH1, AH1, T6, TE0, L3, LE0, SR1, RL1, PP0, DC1, DT0, C1, C2, C3, C28, E2.

DATA INPUT

Data can be input to the Signal Generator using either front-panel keystrokes or via HP-IB.

To address the Signal Generator via HP-IB, the input data information usually contains the universal unlisten command, the Signal Generator's listen address, the controller's talk address, and a string of HP-IB program codes. As an example to set frequency to 123.4MHz (HP BASIC):

OUTPUT 719;"FR 123.4MZ"

Refer to your controller manual for command syntax and the controller's address.

Program Codes. The Signal Generator's functions can be accessed with specific program codes. These program codes are summarized in Signal Generator Function to HP-IB Code in Table 1-10, and Signal Generator HP-IB Code to Function in Table 1-11. In addition, most HP-IB codes are printed on the instrument's front panel, in light gray print, near the code's associated push button.

Input Syntax. Input data information consists of one or more bytes sent over the bus' eight data lines when the bus' attention control line (ATN) is false, and when the Signal Generator is remote and addressed to listen with the REN line true (low). The Signal Generator processes ASCII characters individually as they are received and performs the function specified as soon as a recognizable sequence of characters has been received.

Accessing the Signal Generator's front-panel key functions via HP-IB is equivalent to accessing them from the front-panel. Table 1-5 compares some local keystroke sequences and their corresponding HP-IB code sequences. (Direct access to the shift functions is possible from HP-IB so the Shift push button is not used in HP-IB coding.)

Function	Front-Panel Keystroke Sequence	HP-IB Sequence
To set a 1 MHz	FREQ 1 MHZ	FR 1 MZ
RF output frequency	V	
To set an RF		FRRS 1 MZ
frequency reference	FREQ REF SET (SHIFT FREQ) 1 MHZ	
of 1 MHz		
To select Special		SP 111
Function 111	SPCL (SHIFT-)1 1 1	

Table 1-5.	Relationship	Between Ke	ystrokes and	HP-IB Code	Sequences
------------	--------------	------------	--------------	------------	-----------

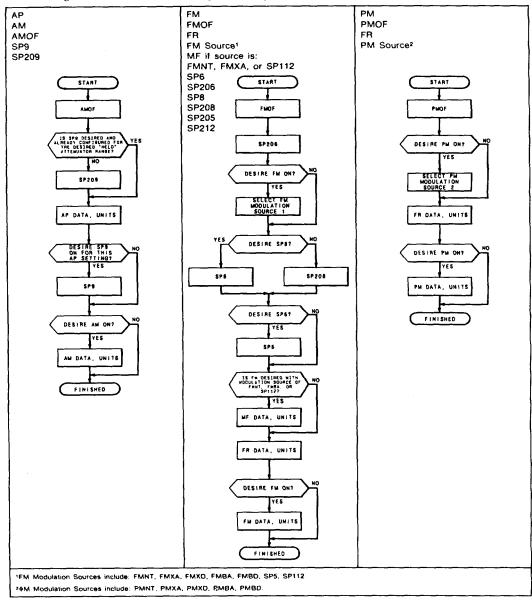
DATA INPUT-Continued

Sequence Dependency. Some functions in the 8642 are coupled together because of internal circuit configuration limitations. This coupling can limit the execution of a setting when one function limits the setting of the other.

For example, amplitude and AM depth are coupled functions; An AM depth of 99.0% is possible only when the amplitude setting is between -140.0 and +14.0 dBm. Therefore, changing this setting:

to this setting:

Amplitude = +14 dBm, AM depth = 99% Amplitude= +15 dBm, AM depth = 75%


would not be possible if the amplitude entry was attempted before the AM setting. AM could be changed first to achieve the setting, but setting AM first would not always be successful. For example, if you were changing back to the first example (to an amplitude of +14 dBm and AM depth of 99%), setting the AM first would not set the requested AM setting. (To eliminate this sequence dependency problem when setting AM or amplitude, first turn off AM, then set the amplitude, then set the AM depth.)

How to Avoid Sequence Dependency Problems. The Operating Instructions describe the limitations of specific coupled functions and will help you avoid entering incorrect sequences. Also, when operating locally, displayed Execution Error messages direct you to your entry error. However, if operating via HP-IB, it might be inconvenient to rely either on the manual or on error messages for every combination of settings. Flowcharts of Sequence Dependency can assist in the development of driver subprograms to eliminate the consequences of sequence dependency. If you follow the flowcharts and still cannot obtain the requested setting, that setting is probably not possible.

When setting one or more of the following, use the appropriate flowchart:

Exceptions to Flowcharts. Not covered in those flowcharts is frequency sweep's dependence on entry sequence. Frequency sweeps are coupled to FM and OM settings. When selecting either Digitally Stepped Frequency Sweep or Phase Continuous Frequency Sweep with either FM or OM, use the following sequence:

- 1. Turn off frequency sweep (FAOF FBOF).
- Select either Special Function 123 (Phase Continuous Frequency Sweep) or Special Function 223 (Phase Continuous Frequency Sweep Off which enables the selection of Digitally Stepped Frequency Sweep).
- 3. If FM is to be selected, use the FM flow chart (but don't set FM yet, nor FR).
- 4. If OM is to be selected, use the OM flowchart (but don't set PM yet, nor FR).
- 5. With Start Frequency (FA) or Stop Frequency (FB) active, select the sweep mode (FASA for auto, FASM for manual, or FASG for single).
- 6. Select the sweep time setting.
- Select either the start or stop frequency setting. (Choose the frequency setting that is in the band that allows the desired FM or OM setting.) 8. Select the desired FM or OM deviation setting.
- 9. Select either the stop or start frequency setting (whichever of these that was not set in step 7).

When setting one or more of the following, use the appropriate flowchart:

Figure 1-5. Flowcharts for Sequence Dependency

DATA INPUT-Continued

Valid Character Entry. When entering data over HP-IB, the data entry can take the form of: Implicit point notation (for example, 100 MZ), or Fixed Point notation (for example, 100.0 MZ), or Exponential notation (for example, 100OE-1 MZ).

Each function has an HP-IB data-entry limit of 10 mantissa digits and 2 exponential digits (exponential notation is optional). For example, the following entries for 100 MHz will be accepted:

100000000E-01 HZ 100000000E-1 HZ 100000000E-4 KZ

However, these entries for 100 MHz will not be accepted:

100000000E-02 HZ (this entry will be accepted as 10 MHz)

10000000E-006 MZ (this entry won't be accepted and could cause problems in subsequent data entries)

Only the following data inputs are recognized over HP-IB by the Signal Generator; all other characters are ignored:

A-Z, a-z (lower-case letters are converted to upper case)

0-9

. + -

Leading zeros are treated as significant digits.

The space character, carriage return, and line feed are ignored.

DATA OUTPUT

The Signal Generator can send the following data messages when it is addressed to talk:

Status Byte (refer to Status Byte in this paragraph)

Messages (discussed below)

Display Information (discussed below)

Service Messages (refer to Section In specific Service Message information)

The Signal Generator can output the following messages and display information (normally viewed on the front-panel display) using HP-IB codes that do not have equivalent front-panel keys. The HP-IB codes are in parenthesis after each message listed below:

Output Messages

Hardware Errors (OH) Execution Errors (OE) Parameters Changed Messages (OC) Output Active Function (OA) Output HI, I.O Status (OL) Output Display (Output Display is the default HP-IB output when nothing else is configured for data output; it does not require an HP-IB code to output

Output Messages

Hardware Errors (OH). These messages signal the presence of either an internal circuit hardware problem or a firmware problem. (Refer to Operator Messages, in this section, for more information about these messages. Each message code is prefixed with the letter "H" in the listing in that section.)

The presence of one or more of these messages is signaled when bit 1 of the Status Byte is set. Some service-related messages can also cause this bit to be set.

Execution Errors (OE). These messages describe the Signal Generator's reason for not executing an attempted setting. (Refer to Operating Messages, in this Section, for more information about these messages. Each message code is prefixed with the letter "E" in that listing.)

The presence of one of these messages is signaled when bit 2 of the Status Byte is set. Some service-related messages can also cause this bit to be set.

Parameters Changed Messages (OC). These messages inform you that the Signal Generator has changed some other setting to allow a new setting. Some of the Signal Generator's functions cannot occur simultaneously with other functions, so the Signal Generator will automatically adjust or turn off the functions that are preventing the new setting. For example, AM is turned off when pulse modulation is selected; the Output Parameters Changed Message is "AM TURNED OFF .C11". (Refer to Operating Messages, in this Section, for more information about these messages. Each message code is prefixed with the letter "C" in that listing.) The presence of this message is signaled when bit 7 of the Status Byte is set. Some service-related messages can also cause this bit to be set.

Examples

The Signal Generator can output either the message code number or the message string (the alphanumeric display) for any of the above messages. Table 1-8, Error Code and Message Recovery Example Program, provides some sample subprograms that detail a way to retrieve the Signal Generator's messages.

Execution Errors and Parameters Changed Messages. After it receives "OE" or "OC" and is addressed to talk the first time, the Signal Generator will output the message code number. The second time it is addressed to talk, the Signal Generator will output the message string.

You can read only the first Execution Error message if more than one of these has occurred since either the Status Byte was cleared or since the last time "OE" was executed. Then reading a message using "OE" will enable you to read out only the first Execution Error message.

You can read only the first Parameters Changed message if more than one of each of these has occurred since either the Status Byte was cleared or since the last time "OC" was executed. Then reading a message using "OC" will enable you to read out only the first Parameters Changed message.

Following is a programming example in BASIC for outputting an Execution Error (OE):

Output either an Execution Error code number or message string from the Signal Generator (address 19) and reset bit 2 of the Status Byte:

To output the message code number:

- 10 OUTPUT 719; "OE"
- 20 ENTER 719; A

To output the message string:

- 10 OUTPUT 719; "OE"
- 20 ENTER 719; A ! Dummy read of the message code number
- 30 ENTER 719; A\$

The above examples can also be modified to apply to an Output Parameters Changed (OC) message if you send "OC" instead of "OE". Sending either "OE" or "OC" alone (program line 10 above) will reset the appropriate status bit (unless RQS is true, in which case the Status Byte must be read again to clear the status bit).

Note that you should not execute an instrument function between setting up the instrument for data output and reading the data from the Signal Generator. To illustrate this consideration, refer to the "OE" example above. If you were to insert a line 15 that set an instrument function such as AM, the data received from the Signal Generator will be the display data, not the Execution Error message code, because "AM" would have superceded the "OE" data output preparation.

Hardware Errors. Hardware Error messages are handled differently than Execution Error or Parameters Changed messages since more than one message can be present. These messages are stored as a queued up list with a maximum number of 22 messages. To properly retrieve all the queued up messages, follow the "OH" command with a software loop as shown in the sample program in Table 1-8.

Output Active Function (OA). Output Active Function enables the Signal Generator to output the setting of a selected active function over HP-IB. The Signal Generator outputs a string that can be directly read into a numeric variable or into a string variable which includes the HP-IB codes for both the function and its units specifier (maximum of 19 characters).

Following is a programming example in BASIC for outputting the active function (OA):

Output the RF frequency setting as either a numeric value or a string from the Signal Generator (address 19). ("OA" should be preceded by the function's HP-IB code.)

To output the numeric value: **10 OUTPUT 719; "FROA" 20 ENTER 719; V ! Value is output in Hz.** To output the alphanumeric character string: **10 OUTPUT 719; "FROA" 20 ENTER 719; A\$**

The functions and values that can be output over HP-IB using "OA" are listed below along with some format parameters.

Meanings of Values That Could Be Output

-200 indicates the function is off.

-201 indicates RF OFF (for amplitude only).

-202 indicates reverse power is tripped (for amplitude only).

A space character is placed before and after the numeric portion of the string.

Output String Formats. Table 1-6, Output Active Function String Formats (on the following page), lists the output format for each active function string.

The meanings of symbols in Table 1-6 are as follows:

s = sign character, either "+" or "-"

d = digit (Leading zero digits greater than the one's digit are suppressed.)

If a function's value is in relative units, the displayed, relative setting (not the absolute setting) will be output. You can output absolute units by converting from relative units to absolute units before outputting the active function.

"OA" can be sent without a function prefix. The first two characters in the output string will designate the active function. If the Signal Generator does not have an active function when it receives "OA" without a function prefix, it will output the display string (which is the default HP-IB output)

Table 1-6. Output Active Function String Formats

Function	String Formal	
Frequency	FR sddddddddd.0 HZ	
(Value could be negative		
if Frequency is relative)		
Amplitude		
(in dBm)	AP sddd.d DM	
(in dB relative.		
dB EMF relative, dB,V,		
or dB EMF UV)	AP sddd.d DB	
(in volts or EMF volts)	AP +d.dddddddd VL	
AM	AM +dd.d PC	
FM	FM +ddddddd.O HZ	
Φ M	PM +ddd.dddddd RD	
Modulation Frequency	MF +dddddd.d HZ	
Modulation Output Level	ML +d.dddd VL	
Start Frequency	FA +dddddddddd.O HZ	
Stop Frequency	FB +dddddddddd.O HZ	
Start Amplitude		
(in dBm)	AA sddd.d DM	
(in volts or EMF volts)	AA +d.ddddddddd VL	
Stop Amplitude		
(in dBm)	AB sddd.d DM	
(in volts or EMF volts)	AB +d.dddddddd VL	
Sweep Time	ST +ddd.ddd SC	
Leading zero digits greater than the one's digit are suppressed.		

Output HI, LO Status (OL). Output HI, LO status enables an HP-IB Controller to monitor the level of the external modulation signal by configuring the Signal Generator to output the status of the HI, LO annunciators for AM, FM, or \emptyset M. The status can be read as either a numeric value or as a string that represents the HI and LO annunciators.

Numeric Value	String
Representation	Representation
+1	HI
-1	LO
0	OK
	Representation +1

Following is a programming example in BASIC for outputting HI, LO status (OL):

Output from the Signal Generator (address 19) the status of its HI, LO annunciators for an external, ac-coupled AM signal.

To output the numeric value: 10 OUTPUT 719; "AMOL" 20 ENTER 719; V To output the string: 10 OUTPUT 719; "AMOL" 20 ENTER 719; V 20 ENTER 719; V 20 ENTER 719; V 20 ENTER 719; A

Output Display Information. The Signal Generator will output the display information when it is addressed to talk and is not configured to output any other data.

- 1. The first time the Signal Generator is addressed to talk, it will output the actual display in alphanumeric characters (maximum of 74 characters). (The string length of the alphanumeric display will always be greater than or equal to 25 characters.)
- 2. The second time the Signal Generator is addressed to talk, it will output a number, representing the displayed cursor positions, in a binary, weighted sum. (This string length will always be less than 25 characters.)
- 3. The third time the Signal Generator is addressed to talk, it will output a number, representing the displayed annunciators, in a binary, weighted sum. (This string length will also always be less than 25 characters.)

Each item in the sequence above will be output again in the same sequence when the Signal Generator is further addressed to talk.

Following is a programming example in BASIC for outputting display information:

Output the current display of the Signal Generator (address 19), including the cursor position and annunciators. (Assuming a function was executed to enable you to get the display you want.)

- 10 DIM A\$S [74] ! Define string big enough to handle maximum display
- 20 ENTER 719; A\$! Display String
- 30 ENTER 719; C ! Cursor Value
- 40 ENTER 719; N ! Annunciator Value

The Signal Generator is initialized to output the alphanumeric display string first, whenever you execute an instrument function (for example, set AM or frequency). (When you are using Output Display to output messages, the actual front-panel display will be output, not the message code number that would be output if you used "OC", "OE", or "OH".)

The binary weight of the cursor positions are:

 $2^{1}=2$ for the left most cursor, $2^{2}=4$ for the next cursor to the right, $2^{3}=8$ for the next cursor to the right, ..., 2_{n} for the nth cursor position from the left, ..., $2^{25}=33554432$ for the right most cursor.

The binary weight of the annunciators are provided in Table 1-7.

Example With a display of:

-140.010

Alphanumeric characters output will be: 100.000000MZ -140.0DM

Cursor value output (4th cursor from the left) will be: $2^4 = 16$ Annunciator value output for FREQ and AMPTD will be: $2^5+2^{20} = 32 + 1\ 048\ 576 = 1\ 048\ 608$

Outputting the display could be used to output the currently selected special functions, or to output the annunciator value to determine the current modulation source.

CLEAR

The Signal Generator responds identically to Selected Device Clear (SDC) and Device Clear (DCL) bus commands by clearing any message or uncompleted entries. For example, a command of FR 100 would be cleared because no units terminator has been specified.

Also, with the Clear command, Clear Status Byte occurs, possibly clearing up to 6 status bits.

The Clear command does not affect instrument settings. However, selecting Instrument Preset (IP), Partial Preset (PP), or turning the Power from Standby to On, will reset instrument settings as described in the Operating Instruction, Instrument Preset, Partial Preset.

Annunciator	Weighting	Decimal
RMT	2 ⁰ 2 ¹ 2 ²	1
LSTN	2 ¹	2 4
START	2 ²	4
(Frequency)	2	
TLK	2 ³	8
SRQ	2 ³ 2 ⁴ 2 ⁵ 2 ⁸	16
FREQ	2°	32
REL	2°	64
(Frequency)	- 7	
EMF	2'	128
SPCL	2°	256
SWPNG	2°	512
HI	2^{7} 2^{8} 2^{9} 2^{10} 2^{11} 2^{12} 2^{13} 2^{14} 2^{15}	1 024
LO	2	2 048
IM	2 2 ¹³	4 096
FM AM	2 2 ¹⁴	8 192 16 384
START	2^{15}	32 768
(Amplitude)	2	32 700
INT	2 ¹⁶	65 536
EXT	2 ¹⁷	131 072
AC	2^{18}	262 144
DC	2 ¹⁹	524 288
AMPTD	2 ¹⁷ 2 ¹⁸ 2 ¹⁹ 2 ²⁰	1 048 576
REL	2 ²¹	2 097 152
(Amplitude)		
STOP	2 ²² 2 ²³	4 194 304
MSSG	2 ²³	8 388 608

 Table 1-7. Output Display; Binary Weight of Annunciators

REMOTE, LOCAL

Local to Remote Transition. The Signal Generator goes remote when it receives the Remote message. The Remote message has two parts:

- 1. Remove Enable bus control line (REN) set true.
- 2. Device listen address received once (while REN is true).

The Signal Generator's output signal and all control settings remain unchanged with the local to remote transition, but any uncompleted messages (non-terminated partial entries) are cleared.

Remote to Local Transition. The Local message is the way the controller sends the Go To Local (GTL) bus command. The Signal Generator returns to local control when it receives the Local or Clear Lockout/Set Local message. The Signal Generator also returns to the local mode when the front-panel LOCAL push button is pressed (provided Local Lockout is not in effect). If the instrument is not in local lockout mode, pressing the front-panel LOCAL push button could interrupt a data transmission and suspend the Signal Generator in an unknown state.

Table 1-8. Error Code and Message Recovery Example Program

	Table 1-8. Error Code and Message R	
10	ERROR CODE AND MESSAGE RECOVERY EXAMPLE PROGRAM	
20 30	! JWT JULY 1984 ! EDIT DATE 23 AUG 1984	
40		
50	LET Gen=719	DEFINE 8642 ADDRESS
60	1	
70	COM /Gen-addr/ Gen	! COMMON AREA TO STORE
80 90	! 1	GEN ADDRESS FOR SUB'S
100	DIM Mssg \$ [74]	! DIMENSION SPACE TO
110	!	ENTER IN MESSAGES
120	!	
130	ENABLE INTR 7;2	
140 150	ON INTR 7 CALL Get-message OUTPUT Gen;"RM134HZ"	
160		
170	!	
180		
200 210	CALL User-program	
220		
230		
240	!	
250		
260 270	END	
280	SUB PROGRAMM TO POLL THE 8642	
290	AND PRINT THE MESSAGE CODES	
300	1	
310	Get.message: SUB Get-message	
320 330	CON /Gen.addr/ Gen LET Byte=SPOLL (Gen)	! READ STATUS BYTE
340	IF BIT(Byte,Z) THEN CALL Execution	! CHECK MESSAGE BIT
350	IF BIT(Byte,7) THEN CALL Change	! CHECK MESSAGE BIT
360	IF BIT(Byte,1) THEN CALL Hardware	! CHECK MESSAGE BIT
370	ENABLE INTR 7	
380 390	SUBEND !	
400	!	
410	Execution: SUB Execution	
420	COM /Genaddr/ Gen	
430 440	OUTPUT Gen;"OE" ENTER Gen;Mssg.code	! OUTPUT"OE"COMMAND ! READ MESSAGE CODE
440	PRINT USING 460;Mssg-code	PRINT MESSAGE CODE
460	IMAGE "EXECUTION ERROR CODE =",K	
470	ENTER Gen;Mssg \$ [1,74)	! READ MESSAGE
480	PRINT Mssg \$ [,74]	! PRINT MESSAGE
490 500	SUBEND !	
510	Change: SUB Change	
520	COM /Gen-addr/ Gen	
530	OUTPUT Gen;"OC"	! OUTPUT"OC"COMMAND
540	ENTER Gen;Mssg-code	I READ MESSAGE CODE
550 560	PRINT USING 560;Mssgcode IMAGE "CHANGE CODE =",K	PRINT MESSAGE CODE
570	ENTER Gen;Mssg \$ [1,74]	! READ MESSAGE
580	PRINT Mssg & [1,74]	PRINT MESSAGE
590	SUBEND	
600	! Hardware: SUB Hardware	
610 620	Hardware: SUB Hardware COM /Gen-addr/ Gen	
630	OUTPUT Gen;"ON"	! OUTPUT"OH"COMMAND
640	ENTER Gen;Mssg-code	! READ MESSAGE CODE
650	IF Mssg.code<>O THEN 690	! CHECK IF CODE =0
660 670	ENTER Gen;Mssg-code PRINT "NO HARDWARE MESSAGE FOUND"	i READ MESSAGE CODE ! PRINT NO MESSAGES
670 680	GOTO 760	PRINT NO MESSAGES
690	PRINT "MESSAGE CODE =";Mssg.code	PRINT MESSAGE CODE
700	ENTER Gen;Mssg.code	! READ MESSAGE CODE
710	IF Mssg-code<>O THEN 690	! CHECK IF LAST
720	ENTER Gen;Mssg \$ [1,74]	! READ MESSAGE ! PRINT MESSAGE
730 740	PRINT	! PRINT MESSAGE ! LAST MESSAGE ?
750	GOTO 720	! GO FOR NEXT MSGE
760	SUBEND	

LOCAL LOCKOUT, SET LOCAL

Local Lockout. The Local Lockout message is the way the controller sends the (LLO) bus command. The Signal Generator responds to the Local Lockout message by disabling the front-panel LOCAL push button.

Clear Lockout/Set Local. The Clear Lockout/Set Local message is the way the controller sets the Remote Enable (REN) bus control line false. The Signal Generator returns to local mode when it receives the Clear Lockout/Set Local message. No instrument settings are changed by the transition from remote to local.

When in local lockout, the Signal Generator can be returned to local only by the controller (using the Local or Clear Lockout/Set Local messages), or by setting the Power switch to Standby and back to on, or by removing the bus cable.

NOTE

Return-to-local while in local lockout can be accomplished by switching the POWER from STBY to ON. Returning to local control in this way has the following disadvantages:

- It defeats the purpose and advantages of local lockout (that is, the system controller will lose control of a system element).
- Instrument configuration is reset to the power-up conditions.

SERVICE REQUEST

The Signal Generator uses its internal Status Byte and a Request Service Mask Byte (RQS mask that you set) to issue a Service Request (SRQ bus line true).

RQS MASK. The RQS mask is an 8-bit byte that you can set to define which bits of the Status Byte will be allowed to cause a service request. (See Figure 1-6.) Bits 0 through 5 and 7 of the Status Byte are logically ANDed with bits 0 through 5 and 7 of the RQS mask byte. If the resultant value is not equal to zero, the Signal Generator sets bit 6 of the Status Byte true, which sends a Service Request (SRQ) message to the system controller (SRQ bus line true).

At turn-on or instrument preset, the RQS mask byte is set to zero, effectively disabling or masking all the status bits from causing a service request message.

Changing the 8-bit RQS Mask Byte

- 1. From the Remote Mode:
 - Send RM, the decimal equivalent of the binary 8-bit byte (a number between 0 and 255), and the terminator, HZ.

SERVICE REQUEST-Continued

- 2. From the Local Mode:
 - Select RQS MASK (SHIFT INT), the decimal equivalent of the binary 8-bit byte and any terminator (such as HZ μ V).

Example

Enable status bits 0 (End of Sweep), 1 (Hardware Error), and 7 (Parameters Changed) to cause a service request (SRQ bus line true) by unmasking those bits; that is, set the Signal Generator's RQS mask to binary 10000011 (decimal 131).

Set the mask value to:	binary 10000011 = decimal 131
Local operation:	Press RQS MASK (SHIFT INT) 1 3 1 HZ .µV
Remote operation:	RM 131 HZ

A Service Request can be generated in either the local or remote mode. To determine which status bit caused the service request, refer to Table 1-9, HP-IB Status Byte Bit Definitions. The Status Byte can be read only by doing a serial poll via HP-IB.

Clearing the Service Request Message. The Service Request message can be cleared by masking the "set" bits in the Status Byte using the RQS mask. If the condition which caused SRQ to be pulled has been resolved, the Service Request message can be cleared with any of the following actions for clearing the Status Byte:

Sending Clear Status (CS). Sending Instrument Preset (IP). Sending Device Clear or Selected Device Clear. Switching Power from Standby to On. Resetting the individual "set" bits. (Refer to Table 1-9.)

STATUS BYTE

The 8642 Status Byte consists of one 8-bit byte which reflects Signal Generator status. All 8 status bits are updated whether the Signal Generator is in local or remote mode.

Each bit of the Status Byte monitors a particular aspect of the Signal Generator's operation. Table 1-9, HP-IB Status Byte Bit Definitions, details the operating conditions which are monitored by the 8642 Status Byte.

The Status Byte can either be used to cause a Service Request or simply be read to monitor the Signal Generator's operating status.

Reading the Status Byte. To read the Signal Generator's Status Byte, the controller must send the Serial Poll Enable bus command and address the Signal Generator to talk. For example:

Program Statement (in BASIC)

10 S = SPOLL (719)

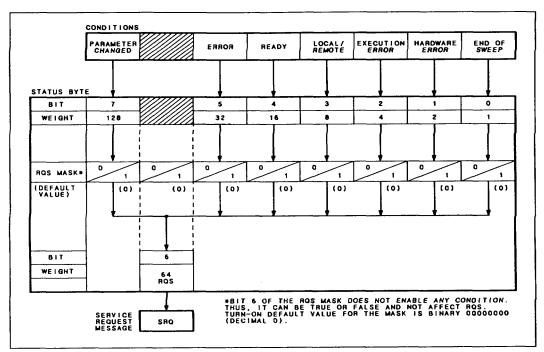


Figure 1-6. The Status Byte and RQS Mask.

If the RQS bit is not set, the Status Byte will reflect the current status of the instrument. If the RQS bit is set, the Status Byte will reflect the status of the instrument when the RQS bit was first set (or when the Status Byte was last read with RQS set). To actually get the current status of the instrument, the Status Byte should be read again. Note that the act of reading the Status Byte (alone) does not clear any status bits.

Clearing the Status Byte. If the instrument does not have an unresolved hardware error, the Status Byte will be "cleared" by executing any of the following:

Sending Clear Status (CS).

Sending Instrument Preset (IP).

Sending Device Clear or Selected Device Clear.

Switching the Power from Standby to On.

You can also clear the Status Byte by clearing the individual status bits. Refer to Table 1-9.

NOTE

Bits 3 (Local/Remote) and 4 (Ready) are not affected by "clearing" the Status Byte. They always output their actual values.

		Table 1-9. HP-IB Statu	
Bit	HP-IB Operating	Condition	Comments
	Condition		
0	END OF SWEEP	Single sweep finished.	Reset with auto, manual, or a new single sweep, or sweep mode off. ^{1, 2}
1	HARDWARE ERROR	Instrument out-of-lock,	Reset with an Output Hardware Error message to the
		reverse-power tripped, or instrument firmware malfunction.	8642A/B (HP-IB program code "OH").1, 2 More than one Hardware Error message may be present. After "OH" is executed, one error message code or string is out-
			put with each address to talk. (The Detailed Operating Instruction, Messages , lists the error codes with their
			respective messages.)
			To properly retrieve all Hardware Error information, refer to- the example program ir Data Output in this HP-IB
			information section.
2	EXECUTION ERROR	Syntax or function	Reset with an Output Execution error message to the
		execution error.	8642A/B (HP-18 program code DOE"). 1, 2 Error code that
			caused bit to be set can be determined by reading the
			Output Execution Error code or string. Refer to the example
3	LOCAL/REMOTE	Instrument in local	program in Data Output in this HP-IB information section. Reset when remote. Can be used to detect a front-
5	LOCAL/REIMOTE	operation.	panel SRO (emulated by selecting the LOCAL key if
		oporation	not in Local Lockout).2
4	READY	Typically always set.	The Status Byte must actually be read with this bit set
			for the instrument to have completed the processor
			delay time part of the setting change which might not
_			include the analog settling time.
5	ERROR	Logical OR of bits 1 and 2.	Reset when bits 1 and 2 are reset.1
6	ROS (IEEE-488)	ROS mask is ANDed with	Reset when the ROS mask ANDed with the Status'
		the Status Byte and the result is not equal to 0	Byte (ignoring bit 6) equals 0.
		(refer to Service Request	
		for more information)	
7	PARAMETER	Previous setting has been	Reset with an output Parameter Changed message (HP-IB
	CHANGED	automatically changed; for	program code "OC"). 1, .2 Parameter that was changed
		example, FM is turned off	can be determined by transmitting the Output Parameter
		when IM becomes active.	Changed message code or string. Refer to the example
	a react with ID CS Day		program in Data Output in this HP-IB information section.

 Table 1-9. HP-IB Status Byte Bit Definitions

¹ Also reset with IP. CS. Device Clear, Selected Device Clear, Power On. (Bit 1 is cleared only if all hardware errors are resolved.)

² If that bit was causing SRO to be pulled. you must also read the Status Byte again to actually reset that bit (This second reading will still show the error because the error is cleared only after the reading.)

SYSTEM CONTROLLER

The 8642 can be configured to perform as a system controller when in its service mode of operation. Perform the following steps to configure the 8642 to output test results to a printer connector to the HP-IB Interface connector:

- 1. Press SHIFT, -, then number 3 push buttons.
- 2. Press 8, 8, then Hz push buttons.
- 3. Press 3, 3, 0, then Hz push buttons.
- 4. System Controller is now activated.
- 5. Press 8, 9, then Hz push button to deactivate.

ADDITIONAL HP-IB INFORMATION

Abort. Abort abruptly terminates all listener/talker activity on the interface bus, using the Interface Clear (IFC) bus line, and prepares all instruments to receive a new command from the controller. Typically this is an initialization command used to place the bus in a known starting condition. The Signal Generator stops talking or listening when it receives the Abort message.

Trigger. The Signal Generator does not respond to the Trigger message.

Status Bit. The Signal Generator does not implement parallel poll operations and therefore cannot send a Status Bit message.

Controller Capabilities; Self Test and Calibration. The Signal Generator can be configured as a system controller to perform various self-test and self-calibration routines with a system voltmeter and the HP 8902A Measuring Receiver (and an optional printer).

Display Control Via HP-IB. Selecting the SHIFT key twice when in the local mode will display the instrument settings last selected. In the remote mode, you can send SHSH to achieve this same effect. (This may be useful when outputting display information.)

Remote Indicators. The Signal Generator displays HP-IB annunciators to indicate its current HP-IB status:

RMT When remote operation is selected LSTN When addressed to listen TLK When addressed to talk SRQ When pulling the SRQ line (with the RQS bit set in the Status Byte)

Disabling the Listen Addressed State. The Signal Generator remains addressed to listen until:

It is addressed to talk, It receives an abort message, It receives a universal unlisten command, or Until the Power is switched from Standby to On.

Disabling the Talk Addressed State. The Signal Generator remains addressed to talk until:

It is addressed to listen,

It receives an abort message,

It receives some other device's talk address,

It receives a universal untalk command, or

Until the Power is switched from Standby to On.

Table 1-10.	Signal	Generator	Function	to	HP-IB Code
-------------	--------	-----------	----------	----	------------

			1
Parameter	Code	Parameter	Code
Frequency	1	Units (Cont'd)	
Frequency	FR ¹	radian	RD
Start Frequency (Sweep)	FA ¹	second	SC
Stop Frequency (Sweep)	FB ¹	millisecond	MS
Amplitude		Sweep	
Amplitude	AP ¹	Sweep Time	ST ¹
Start Amplitude (Sweep)	AA ¹	Auto Sweep	SA ²
Stop Amplitude (Sweep)	AB ¹	Manual Sweep	SM ²
EMF Mode	EMON,	Single Sweep	SG ²
	EMOF		
		Relative	RS ²
Modulation		Reference Set	RS RZ ²
Modulation	AM ¹	Relative Zero	RZ ⁻ RF ²
AM Depth		Relative Off	KF-
FM Deviation	FM ¹	011.00	
(M Deviation	PM ¹	Other	
Pulse	PLON,	Instrument Preset	IP
	PLOF	Partial Preset	PP
		Special Function	SP
Modulation Oscillator	4	Message	MG
Modulation Frequency	MF	Output Hardware Error	ОН
Modulation Output Level	ML ¹	Output Execution Error	OE
		Output Parameters	
Modulation Source		Changed	OC
Internal	NT^{2}	Output Active Function	OA ²
External AC	XA ²	Write Service Request Mask	RM
External DC	XD ²	Output HI,LO	
Internal + External AC	BA ²	Annunciator Status	OL ²
Internal + External DC	BD^2	Clear Status Byte	CS
		Step Up	UP ^{2,.3}
Data		Step Down	DN ^{2,.3}
Numerals 0-9	0-9	Increment Set	1S ²
Decimal point		Knob, cursor left	KL ²
Back Space	BS	Knob, cursor right	KR ²
	20	Knob Hold	KHON ^{2,3}
Units			KHOF
dBm	DM or DB	Knob Increment	KI
dB	DB or DM	Help	HP
Volt	VL	Help Off	HO
mV	MV	RF Off/On	R0, R1
μV	UV	Off, On	OF^2 ,
µv dBµV	DU		ON ²
GHz	GZ	Entry Off	EO
-	MZ	Entry Off	SQ
MHz		Sequence	
kHz	KZ	Set Sequence	SS
Hz	HZ	Save	SV
%	PC	Recall	RC

¹Active function code. ²Function should be preceded by an active function code. For example, internal modulation source for AM is coded AMNT. ³These codes will sometimes not need to be preceded by an active function code; for example, when using UP or DN with SV, RC,. HP, or SM.

Code			Barameter
AA ¹	Parameter Stort Amplitude (Sween)	Code NT ²	Parameter
AA AB ¹	Start Amplitude (Sweep)		Internal
AB AM ¹	Stop Amplitude (Sweep)	OA ²	Output Active Function
	AM Depth	OC	Output Parameters Changed
	Amplitude	OE	Output Execution Error
BA^2	Internal + External AC	OF^{2}	011 0
BD ²	Internal + External DC	ON ²	Off, On
BS	Back Space	OH	Output Hardware Error
CS	Clear Status Byte	OL ²	Output HI,LO
DB	dB or dBm	50	Annunciator Status
DM	dBm or dB	PC	%
DN ^{2, 3}	Step Down	PLON,	
DU	dBµV	PLOF	Pulse
EMON,		PM ¹	M Deviation
EMOF	EMF Mode	PP	Partial Preset
EQ	Entry Oft	R0,R1	RF Off/On
FA ¹	Start Frequency (Sweep)	RC	Recall
FB	Stop Frequency (Sweep)	RD	radian
FM ¹	FM Deviation	RF ²	Relative Off
FR ¹	Frequency	RM	Write Service Request Mask
GZ	GHz	RS ²	Reference Set
HO	Help Off	RZ ²	Relative Zero
HP	Help	SA ²	Auto Sweep
HZ	Hz	SC	second
IP	Instrument Preset	SG ²	Single Sweep
IS ²	Increment Set	SM ²	Manual Sweep
KHON ² ,		SP	Special Function
KHOF	Knob Hold	SO	Sequence
KI	Knob Increment	SS	Set Sequence
KL ²	Knob, cursor left	ST ¹	Sweep Time
KR ²	Knob, cursor right	SV	Save
KZ	kHz	UP ^{2,.3}	Step Up
MF ¹	Modulation Frequency	UV	μV
MG	Message	VL	Volt
ML^1	Modulation Output Level	XA^{2}	External AC
MS	millisecond	XD ²	External DC
MV	mV	0-9	Numerals 0-9
MZ	MHz		Decimal point

¹Active function code.

²Function should be preceded by an active function code. For example, internal modulation source for AM is coded AMNT.
 ³These codes will sometimes not need to be preceded by an active function code; for example. when using UP or DN with SV. RC. HP. or SM.

1-16. WRITING MESSAGES TO DISPLAY.

You can write messages to the Signal Generator's display using service special functions and ASCII character codes. Two, separate, 49-character message strings can be easily displayed on the front panel or read via HP-IB. Messages such as these could be useful, for example, when keeping track of calibration times, or the owner of the instrument, or special calibration information.

Also, when testing instruments, a message could be used as a system prompt. These messages are battery-backed up and can be stored through power off, to be read any time.

Service Special Functions 653 through 659 manipulate message 1; Special Function 663 through 669 manipulate message 2. Note that accessing service special functions is different than accessing the user special functions discussed previously in this manual.

To select user special functions, you key in SPCL (SHIFT. -) and then the special function number.

To select service special functions locally, you need to follow two steps:

- First select user Special Function 3, Service Mode, with keystrokes SPCL (SHIFT -) 3. Once you enter the service mode you can access the actual service special functions. However, you can only key in numbers and terminators; selecting any other key will cause the instrument to exit this special mode and display current instrument settings.
- 2. After you enter the service mode, you can select the service special function number. However, the instrument only knows that you have selected a special function when you key in the HZ μ V terminator. For example, to clear the current message in message 1, you would key in 6 5 5 HZ UV.

Table 1-12 lists the special functions that apply to both message 1 and message 2. Table 1-13 provides a list of vaild ASCII character codes.

Example of entering a user defined message via front panel push buttons:

- 1. Press SHIFT, -, then 3 push buttons.
- 2. Press 6 5 5 then HZ µV push buttons.
- 3. Press 6 5 6 7 3 then HZ µV push buttons.
- 4. Press 6 5 6 7 6 then HZ μ V push buttons.
- 5. Press 6 5 6 8 5 then HZ µV push buttons.
- 6. Press 6 5 6 8 6 then HZ µV push buttons.
- 7. Press 6 5 6 3 2 then HZ μ V push buttons.
- 8. Press 6 5 6 7 2 then HZ µV push buttons.
- 9. Press 6 5 6 8 0 then HZ µV push buttons.
- 10. Press 6 5 4 then HZ TV push buttons.

Example of entering a user defined message via HP-IB:. You can use the following example BASIC program to enter a Message string of 49 characters into Message 1.

```
! DIMENSION 49 CHARACTER STRING
10
    DIM C $ [49]
20
    L
                           ! INPUT CHARACTER STRING FOR MESSAGE 1
30
    INPUT C$
40
    L
    OUTPUT 719;"SP3655EN" ! CLEAR MESSAGE 1 IN THE 8642A/B
50
60
70
    LET L=LEN (C$)
                           ! DETERMINE LENGTH OF MESSAGE 1
80
    1
90
    100 FOR I=1 TO L
                          ! CONVERT EACH CHARACTER IN CS TO
110 LET A=NUM (C$ [I,I])
                                ITS EQUIVALENT ASCII NUMERIC
                          !
120 OUTPUT 719 USING 130;A ! CODE
130 IMAGE "SP3656", K, "EN"
140 NEXTI
150 !
160 !
170 OUTPUT 719, "SP3657EN" ! DISPLAY THE MESSAGE
180 !
190 END
```

Example of Reading a User-Defined Message Via HP-IB. You can use the following example BASIC program to read the Message 1 string.

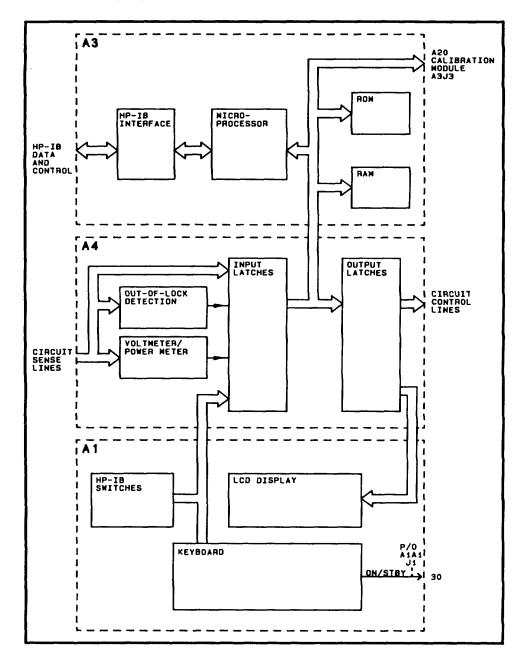
- DIM C \$ [49] 10
- 20
- **! DIMENSION 49 CHARACTER STRING** UTPUT 719;"SP3657EN" ! DISPLAY MESSAGE 1 ! READ MESSAGE 1
- NTER 719;C\$ 30
- 40 END

 Table 1-12. Special Functions that can be Used to Write to the Display

Special Functions		
Message 1	Message 2	Description
653	663	Underline the characters not yet defined in the message.
654	664	Take out the underlines from the characters not yet defined in the message.
655	665	Clear the stored message to enable writing another message.
656	666	Get ready to write the next sequential character in the message. This special
		function code is followed by the decimal equivalent of an ASCII character.
657	667	Output the message. This code is used to display the first half of the message.
		This code is also used to output the entire message via HP-IB.
658	668	Backspace to the previous character in the message.
659	669	Output message. This code is used to display the second half of the message.

ASCII	Decimal	ASCII	Decimal	ASCII	Decimal
Character	Equivalent	Character	Equivalent	Character	Equivalent
space	32	4	52	Н	72
!	33	5	53	I	73
"	34	6	54	J	74
#	35	7	55	K	75
\$	36	8	56	L	76
%	37	9	57	М	77
&	38	:	58	N	78
,	39	;	59	0	79
(40	<	60	Р	80
)	41	=	61	Q	81
*	42	>	62	R	82
+	43	> ?	63	S	83
,	44	@	64	Т	84
-	45	А	65	U	85
	46	В	66	V	86
/	47	С	67	w	87
0	48	D	68	Х	88
1	49	D E F	69	Y	89
2	50		70	Z	90
3	51	G	71		

Table 1-13. ACSII Character Codes


SECTION II. THEORY OF OPERATION

2-1. INTRODUCTION.

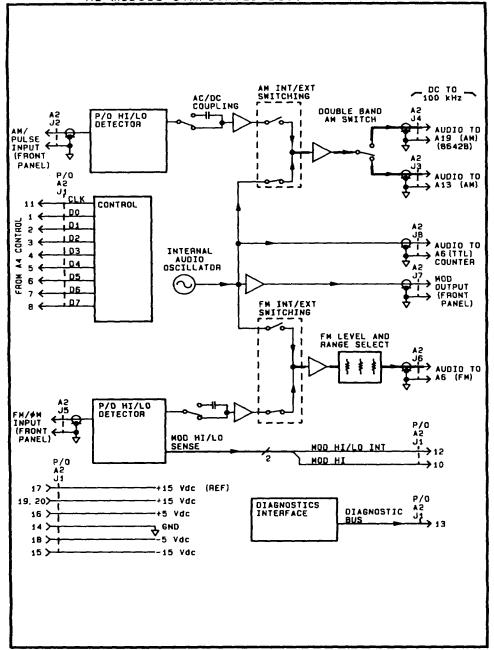
This section contains the theory of operation for the 8642. Circuit theory and block diagrams are provided for:

- Controller Section (A1, A3, A4)
- A2 Modulation Module
- A6 FM/COUNTER/TIMEBASE Module
- A7 SAWR Loop Module
- A9 IF Loop Module
- A11 Reference Loop Module
- A12 Sum Loop/Divider Module
- A13 Output Filters/ALC Module
- A14 Heterodyne Module
- A17 Regulators/Attenuator Driver Module
- A18 Rectifier/Filter Module
- A19 Doubler Module

See figure 3-100 for an overall block diagram of the 8642.

A1, A3, A4 MODULE SIMPLIFIED BLOCK DIAGRAM

2-2. A2 MODULATION MODULE


The A2 Module generates an audio signal from 10 Hz to 100 kHz. This signal is provided to the A6 FM Loop frequency and phase modulation and to the A13 Output Loop for amplitude modulation. In the HP 8642 this signal is sent to the A19 Doubler for amplitude modulation in the Doubler Band (1057.5 to 2115 MHz).

The output of **A2's Internal Audio Oscillator** is also sent to the **A6 Counter**. The frequency count generated by the counter is passed to the **A3 Processor**. The Processor compares the frequency count with the specified setting for the audio oscillator and fine tunes the oscillator until the frequency count matches the specified frequency setting.

The A2 Module accepts external modulation signals via the "AM INPUT" and "FM/IM" input ports.

See the A2 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A2 Module's internal operation.

2-3. A6 FM/COUNTER/TIMEBASE MODULE

A6 FM LOOP

The **A6 FM Loop** is the angle modulation source for the instrument. A **135 MHz** voltage controlled oscillator (VCO), phase locked to the timebase, call be either frequency or phase modulated by the audio signal sent from the **A2 Module**.

For **DCFM** operation, the VCO tune path is switched to a stable DC voltage source within the **A6 Module**.

The A6 **FM LOOP OUTPUT** is the reference signal for the **A11 Module**.

A6 TIMEBASE

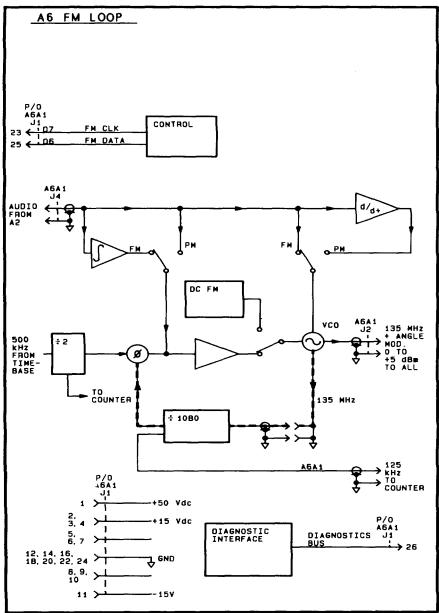
The **A6 Timebase** provides the timebase reference for the instrument. In noimal operation, the various timebase signals required for operation are derived from a free running **45 MHz** oscillator.

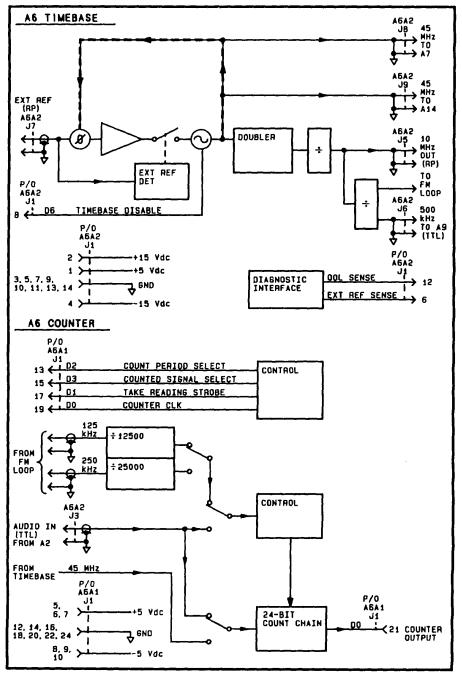
For improved stability, the **45 MHz** oscillator can be phase locked to an external source **(1. 2, 5,** or **10 MHz)**

A6 COUNTER

The **A6 Counter** counts audio frequencies produced by the internal modulation source in the **A2 Module.** The counter output is sent to the instrument's **Control Section** which provides the tune control for A2's audio oscillator.

Audio frequencies greater than 10 kHz are counted directly.


The Timebase output signal is divided and used as the gate clock.

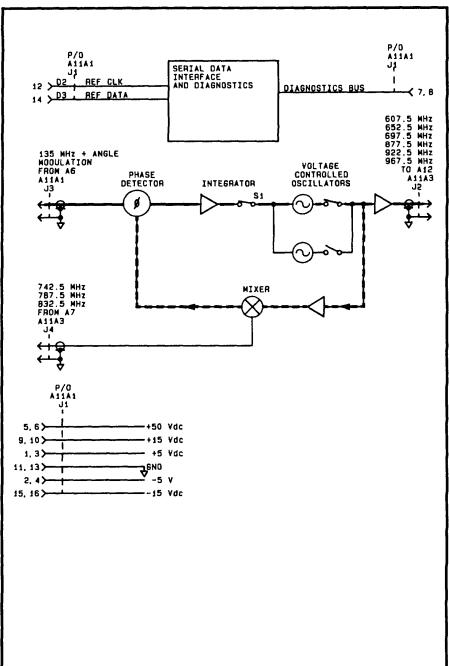

Audio frequencies **below** 10 kHz are counted indirectly. The audio signal is used as the gate clock to count the 45 MHz timebase signal.

The counter also counts the frequency of the FM Loop, when it is in **DCFM** mode.

See the A6 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A6 Module's internal operation.

A6 MODULE SIMPLIFIED BLOCK DIAGRAM

2-4. A7 SAWR LOOP MODULE


NOTE

It is not to essential to understand the internal operation of a module to make an on -site repair.

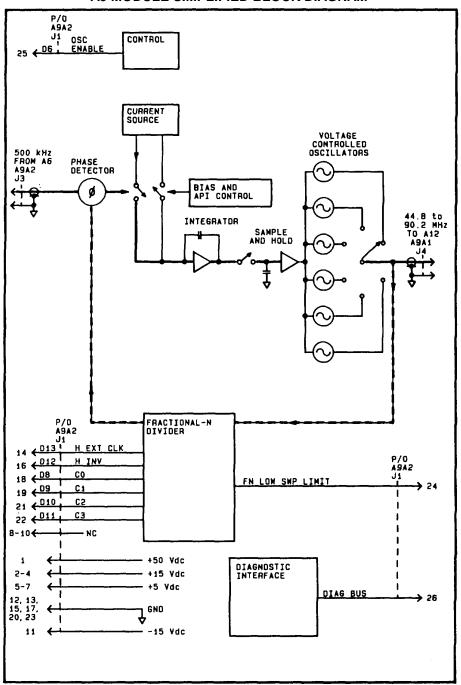
The **A7 Module** contains a phase locked loop circuit. Oscillator select lines **A** and **B** are decoded to select one of three Surface Acoustic Wave Resonator (SAWR) oscillators. The oscillators are referenced to the **A6** Timebase output **(45 MHz)**.

The A7 Module output: 742.5, 787.5, and 832.5 Mhz, is the UHF reference for the A11 Reference Loop Module.

See the A7 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A7 Module's internal operation.

A7 MODULE SIMPLIFIED BLOCK DIAGRAM

2-5. A9 IF LOOP MODULE


NOTE

It is not to essential to understand the internal operation of a module to make an on-site repair.

The **A9 Module** contains a phase locked loop which is referenced to the **A6 Module** timebase output **(500 kHz).** A fractional-N divider in the loop's feedback path and compensating circuitry in the oscillator tune path allow frequency steps of .05 Hz at the output.

The fractional-N control signals are decoded to select one of six voltage controlled oscillators to produce the output frequency range of **45** to **90 MHz**. The **A9 Module** output provides the reference signal for the **A12 Module**.

See the A9 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A9 Module's internal operation.

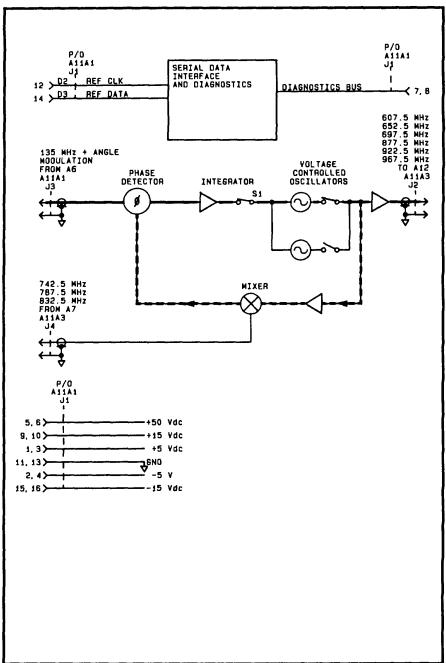
A9 MODULE SIMPLIFIED BLOCK DIAGRAM

2-6. A11 REFERENCE LOOP MODULE

NOTE

It is not to essential to understand the internal operation of a module to make an on-site repair.

The A11 Module contains a phase lock loop which combines the A6 FM Loop output signal (the angle modulation source of the instrument) with the A7 SAWR Loop output (one of three UHF reference frequencies) to produce six UHF reference frequencies.


The output of the **A11 Module** is divided into two bands. Each band is generated by a separate voltage controlled oscillator (VCO).

Each of the three upper band frequencies is equal to the sum of the **A6 Module** output signal (135 MHz, plus FM or PM) and one of the three **A7 Module** output frequencies (742.5, 787.5 or 822.5 MHz).

The three lower band frequencies are equal to the difference between the A6 and A7 Modules output frequencies; i.e., $607.5 = 742.5 \ 135.$

The A11 Module output is the UHF reference for the A12 Sum Loop/Divider Module.

See the A11 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A11 Modules internal operation.

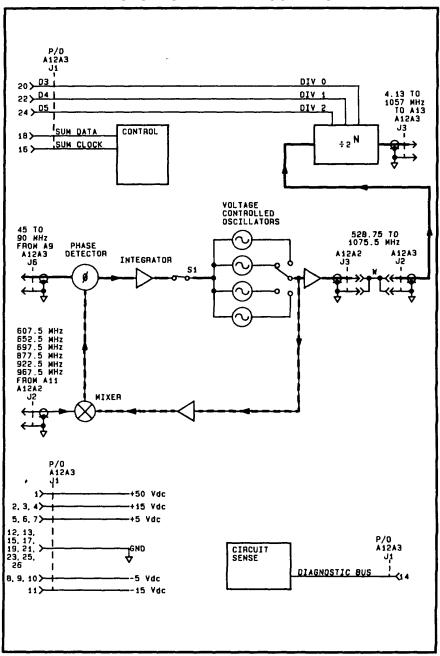
A11 MODULE SIMPLIFIED BLOCK DIAGRAM

2-7. A12 SUM LOOP/DIVIDER MODULE

NOTE

It is not essential to understand the internal operation of a module to make an on-site repair

Sum Loop


The A12 Module contains a phase lock loop which combines the A9 IF Loop output (45 to 90 MHz in .5 Hz steps) with the A11 Reference Loop output (one of six UHF reference frequencies) to produce the fundamental frequency band of the instrument (528.75 to 1057.5 MHz).

The frequency range of the **Sum Loop** is divided into four bands. Each band is generated by a separate voltage controlled oscillator (VCO).

Divider

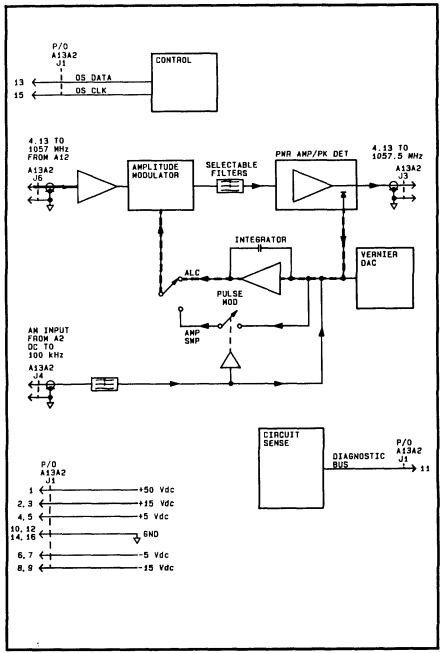
The A12 Module also contains a selectable divider circuit. The Sum Loop output passes directly to the RF input of the Divider. The Divider output (4.1 to 1057.5 MHz) is produced by dividing the fundamental frequency band by 2 raised the N^{th} power, where N is an integer between 0 and 7.

See the A12 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A12 Module's internal operation.

A12 MODULE SIMPLIFIED BLOCK DIAGRAM

2-8. A13 OUTPUT FILTERS/ALC MODULE

NOTE


It is not to essential to understand the internal operation of a module to make an on-site repair.

The A13 Module contains an Automatic Level Control (ALC) circuit. The ALC loop adjusts the level of the RF signal to between +5 and +21.5 dBm in 0.1 dB steps. An audio signal, sent from the A2 Module is applied to the ALC loop's feedback path to provide amplitude and pulse modulation for all output, frequency bands, (except the Doubler Band in the HP 8642B.)

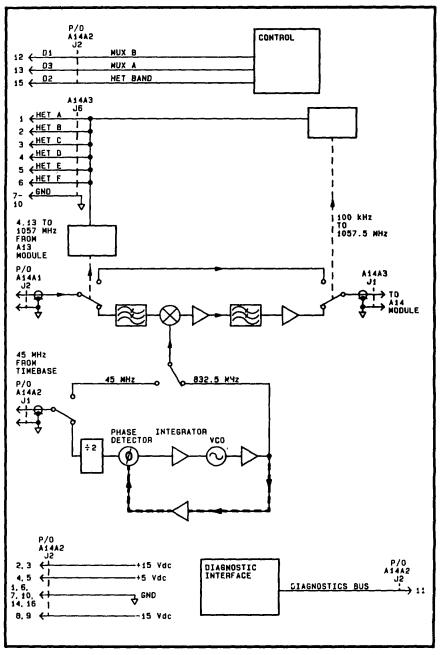
An array of selectable, low-pass filters in the **RF** signal path filters the harmonics produced by the divider in the **A12 Module**.

See the A13 MODULE SIMPIIFIED BLOCK DIAGRAM for further understanding of the A13 Module's internal operation.

A14 HETERODYNE MODULE THEORY OF OPERATION

2-9. A14 HETERODYNE MODULE

NOTE


It is not essential to understand the internal operation of a module to make an on-site repair.

The A14 Module switches the RF Signal sent from the A13 Module, between a through path and the heterodyne path. The heterodyne path down converts the main band signal by mixing it with either 45 MHz or 832.5 MHz to produce the two heterodyne bands. Together these two bands provide the output frequency range 100 kHz to 4.12 MHz.

The **45 MHz** signal is a **timebase** output sent from the **A6 Module**. The **832.5 MHz** signal is generated by a voltage controlled oscillator within **A14** which is phase locked to the **45 MHz** timebase signal.

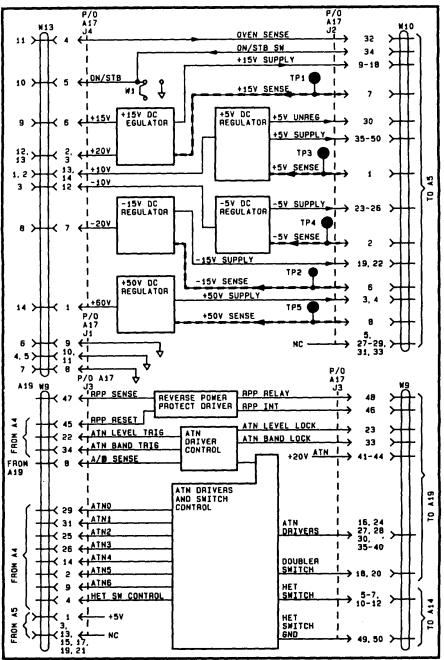
The **Switch Drive**, for controlling the path selection switches, is provided by the **A17 Module** in the Power Supply Section.

See the A14 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A14 Module's internal operation.

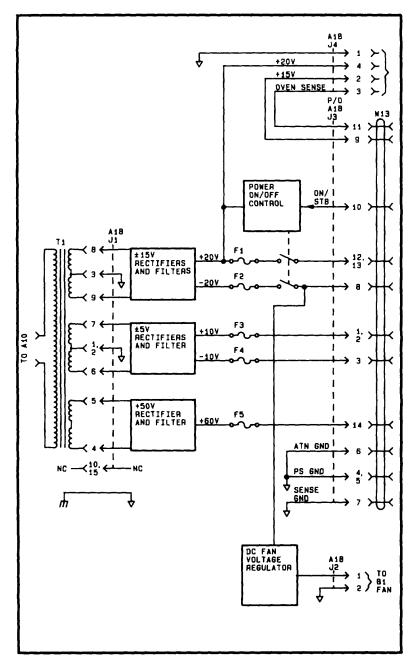
A14 MODULE SIMPLIFIED BLOCK DIAGRAM

2-10. A17 REGULATORS/ATTENUATOR DRIVERS MODULE A18 RECTIFIER/FILTER MODULE

Power Supply


The HP 8642 requires five regulated power supplies for operation: +50, +15, +5, -5, and -15 Vdc. The A18 Module fullwave rectifies the outputs from the Power Transformer T1. Each supply line is low-pass filtered and fused on the A18 Module. The +15 and -15 volt lines are switched open when the (POWER) key on the Front Panel is switched to the Standby position. The rectifiers and filters remain active whenever line power is connected to the instrument.

Series-pass type regulators on the **A17 Module** provide level regulation for each supply line. Bias and reference voltages for each regulator are provided by the **+15** and **-15** volt supplies. The output level of each regulator is sensed on the **A5 Assembly** and fedback to control the series-pass element. This requires the supply signal to be present on the **A5 Distribution Assembly** for the regulator to operate. Each regulator is provided with overvoltage protection at its output.


A17 Drivers

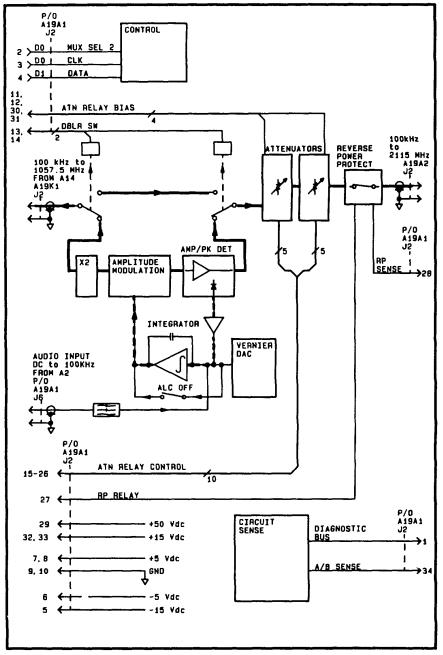
The drivers portion of the **A17 Module** provides the proper drive signals to control the attenuators and **RF** switches in the instrument. It also drives the relay for the reverse power protection circuit. The **A17 Module** senses which attenuator module it is driving and provides pulsed, drive signals to the **A19** modules.

See the A17 and A18 MODULES SIMPLIFIED BLOCK DIAGRAMS for further understanding of the internal operation of these modules.

A17 MODULE SIMPLIFIED BLOCK DIAGRAM

A18 MODULE SIMPLIFIED BLOCK DIAGRAM

2-11. A19 DOUBLER MODULE


This module provides both frequency doubling and level attenuation for the **RF** output signal. Two attenuator assemblies connected in series provide level attenuation to **-140 dBm**. The second attenuator assembly includes reverse power protection circuitry for the **RF Output** port. The RF switch, attenuator and reverse power control signals are sent to the **A19 Module** from the **A17 Module** in the **Power Supply Section**.

The RF Signal from the A14 Module is switched between a through path (for output frequencies from 100 kHz to 1057 MHz) and a frequency doubler path. In the doubler frequency band (1058 to 2115 MHz) the RF signal is amplitude modulated by the A19 Module using the audio signal sent from the A2 Modulation Module.

The RF output signal from the A19 Module is routed directly to the HP 8642B's RF Output port.

See the A19 MODULE SIMPLIFIED BLOCK DIAGRAM for further understanding of the A19 Module's internal operation.

3-1. INTRODUCTION.

This Section contains information required for a qualified service technician or engineer to perform module level repair on the HP 8642 Synthesized Signal Generator. The HP 8642 Synthesized Signal Generator will generally be referred to as "HP 8642" or "instrument" in this manual.

3-2. ON-SITE SERVICE STRATEGY.

The strategy for on-site service of the HP 8642 is to provide an instrument and support plan which will enable a trained service person to successfully repair at least 80% of the field failures within 2 hours of beginning service on-site. (Repair times may be longer for those with no prior training or experience on the HP 8642.)

3-3. HP 8642 SERVICE DESIGN.

The following paragraphs describe the instrument's service features that will enable you to make an on-site repair.

Modular Design. Each major electrical function in the instrument is contained within a single module. On-site troubleshooting is to the module level using techniques similar to those used for troubleshooting a system of individual instruments.

Figure 3-100, RF Section Signal Flow Diagram, shown on the first foldout in this section, shows all the modules contained in the RF section and each signal path that connects hem. (Note the absence of any feedback paths between the modules.)

The physical location of each module within the instrument is shown by a Top View Diagram located on the inside top cover of the instrument. Color is used in the Top View Diagram and in this manual to designate the three sections of the instrument: Blue - RF (analog) Section; green - Control Section; and red - Power Supply Section.

Accessible Signals. A single distribution assembly uses ribbon cable connections located on the tops of the modules to pass all signals from the Power Supply Section and Control Section to the RF Modules. Most signal path checks required for on-site service of the HP 8642 can be made with only the top cover removed.

Built-in Test Capability. The instrument has both a DC Voltmeter and an RF Power Meter built into it.

Instructions for using the internal voltmeter and power meter are as follows.

To activate internal voltmeter, connect point to be measured to A4TP1 and press the following push buttons [SHIFT] [SPCL] [3] [2] [5] [HZ]

To repeat voltage measurement, press [5] [HZ]

To activate internal power meter, connect yellow cable to desired measurement point and press the following push buttons [SHIFT] [SPCL] [3] [2] [4] [HZ]

To repeat power measurement, press [4] [HZ]

The measurement parameters for the voltmeter and power meter when used in their manual modes of operation are as follows:

Voltmeter	-55 to +55Vdc, ±.5%.
Power Meter	-10 to 0dBm, ±5dB.
	0 to +10dB, +3dB.
	+10 to +20dBm, +2dB.

Due to the relatively low accuracy of the built-in voltmeter and power meter, both are primarily used to establish the presence of desired signals rather than their absolute accuracy.

Internal Diagnostics. The HP 8642 can provide extensive critical data about its own operating condition. This data is provided in the form of alphanumerically coded service messages. (The service messages can be displayed on the front panel or output to a printer via HP-IB.) The instrument's overall operating condition, as well as the operating condition of individual modules, can be checked using the self-diagnostic routines contained in the firmware of the HP 8642. The following internal diagnostics provide both fault detection and fault isolation for the HP 8642.

Automatic Fault Detection

The following Diagnostics provide automatic fault detection for the instrument.

Power-Up Self Check. This test sequence runs automatically each time the instrument is powered up and provides a functional check of the instrument's overall operation.

Fault Detection. During normal operation, critical sense points within the instrument alert the internal controller when a malfunction occurs. The controller reacts by queuing up the appropriate error message(s) in the instrument's message buffer. The controller will cause the entire front panel display to blink until the malfunction is repaired and the message buffer has been cleared.

User Initiated Diagnostics The following diagnostics provide fault isolation capability for the instrument.

Instrument Level Self Test. This test sequence is designed to provide an extensive check of the instrument's overall operating condition. The objective of this diagnostic is to identify the module of highest probable cause. (The test sequence begins with a test of the Control Section to verify its ability to test the rest of the instrument.)

INTRODUCTION

Module Level Diagnostics. These individual tests allow you to check the operation of any module in the instrument. The objective of these tests is to isolate the malfunction to circuitry within a suspect module or to external circuitry on which the module depends for its operation.

On-Site Service Kit

All test equipment referenced out of the On-Site Service Kit is found in paragraph 0-10, Tools and Test Equipment. All repair parts referenced out of the On-Site Service Kit are found in the repair parts book. An A20 Calibration Module (carrying calibration data stored on EEPROM's) for each module that requires calibration data for its operation is supplied with each replacement module.

NOTE

Loading the calibration data provided with a replacement module, into the Control Section of the instrument, enables the replacement module to meet all of its calibrated performance standards without requiring any manual circuit adjustments or additional equipment.

3-4. ON-SITE SERVICE OVERVIEW.

The following outline provides an overview of the On-Site troubleshooting process.

1. INSTRUMENT LEVEL DIAGNOSTICS

• Begin troubleshooting to identify module of highest probable cause.

2. MODULE LEVEL DIAGNOSTICS

• Test suspect module to isolate detected failure to the module itself or to another module on which the suspect module depends for its operation.

3. REPLACING A MODULE

- Install Module
- Down-load calibration data
- Verify repair

3-5. INTRODUCTION TO ON-SITE TROUBLESHOOTING.

Instrument Level Diagnostics

1. Proceed to paragraph 3-AI, Instrument Level Diagnostics.

2. Pull out the foldout at the back of the **Instrument Level Diagnostics** section and locate the Task Sequence Diagrams shown under **INSTRUMENT LEVEL DIAGNOSTICS**. These diagrams guide you through the process of determining the appropriate module to troubleshoot first.

3. Also, find the **MODULE TROUBLESHOOTING ORDER** chart on the foldout. This chart lists all the modules in the instrument in the order in which they should be tested.

NOTE

The troubleshooting order is based on signal dependency between the modules as shown in Figure 3-100 (on the first foldout) in this section. Determining the correct module to troubleshoot first is necessary since a defect in one module will often cause subsequent modules to indicate malfunctions as well.

4. Fold the Instrument Level Diagnostics foldout back into the manual.

Module Level Diagnostics

- 1. Find the area in the **Diagnostics** section for **"A13"**. (All the module level tests for the **A13 Module** are contained in this section.)
- 2. Pull out the foldout at the back of the A13 section.
- 3. Find **A13 MODULE SUBSTITUTION** on the foldout. The Task Sequence Diagram shown in this block guides you through the process of testing the operation of the suspect module by substituting a known good module, from the On-site Service Kit, into the circuit.

NOTE

In most cases, the module substitution test only requires connecting input and output cables to the known good module without installing it in the instrument.

- 4. Find A13 INPUTS VERIFICATION on the foldout. If the same failure conditions were indicated with a known good module substituted into the circuit (or if a known good module was not available), the next step is to check each input to the module. These Task Sequence Diagrams guide you through the process of checking each RF, control and power supply input signal to the A13 Module.
- 5. Find the A13 MODULE CABLE CONNECTIONS LOCATOR on the foldout. This is a top view diagram of the HP 8642 that shows A13's location in the instrument and the location of each cable connection on A13 which is involved in on-site repair.
- 6. Find the A13 MODULE I/O SIGNALS DIAGRAM shown on the right of the foldout. This provides a system overview of all parts on which the A13 Module directly depends for its operation.

 The procedures for completing each task shown in the Task Sequence Diagrams are provided on the text pages immediately preceding the foldout. Find the procedure listed for A13.12

This test is designed to check the voltage level on each power supply input to the A13 Module.

- 8. Familiarize yourself with the test now by reading the first sentence or phrase after each step number. The instructions are formatted so that scanning the procedures in this way will give you a preview of the test (previewing each test will help you to perform the test procedure guickly and accurately).
- 9. Fold the A13 Module foldout back into the manual.
- 10. Pull out the foldout at the end of the **A12 Module** section. The Task Sequence Diagrams on this foldout provide an example of how the process model is modified when necessary to provide the best test strategy for each module. Here (and also on the All Module), the inputs are checked first because of an added risk factor involved in the A12 Module substitution technique.
- 11. Find the Task Sequence Diagram entitled **1.A12 RF INPUT CHECK** on the foldout. Note the Result Blocks that indicate specific error codes for determining which task to perform next. (The slash S (/S), placed at the end of the word "ERROR/S" in these Result Blocks, implies that the test path should be taken if you observe any one or more of the error codes in the given range.
- 12. Fold the A12 Module foldout back into the manual.

Exceptional Cases

Due to limitations of the diagnostic routines and the built-in test equipment, the test procedures contained in this manual are not able to isolate all possible failures in the instrument. The last portion of the **DIAGNOSTICS** section, **Exceptional Cases**, contains help for troubleshooting many of these failures.

3-6. TO BEGIN TROUBLESHOOTING THE HP 8642.

Identify Failure Condition

Condition 1. Instrument does not power-up to an operational condition.

Condition 2. Failure does not cause instrument to generate any error message.

Condition 3. Failure does cause instrument to generate an error message, but failure occurs intermittently.

Condition 4. Failure does cause instrument to generate an error message, but failure does not appear to be intermittent.

Repair Recommendations for Condition 1

If the instrument does not power-up to an operating condition, follow the procedures provided for Instrument Level Diagnostics (Condition 4) to begin isolating this problem.

Repair Recommendations for Condition 2

Many failure conditions which are not detected by the HP 8642 during its normal operation can be detected by the diagnostic procedures provided in this manual. (For further information on servicing a failure of this type, refer to the Exceptional Cases section of this manual.)

Repair Recommendations for Condition 3

Failures which occur intermittently impede the HP 8642's ability to provide reliable failure data. However, there are certain techniques which, when used in conjunction with the diagnostic routines, permit effective troubleshooting of the instrument. (See the Exceptional Cases portion of the **DIAGNOSTICS** Section which describes the techniques for troubleshooting intermittent failures.)

Repair Recommendations for Condition 4

Proceed to paragraph 3-A2 to begin troubleshooting process.

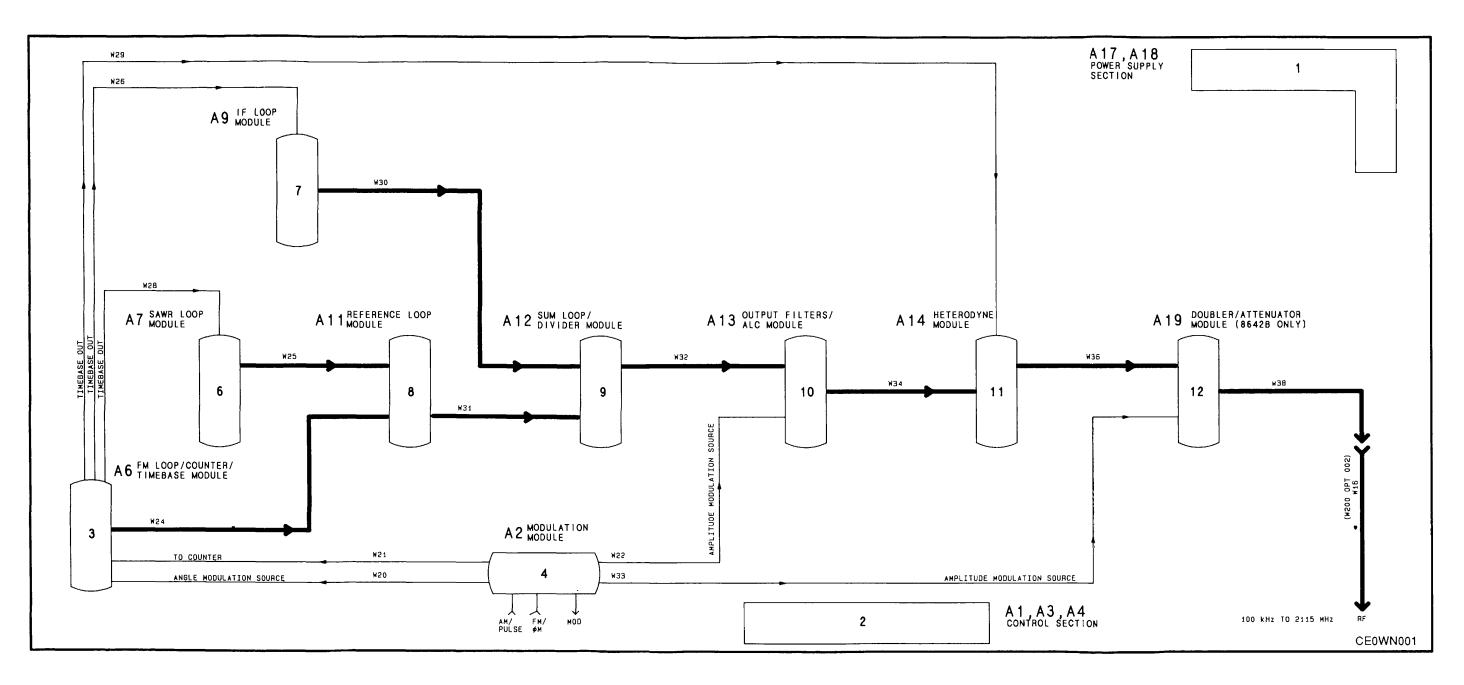


Figure 3-100. RF Section Signal Flow Diagram.

3-7/(3-8 BLANK)

3A-1. INTRODUCTION

WARNING

The HP 8642 is extremely heavy. Do not lift or carry the instrument without assistance.

If the instrument is rack mounted, do not pull the instrument from the rack without assistance.

The **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** are the first level of troubleshooting for the **HP 8642**. The objective of this group of tests is to isolate the source of a detected failure to the correct section of the instrument: **Power Supply, Control** or **RF Section**. The **ILD** should be used to determine the appropriate place in the instrument to begin module level troubleshooting.

NOTE

Testing at this level requires two BNC coax cables not supplied in the On-Site Service Kit.

Test Instructions

- 1. The last page in this group of tests is a foldout and should be pulled out now.
- 2. Find **INSTRUMENT LEVEL DIAGNOSTICS** on the foldout.
- 3. Use the Task Sequence Diagram, shown under **INSTRUMENT LEVEL DIAGNOSTICS** to direct you through the testing process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown on the diagram.

TM 11-6625-3165-14

INSTRUMENT LEVEL DIAGNOSTICS

Туре:	Instrument Level Self Test	IL.01
Run Time:	6 min 30 sec	TEST INSTRUMENT
Set-up Time:	1 min	

The **Instrument Level Self Test (ILST**) is designed to check the operation of each module in the instrument.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V74" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/fM INPUT". (See foldout for setup diagram.)
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When test is complete

"DIAG DONE HIT MSSGS .VI" will appear:

- Use [MSSG] to scroll through messages.
- Record each module number indicated. (See Front Panel Diagram on foldout to locate module number in display message.)

NOTE

If "NO MESSAGES .00" appears: Then all modules have passed the Instrument Level Self Test. (The Instrument Level Self Test indicates test failures only.)

- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST INSTRUMENT.

TM 11-6625-3165-14

INSTRUMENT LEVEL DIAGNOSTICS

Туре:	Supply Lines Check	IL.02
Run Time:	2 min	CHECK POWER SUPPLY
Set-up Time:	2 min	

- 1. Remove Top Cover. (See table on foldout in **MECHANICAL PROCEDURES** to locate Top Cover removal information.)
- 2. Connect **external DC** voltmeter ground lead to instrument's chassis.
- Measure Power Supply output voltage levels on A17 Module at test points TP1 through 5. (See Top View Diagram on inside of Top Cover for test point locations and voltage levels.) Voltages should be within approximately 1% of those shown with test points on Top View Diagram.
- 4. The tuning screws located next to **A17TP1 through 5**, can be used to fine tune voltage levels which are slightly high or low.

NOTE

The voltages measured at A17TP1 through 5 are being fed back from sense points on the A5 Assembly. A correct measurement verifies the presence of the voltage on the A5 Distribution Assembly.

- 5. Record the results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for CHECK POWER SUPPLY.

INSTRUMENT LEVEL DIAGNOSTICS

Туре:	Identify Conditions	IL.03
Run Time:	N/A	
Set-up Time:	N/A	

The operating conditions which will cause the **Instrument Level Self Test** to pass are listed below. Find the **condition** which describes your circumstances.

- **Condition 1:** Instrument Level Self Test (ILST) did not detect a known failure.
- **Condition 2:** Instrument Level Self Test (ILST) was run to confirm correct operation of instrument.

Condition 1

Output Power Level Failure: To isolate output power level problems which occur at power levels above **-10dBm** and are greater than **10 dB** out of specification, go to **A14 MODULE LEVEL DIAGNOSTICS (MLD)** section. For output power level problems which occur only at settings below **-10dBm** or are less than **10dB** out of specification, go to **EXCEPTIONAL CASES section**.

Other Failures: To isolate failures which can be detected by the internal diagnostics when the **HP 8642** is set to a specific operating condition, go to the **MLD** section for the module indicated by the instrument. If two or more failures are indicated, go to the **MLD** section for the failing module with the **Iowest Troubleshooting Order Number** (see **MODULE TROUBLESHOOTING ORDER** on the foldout).

To troubleshoot failures which cannot be detected by the internal diagnostics, go to **EXCEPTIONAL CASES** section.

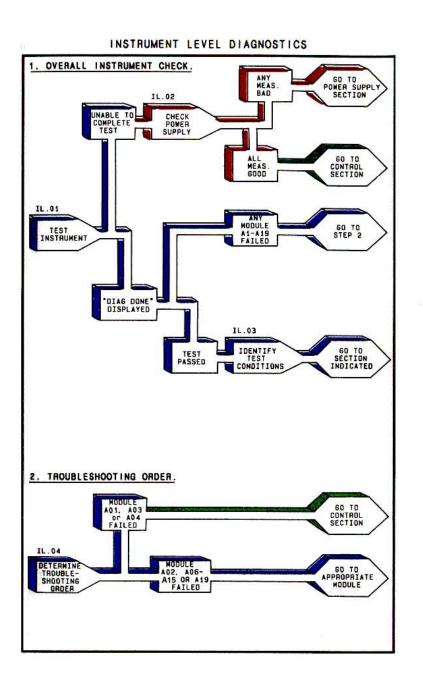
Intermittent Failures: To troubleshoot intermittent failures, turn to **EXCEPTIONAL CASES** section.

Execution Errors: Certain incompatible operating conditions will cause service messages to come up. Check for operating modes which do not comply with the **HP 8642's** operating specifications.

INSTRUMENT LEVEL DIAGNOSTICS

Condition 2

Repair Confirmation: If Instrument Level Self Test was able to detect failure before repair was made; a passing test now indicates repair has corrected failure. If **ILST** was not able to detect failure prior to repair, check instrument in operating condition which indicated failure.


Operation Check: The **ILST** checks **80%** of the instrument's overall operation.

MODULE TROUBLESHOOTING ORDER

Туре:	Module Priority	IL.04
Run Time:	N/A	DETERMINE
Set-up Time:	N/A	TROUBLE- SHOOTING ORDER

A troubleshooting priority level has been established for each module. **Failing modules must be tested in their order of priority**.

- 1. Find **MODULE TROUBLESHOOTING ORDER** on foldout. This table lists all HP 8642 modules covered by onsite diagnostics. The modules are listed in the order which you should troubleshoot them.
- 2. If the **Instrument Level Self Test** has indicated two or more failing modules, use the table to determine which failing module has lowest **Troubleshooting Order number**.
- 3. Locate the **Module Level Diagnostics** section for the **failing** module with the lowest **Troubleshooting Order Number**.
- 4. Return to Task Sequence Diagram on foldout.

Modules	Troubleshooting Order Number	Instrument Section	
A17 Power Supply Regulators/ Attenuator Drivers Module		Power Supply	
A18 Power Supply Rectifier/ Filters Module	1	Section	
A01 Keyboard/LCD Display Module			
A03 Processor/Memory Module	2	Control Section	
A04 Latch Module			
A06 FM Loop/Counter/ Timebase Module	3		
A02 Modulation Module	4	-	
A07 SAWR Loop Module	6		
A09 IF Loop Module	7	1	
A11 Reference Loop Module	8	RF Section	
A12 Sum Loop/Divider Module	9	1	
A13 Output Filters/ALC Module	10	1	
A14 Heterodyne Module	11		
A19 Doubler/Attenuator Module	12	<	

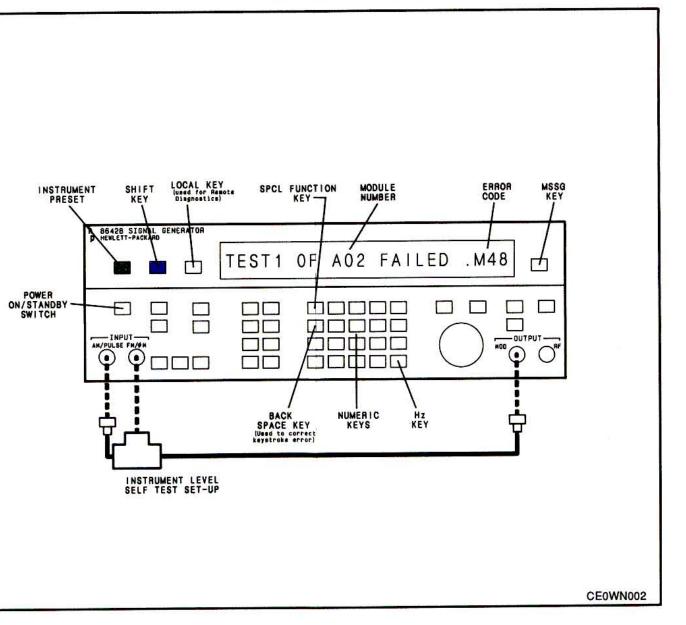


Figure 3A-100. Instrument Level Diagnostics

3-15/(3-16 BLANK)

8642 FRONT PANEL AND DISPLAY

POWER SUPPLY SECTION

The MODULE LEVEL DIAGNOSTICS (MLD) contained in this section are used to further interrogate the **Power Supply Section** modules: A17 **Power Supply Regulators/Attenuator Drivers Module** and A18 **Power Supply Rectifier/Filter Module**. The objective is to isolate the failure to a module or to a part on which this section depends for operation.

WARNING

Servicing instructions are for use by service trained personnel only. To avoid dangerous electric shock, do not perform any servicing unless qualified to do so.

Some procedures described in this manual are performed with power supplied to the instrument while protective covers are removed. Energy levels at certain points may, if contacted, cause personal injury.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

For continued protection against fire hazard, replace the line fuse(s) only with 250v fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.). Do not use repaired fuses or short circuited fuseholders.

The left rear portion of the chassis becomes hot during operation. A cooling period may be desired before servicing modules in this area. To avoid personal injury, avoid contact with the A17 heatsink.

Test Instructions

1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to the table on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)

POWER SUPPLY SECTION

- 2. Testing in this section is divided into two categories: A17 Module failures, including Attenuator Drivers, Heterodyne Switch Control, and Reverse Power Protection Control and Power Supply failures.
- 3. A17 Module: If you were directed here because of a drivers failure detected while testing the A14, A16 or A19 modules, or if the Instrument Level Self Test indicated an A17 failure, turn to page 3B-3 to begin troubleshooting.
- 4. **Power Supply**: If you are here because of an apparent **Power Supply** failure, turn to the next page to begin troubleshooting.

3B-2. INTRODUCTION

The first step in troubleshooting a **Power Supply Section** failure is to isolate the defective module or cable.

Troubleshooting Instructions

- 1. There are two foldouts located at the end of this section. The first foldout, **Figure 3B-100**, is used for troubleshooting **Power Supply** failures and should be pulled out now.
- 2. Find **POWER SUPPLY DIAGNOSTICS** on the foldout.
- The Task Sequence Diagrams, shown under POWER SUPPLY DIAGNOSTICS are separated into two checks: 1. A18 RECTIFIERS/FILTERS CHECK and 2. A17 REGULATORS CHECK.
- 4. Use the Task Sequence Diagrams to guide you through the verification process. Each Task Arrow shown in a diagram indicates a task title and a task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 5. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 6. Begin now by performing the first task shown under **1. A18 RECTIFIERS/FILTERS CHECK**.

NOTE

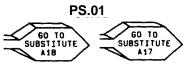
The POWER SUPPLY I/O SIGNALS DIAGRAM shows all parts which these modules depend on for operation.

3B-3. INTRODUCTION

The first step in troubleshooting failures indicated for the **Attenuator Drivers**, **Heterodyne Switch Control** or **Reverse Power Protection Control** portions of the **A17 Module**, is to check each control signal into this module.

A17 Inputs Verification Instructions

- 1. The last page in this section is a foldout, **Figure 3B-200**. It is used for troubleshooting the drivers portion of **A17** and **should be pulled out now**.
- 2. Find A17 INPUTS VERIFICATION on the foldout.
- 3. Use the Task Sequence Diagrams shown under **A17 INPUTS VERIFICATION** to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task number and task title. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown on the diagram.


NOTE

You will find the A17 MODULE DIAGNOSTICS procedures at the end of this section following the POWER SUPPLY DIAGNOSTICS procedures.

NOTE

The A17 MODULE I/O SIGNALS DIAGRAM shows all parts on which the drivers portion of this module depends for operation.

A17 & A18 MODULE SUBSTITUTION

3B-4. INTRODUCTION

Substitution of a known good module is used to further test a suspect module.

A17 & A18 Substitution Instructions

- 1. Find A17 & A18 MODULE SUBSTITUTION on the foldout.
- 2. Use the Task Sequence Diagram, shown under A17 & A18 MODULE SUBSTITUTION, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram for the module you have been directed to substitute.

Voltage Measurements	PS.02
1 min. 2 min.	TEST Vdc
	1 min.

External DC Voltimeter is used to check power supply levels at A17TP1 through 5.

Run Test

- 1. Connect instrument's power plug to a known good power source.
- 2. Switch (POWER) to **ON** (recessed position).
- 3. Connect external DC voltmeter ground lead to instrument's chassis.
- Measure Power Supply output voltage levels on A17 Module at test points TP1 through 5. (See A17 & A18 MODULES CABLE CONNECTION LOCATOR on foldout to locate test points on A17.) Voltages should be within approximately 1% of those shown in chart on foldout.
- 5. The tuning screws located next to A17TP1 through 5, can be used to fine tune voltage levels which are >1% high or low.

NOTE

The voltages measured at A17TP1 through 5 are being fed back from sense points on the AS Assembly. A correct measurement verifies the presence of the voltage on the AS Distribution Assembly.

- 6. Record test results.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc**.

Туре:	Fuse Check	PS.03
Run time:	4	
Set-up time:	2 min.	

External DC voltmeter is used to test fuses and rectifier output levels.

- 1. Remove A18 Module's Top Cover located in right-rear corner of instrument (one screw).
- 2. Connect power to instrument and switch [POWER] to ON (recessed position).
- 3. Measure voltage levels
 - Use external DC voltmeter to measure voltage levels, with respect to ground, at fuses A18F1 through 5.
 - Leave fuses in instrument and measure voltage levels at both ends of each fuse holder for **F1 through 5**.
 - Voltage levels should be within ranges shown in following chart and should read the same at both ends of each f use.

Fuse Voltages, Vdc				
F1	F2	F3	F4	F5
+15 to +30	-30 to -20	+8 to+13	-13 to -8	+60 to +80

- If all fuse holders measured good at both ends, proceed directly to step 5.
- If any fuse holders measured bad at both ends, proceed directly to step 5, otherwise continue testing.

CAUTION

Disconnect line power to instrument when removing or replacing fuses.

- 4. Replace blown fuses:
 - Use plastic Fuse Puller, from On-Site Service Kit, to remove fuses.

NOTE

Use side-notched end of Fuse Puller to hook fuse and pull it from instrument. Use end-notched end of Fuse Puller to place fuses in fuse holders or to pick up fuses dropped into instrument.

- Replace blown fuses with a good fuse of proper rating from the On-Site Service Kit. (Fuse ratings are shown on Top View Diagram on inside of instrument's Top Cover at each fuse location.)
- Reconnect power to instrument, switch (POWER) to ON position and repeat procedure beginning at step 3.
- 5. Record test results.

NOTE

If this test has directed you to replace a blown fuse, and if as a result of changing the fuse all levels now measure good, do not return to the foldout. Instead, return to the INSTRUMENT LEVEL DIAGNOSTICS section and rerun the ILST.

- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST FUSES**.

Туре:	I/O Signals Check	PS.04
Run time:	2 min.	CHECK
Set-up time:	1 min.	A17J1

External DC voltmeter and ohmmeter are used to check signal levels at A17J1.

Run Test

- 1. Disconnect line power to instrument.
- 2. Check **Power Switch**:
 - Connect one test lead of ohmmeter to GND (A4TP2). (See A17 & A18 MODULES CABLE CONNECTION LOCATOR on foldout.)
 - Connect other test lead to Power Switch control line (A17J1 pin 5). (See A17 & A18 MODULES CABLE CONNECTION LOCATOR on the foldout to locate A17J1.) Figure 3B-1. shows signal locations for A17J1.
 - Switch (POWER) to ON (recessed position). Resistance should measure between 0 and 10 ohms.
 - Switch (POWER) to Standby, resistance should be greater than 500 ohms.
 - If switch line **is not** responding as described above proceed directly to step **6**, otherwise continue testing.

•

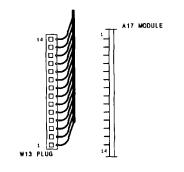
- 3. Disconnect ohmmeter from A17J1 and reconnect power to instrument.
- 4. Switch (POWER) to **ON** position.
- 5. Measure voltage levels:
 - Connect voltmeter's ground lead to GND (A4TP2).
 - Measure DC voltages at connector A17J1 on solder-side of A17 Module. Voltage level ranges and locations are shown in Figure 3B-1.

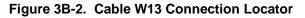
Figure 3B-1. Connector A17J1 Signal Locator (Solder-Side View)

```
+8 to +13V
+8 to +13V
-13 to -8V
GND
-13 to -8V
GND
-15 to +25V
ON/STB
+15 to +27V
+15 to +27V
+65 to +75V
1
```

- 6. Record test results.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for CHECK A17J1.

3-26


Туре:	Cable Check	PS.05
Run time:	2 min.	CABLE
Set-up time:	30 sec.	W13


Cable W13 is tested by checking continuity between cable ends and A17J1.

Run Test

- 1. Remove power from instrument and disconnect cable W13 from A18 Module at A18J3.
- 2. Check continuity through each suspect line by connecting test leads from ohmmeter to each end of **W13**.
 - Connect one test probe to A17J1 pin connection on solder-side of A17 Module.
 - Insert the other probe into end of cable W13. Select socket with same number as A17J1 pin connection.

(See Figure 3B-2 to determine pin 1 location.)

- 3. Record test results.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W13**.

Туре:	Power Switch Test	PS.06
Run time:	1 min.	TEST
Set-up time:	6 min.	T SWITCH

<u>Run Test</u>

- 1. Check Power Switch:
 - Open Front Panel. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate opening instructions.)
 - Check resistance between Power Switch output, on A1 Module at A1A1 J1 pin 30, and ground. Resistance should measure less than 2 ohms in ON (recessed) position and greater than 500 ohms in Standby position. (See Figure 3C-3 in Control Section Diagnostics for connector diagram.) * If switch responds as described, proceed to step 2, otherwise continue testing.
 - If switch does not respond as described, disconnect cable W15 from A1 Module at A1A1 J1 and retest switch. (Refer to table on foldout in MECHANICAL PROCEDURES to locate AI Module removal information.)
 - If switch still does not respond correctly, proceed to step 3, otherwise reconnect W15 to A1 and continue testing.
- 2. Check switch path:
 - Remove right side cover from instrument. (Refer to table on foldout in MECHANICAL PROCEDURES for removal information.) * Disconnect cable W10 from A17 Module at A17J2.
 - Plug end of **W10** into **34** pin test connector, from ON Site Service Kit.
 - Measure resistance at **pin 34** of **W10P2.** (Resistance should measure the same as in step 1.)
- 3. Record test results.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST SWITCH.

Туре:	Voltage Check	PS.07
Run time:	2 min.	
Set-up time:	2 min.	

External DC voltmeter is used to test rectifier output levels with A18 Module isolated from A17 Module.

Run Test

- 1. Switch instrument to Standby and disconnect line power from instrument.
- 2. Disconnect cable **W13** from **A18** Module at **A18J3** (see **A17** & **A18** MODULE CABLE CONNECTION LOCATOR on foldout for **A18J3** location).
 - Pull straight up on W13 to disconnect it from A18J3.
- 3. Reconnect power to instrument.
- 4. Measure voltage levels:
 - Use external DC voltmeter to measure voltage levels, with respect to ground, at fuses A18F1 through 5.
 - Leave fuses in instrument and measure voltage levels at both ends of each fuse holder for F1 through 5.
 - Voltage levels should be within ranges shown in following chart and should read the same at both ends of each fuse.

Fuse Voltages, Vdc				
F1	F2	F3	F4	F5
+15 to +30	-30 to -20	+8 to +13	-13 to -8	+60 to +80

- If all fuse holders measured good at both ends, proceed directly to step 6.
- If any fuse holders measured bad at both ends, proceed directly to step 6, otherwise continue testing.

CAUTION

Disconnect line power to instrument when removing or replacing fuses.

- 5. Replace blown fuses:
 - Use plastic Fuse Puller, from On-Site Service Kit, to remove fuses.

NOTE

Use side-notched end of Fuse Puller to hook fuse and pull it from instrument. Use end-notched end of Fuse Puller to place fuses in fuse holders or to pick up fuses dropped into instrument.

- Replace blown fuses with a good fuse of proper rating from the On-Site Service Kit. (Fuse ratings are shown on Top View Diagram on inside of instrument's Top Cover at each fuse location.)
- Reconnect power to instrument, switch (POWER) to ON position and repeat procedure beginning at step 3
- 6. Record test results.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for ISOLATE **A18**.

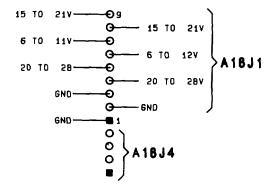
Туре:	4; AC Voltage Measurements	PS.08
Run time:	2 min.	TEST
Set-up time:	7 min.	AC POWER

External AC voltmeter is used to check voltages to A18 Module from Transformer, T1. Run Test

1. Switch instrument to Standby and disconnect line power from instrument.

WARNING

Removing rear bottom cover exposes Filter cap screw heads. Voltage potentials are still present at these screws even when power has been removed.


2. Remove instrument's rear bottom cover. (Refer to table on foldout in **MECHANICAL PROCEDURES** for removal information).

WARNING

Power Transformer **T1** should be isolated from Digital Multimeter. Use a portable Digital Multimeter that is not connected to the same power source as the instrument.

- 3. Measure voltage levels:
 - Connect voltmeter's ground lead to instrument's chassis.
 - Reconnect line power to instrument.
 - Measure AC voltages at A18J1 (see A17 & A18 MODULE CABLE CONNECTION LOCATOR on the foldout to locate A18J1). See Figure 3B-3 for voltage levels.

Figure 3B-3 Connector A18J1 Signal Locator (Solder-Side of Board)

- 4. Record test results.
- 5. Return to foldout:
 - Determine next task by comparing test Results to conditions shown in each for **TEST AC POWER**.

3-32

Туре:	Supply Lines Test	PS.09
Run time:	1 min.	ISOLATE
Set-up time:	6 min.	ISOLATE POWER SUPPLY

This test uses **Power Supply Test** Connector from On-Site Service Kit to isolate **Power Supply** Section from rest of instrument.

Run Test

- 1. Switch (POWER) to Standby and disconnect power plug.
- 2. Remove right side cover from instrument. (Refer to table on foldout in **MECHANICAL PROCEDURES** for removal information).
- 3. Disconnect cable W10 from A17 Module at A17J2. (See A17 & A18 MODULES CABLE CONNECTION LOCATOR for A17J2 location.)
- 4. Connect **Power Supply Test Connector** (HP 08642-80053) and 50 pin ribbon cable, from On-Site Service Kit, to A17 Module at A17J2.
- 5. Connect line power to instrument. **DO NOT** change **POWER Switch from Standby** position.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W9P2.

- 6. Perform the following steps to Turn On Power Supply:
 - Connect one side of test lead to GND (A4TP2). (See A17 & A18 MODULE CABLE CONNECTION LOCATOR on foldout for GND location).
 - Connect other side of test lead to test point terminal on Power Supply Test Connector.
- Measure voltage levels at test points A17TP1 through 5. (See A17 &A18 MODULE CABLE CONNECTION LOCATOR on foldout for A17TP1 through 5 locations.) Voltage levels should be within approximately 1% of those shown in chart on foldout.
- 8. Remove test connector:
 - Disconnect ground from **TP1** on test connector.
 - Disconnect Power Supply Test Connector and ribbon cable from A17 Module.
 - Reconnect cable **W10** to **A17** Module.
- 9. Record test results.
- 10. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for ISOLATE POWER SUPPLY

Туре:	Distribution Test	PS.10
Run time:	1 min. per set-up	IDENTIFY
Set-up time:	Up to 1 5 min.	CAUSE

This test determines if **Power Supply Section** failure is due to over loading by **Control** or **RF** Sections.

Run Test

1. Switch (POWER) to Standby.

CAUTION

Be sure to use adequate Electrostatic Discharge (ESD) precautions when handling A3 and A4 Modules.

- 2. Remove A3 and A4 modules from instrument (see Top View Diagram on inside Top Cover to locate A3 and A4).
- 3. Switch [POWER] to **ON**.
- 4. Measure voltage levels at test points A17TP1 through 5.
 - If all voltage levels measure within **1%** of those shown in chart on foldout, proceed directly to step **10**, otherwise continue testing.
- 5. Switch [POWER] to Standby.
- Beginning at left side of AS Distribution Assembly, disconnect ribbon cable W1 from A5 Assembly at A5J1. (See A17 & A18 MODULES CABLE CONNECTIONS LOCATOR on foldout to locate J1 on A5 Assembly.) Refer to table on foldout in MECHANICAL PROCEDURES for information on disconnecting cables from A5.
- 7. Switch (POWER) to ON.
- 8. Measure voltage levels at test points A17TP1 through 5.
- 9. Repeat steps **5** through **8** for each ribbon cable connected to **A5** (except **W10**) or until Power Supply unloads.
- 10. Record test results. (If **Power Supply** unloads, suspect last cable and module disconnected from **A5** just before unloading occurred.)
- 11. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for IDENTIFY CAUSE.

Туре:	Module Substitution	PS.11
Run time: Set-up time:	0 20 min.	
Set-up time.	20 mm.	SUBSTITUTE

Connect Substitute Module

- 1. Refer to table shown on foldout in **MECHANICAL PROCEDURES** to locate removal and replacement procedures for module you have been directed to substitute.
- 2. Return to foldout.

Туре:	Substitute Module Test	PS.12
Run time:	1 min.	TEST
Set-up time:	2 min.	SUBSTITUTE MODULE

External DC Voltmeter is used to check power supply levels at **A17TP1 through 5**.

Run Test

- 1. Connect instrument's line power plug to a known good power source.
- 2. Switch (POWER) to ON position.
- 3. Connect external DC voltmeter ground lead to instrument's chassis.
- Measure Power Supply output voltage levels on A17 Module at test points TP1 through
 (See A17 & A18 MODULES CABLE CONNECTION LOCATOR on foldout for test point locations and voltage levels.) Voltages should be within approximately 1% of those shown in chart.
- 5. The tuning screws located next to A17TP1 through 5, can be used to fine tune voltage levels which are slightly >1% high or low.

NOTE

The voltages measured at A17TP1 through 5 are being fed back from sense points on the A5 Assembly. A correct measurement verifies the presence of the voltage on the A5 Distribution Assembly.

- 6. Record test results.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB MODULE**.

Туре:	Cable Substitution	PS.13
Run time:	5 min.	REPLACE
Set-up time:	1 min.	CABLE

- 1. Testing has shown cable **W13** to be suspect.
- 2. Repair or replace **W13.**
- 3. Rerun INSTRUMENT LEVEL DIAGNOSTICS (ILD) to confirm repair.

TM 11-6625-3165-14

A17 MODULE DIAGNOSTICS

Туре:	Control Signals Test	A17.01	
Run Time:	1 min.	TIEST	
Set-up time:	0	A17 CONTROL BITS	

Run Test

- 1. [INSERT PRESET] [SHIFT] (Hold shift key until **"100.00000MZ -140.0DM**" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [6] [2] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use (MSSG) to scroll through messages.
 - Record error code(s) displayed for A17. If "TEST 1 OF A17 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST A17 CONTROL BITS.

A17 MODULE DIAGNOSTICS

Bit Transmission	A17.02
? min.	TEST
min.	ATN CONTROL BITS
	2 min. min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A17 Module on Attenuator Driver control lines.

NOTE

If any control line level measures bad, it is not necessary to test remaining lines; proceed directly to step **14**.

<u>Run Test</u>

- 1. Switch (POWER) to Standby:
 - Remove right side cover from instrument (refer to table on foldout in **MECHANICAL PROCEDURES** for information).
 - Disconnect cable **W9** from **A17** Module at **A17J3**.
 - Plug end of cable W9 into 50 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W9P2.

CAUTION

To prevent damage to the Control Section, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A17 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- Switch (POWER) to ON. (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)

Attenuator Driver Control Lines

Check High State

- 4. [SHIFT] [SPCL] [3] [6] [0] [1] To specify high state
- 5. Enter Bit Select Keys, as indicated in Table 3B-1. W9P2 Control Bits, for Control Line to be tested.
- 6. Connect VM probe to Control Line at Pin Number indicated in Table 3B-1. (See Figure 3B-4. Cable Plug W9P2 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 5 and 10)	Pin Number (Step 6)
1	ATN BAND TRIG	[5] [9] [HZ]	34
2	ATN LEVEL TRIG	[6] [2] [HZ]	22
3	ATN 0	[6] [4] [HZ]	29
4	ATN 1	[6] [5] [HZ]	31
5	ATN 2	[6] [6] [HZ]	25
6	ATN 3	[6] [7] [HZ]	26
7	ATN 4	[6] [8] [HZ]	14
8	ATN 5	[6] [9] [HZ]	2
9	ATN 6	[7] [0] [HZ]	9

Table 3B-1. W9P2 Control Bits

A17 MODULE DIAGNOSTICS

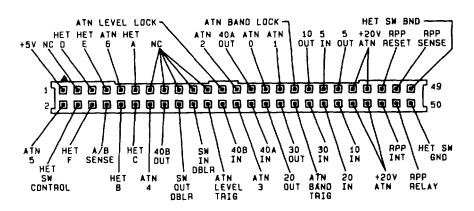


Figure 3B-4. Cable Plug W9P2 Signal Locator

7. [2] [5] [HZ[

To enable voltmeter.)

Voltage should read approximately +2.5 to +5.5 Vdc.
 [5] [HZ] to repeat measurement.)

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 10. Enter Bit Select Keys, as indicated in Table 3B-1. W9PZ Control Bits, for same Control Line.
- 11. [2] [5] [HZ]. (To enable voltmeter.)
- 12. Voltage should read approximately -0.5 to +1.5 Vdc [5] [HZ] to repeat measurement.)
- 13. Repeat procedure for each Control Line shown in Table 3B-1.
- 14. Record test results.
- 15. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST ATN CONTROL BITS.

A17 MODULE DIAGNOSTICS

Туре:	3; Bit Transmission	A17.03
Run time: Set-up time:	2 min. 2 min.	RPP RESET

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A17 on Reverse Power Reset line.

Run Test

- 1. Switch (POWER) to Standby:
 - Remove right side cover from instrument (refer to table on foldout in MECHANICAL PROCEDURES for removal information).
 - Disconnect cable **W9** from module at **A17J3**.
 - Plug end of **W9 into 50** pin test connector, from On-Site Service Kit.

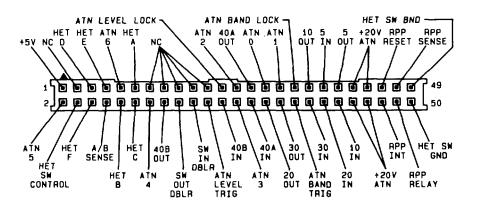
NOTE

Find arrowhead on test connector and align with arrowhead on cable plug **W9P2**.

CAUTION

Do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A17 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- Switch [POWER] on. [INSTR PRESET] [SHIFT] Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.


Reverse Power Protection Reset

Check High State

4. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)

5. [5] [3] [HZ]

6. Connect VM probe to test connector line RPP Reset (pin 45). (See Figure 3B-6. Cable Plug W9P2 Signal Locator.)

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 10. [6] [3] [HZ] To select bit.
- 11. [2] [5] [HZ] To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 13. Record test results.
- 14. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST RPP RESET BIT.

Туре:	3; Bit Transmission	A17.04
Run time:	2 min.	TEST
Set-up time	2 min.	RPP RESET

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A17 on Heterodyne Switch control line.

Run Test

- 1. Switch (POWER) to **Standby:**
 - Remove right side cover from instrument. (Refer to table on foldout in **MECHANICAL PROCEDURES** for removal information).
 - Disconnect cable **W9** from module at **A17J3**.
 - Plug end of **W9** into 50 pin test connector, from On-Site Service Kit.

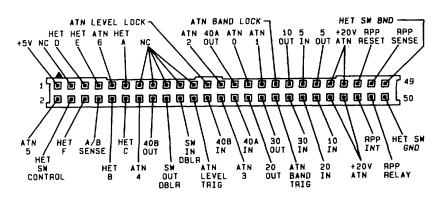
NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W9PZ.

CAUTION

To prevent damage to the Control Section, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect **VM** probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A17 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- Turn instrument on. [INSTR PRESET] [SHIFT] (Hold shift key until "10.00000MZ -140.0DM" appears, to override 20 second reset test.


Heterodyne Switch Control Line Check High State

4. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)

5. [7] [1] [HZ]

(To select bit)

6. Connect VM probe to test connector line HET SW CONTROL (pin 4). (See Figure 3B-5. Cable Plug W9P2 Signal Locator.)

- 7. Enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 10. [7] [1] [HZ] (To select bit)
- 11. [2] [5)][HZ]
 - (To enable voltmeter meter.)
- 12. Voltage should read approximately -0.5 to +1.5 Vdc.[5] [HZ] to repeat measurement.)
- 13. Record test results.
- 14. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST HET CONTROL BIT.

Туре:	Module Substitution	A17.05
Run time:	0	
Set-up time:	22 min.	SUBSTITUTE

Connect Substitute Module

- 1. Return to table shown on foldout in **MECHANICAL PROCEDURES** to locate **A17 Module** removal and replacement procedures.
- 2. Return to A17 MODULE SUBSTITUTION on foldout.

Туре:	Substitute Module Test	A 17.06
Run time:	Conditional	TEST
Set-up time:	Conditional	SUB A17

The **A17** failure conditions for arriving at this task are described below. Follow the procedure for the condition which best fits your module.

Condition 1: A17 INPUTS VERIFICATION indicated A17 failure.

Condition 2: Instrument Level Self Test indicated A17 failure.

Condition 3: Module Level Diagnostics (MLD) for A14, A16, or A19 indicated A17 failure.

Condition 1

1. [INSTR PRESET] [SHIFT]

(Hold shift key until **"100.00000MZ -140.0DM**" appears, to override 20 second reset test.)

- 2. [SHIFT] [SPCL] [3] [3] [6] [2] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use f MSSG j to scroll through messages.
 - Record error code(s) displayed for A17. If "TEST 1 OF A17 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A17.

Condition 2

1. [INSTR PRESET] [SHIFT]

Hold shift key until **"100.00000MZ -140.0DM**" appears, to override 20 second reset test.) 2. [SHIFT] [SPCL] [3] [0] [HZ]

- 3. When "WAITING FOR SET-UP 1 .24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/ M INPUT" (see ILD foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG 1 to scroll through messages.
 - Record any error code(s) displayed for A17;
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A17.

Condition 3

- 1. Rerun test which indicated **A17** failure.
- 2. Record test result.
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A17.

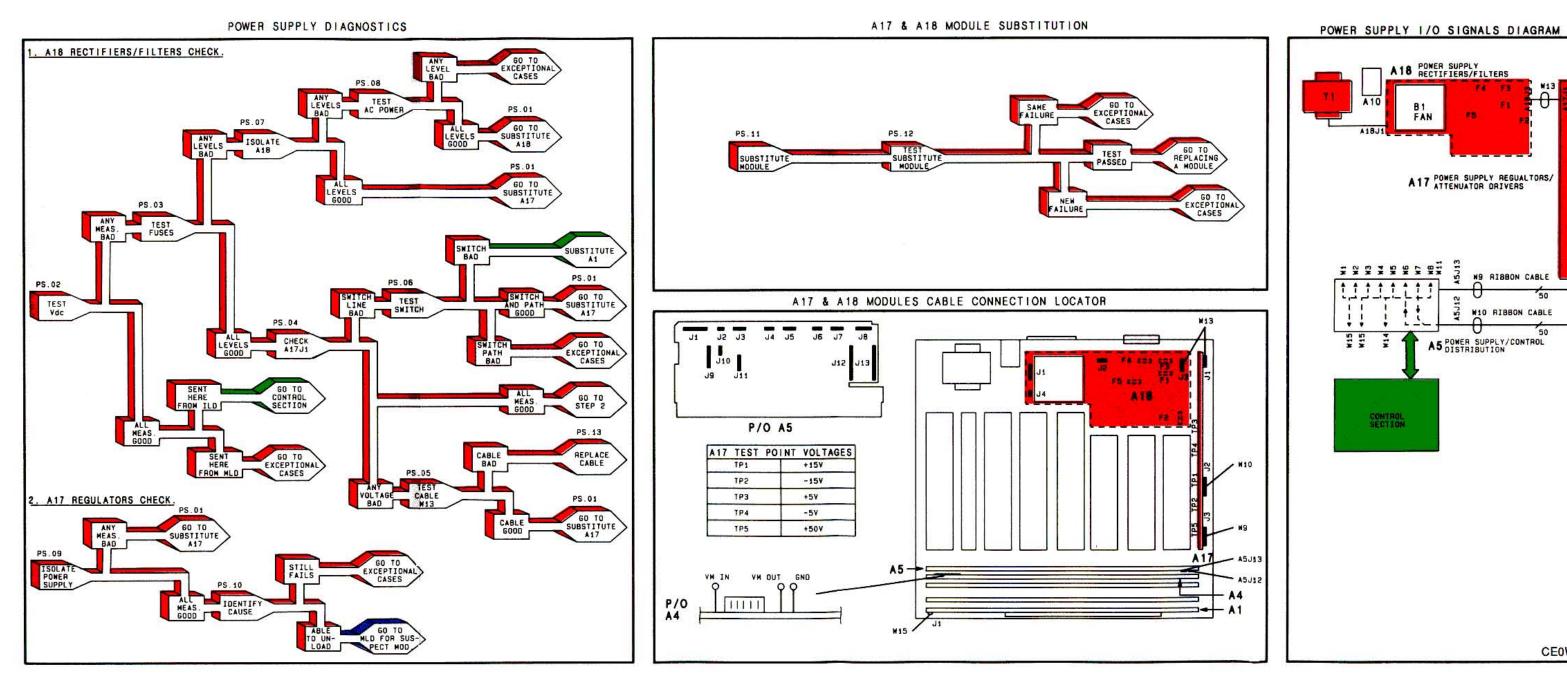


Figure 3B-100. A18 Rectifier/Filters Module and P/O Power Supply Regulators /Attenuator Drivers Module Diagnostics

3-49/(3-50 blank)

W9 RIBBON CABLE

W10 RIBBON CABLE

CE0WN003

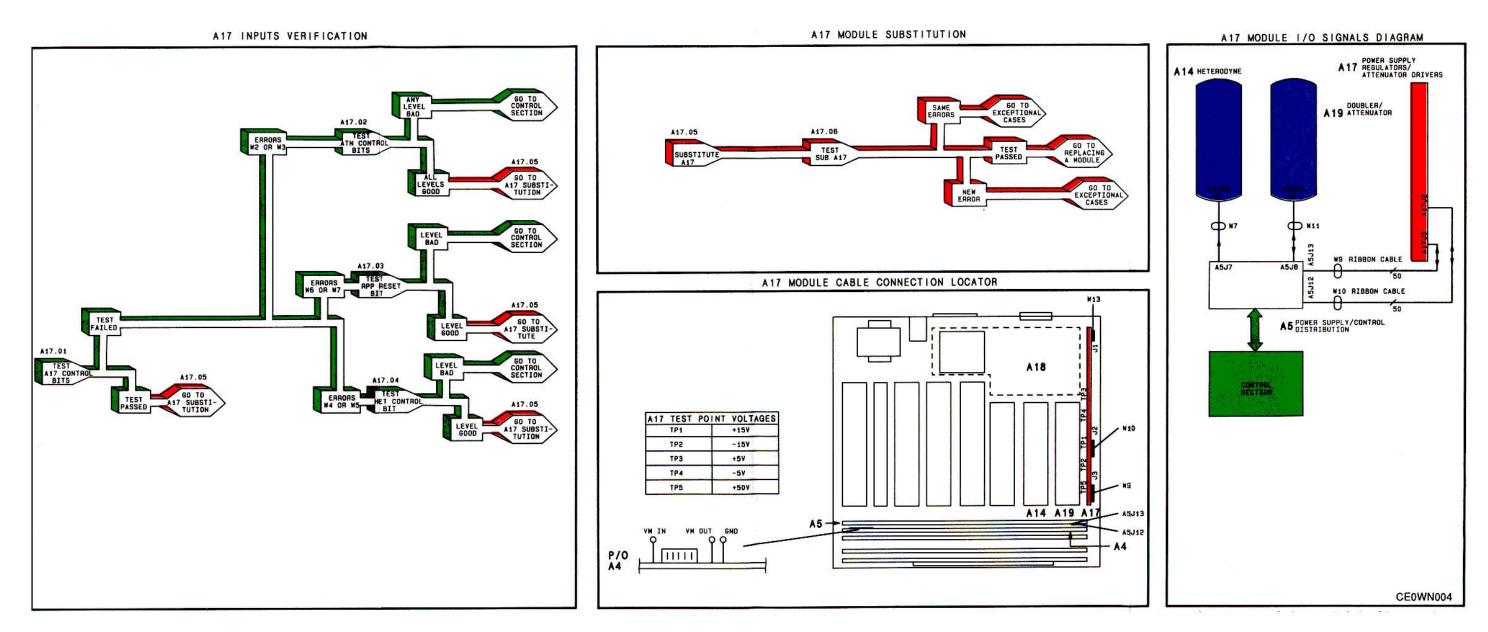


Figure 3B-200. A17 P/O Power Supply Regulators /Attenuator Drivers Module Diagnostics

3-51/(3-52 BLANK)

3C-1. INTRODUCTION

The MODULE LEVEL DIAGNOSTICS (MLD) contained in this section are used to further interrogate the Control Section Modules: A1 Keyboard/LCD Display Module, A3 Processor/ Memory Module, and A4 Latch Module. The objective is to isolate the failure indicated for this section to a module or to a part on which the Control Section depends for operation.

NOTES

At this level of testing, it is assumed that the Power Supply is operational. If there is any doubt, turn to the Power Supply Section to begin troubleshooting.

If **Test 4** of **A3** failed (error message **.U506**) check that **A3S2**, is in its **PROTECTED** position. (See CONTROL SECTION CONNECTOR LOCATOR diagram on the foldout at the end of this section to locate **A3S2**.) If **A3S2** is not in its **PROTECTED** position, move it to that position now and rerun the Instrument Level Diagnostics. If **A3S2** is in its **PROTECTED** position, proceed with the Control Section Diagnostics.

Test Instructions

- 1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to the table shown on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Testing in this section is divided into three parts, one part for each of the **three** Control Section modules: **A4, A3, A1.**
- 4. Begin the **Control Section Diagnostics** by reading the next page.

3C-2. INTRODUCTION

The first step in isolating a Control Section failure is to substitute in a known good **A4 Module** from the On-site Service Kit.

A4 Substitution Instructions

- 1. Find **A4 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A4 MODULE SUBSTITUTION** to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the page indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

NOTE The CONTROL SECTION I/O SIGNALS DIAGRAM shows all parts which the control modules depend on for operation.

3C-3. INTRODUCTION

To isolate a **Control Section** failure to the **A3 Module**, substitute in a known good module from the On-Site Service Kit.

A3 Substitution Instructions

- 1. Find **A3 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A3 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

3C-4. INTRODUCTION

To isolate a Control Section failure to the **A1 Module**, substitute in a known good module from the On-Site Service Kit.

A1 Substitution Instructions

- 1. Find **A1 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A1 MODULE SUBSTITUTION** to direct you through the substitution process. Each task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered in the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

3C-3. INTRODUCTION

To isolate a **Control Section** failure to the **A3 Module**, substitute in a known good module from the On-Site Service Kit.

A3 Substitution Instructions

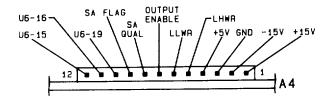
- 1. Find **A3 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A3 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

3C-4. INTRODUCTION

To isolate a Control Section failure to the **A1 Module**, substitute in a known good module from the On-Site Service Kit.

A1 Substitution Instructions

- 1. Find **A1 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A1 MODULE SUBSTITUTION** to direct you through the substitution process. Each task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered in the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.


Туре:	4, Voltage Measurements	CTL.03
Run time:	2 min.	TEST A4
Set-up time:	0 min.	Vdc

External DC voltmeter is used to test power supply levels at A4 Module.

Run Test

- 1. Turn instrument on.
- 2. Connect external **DC** voltmeter ground lead to **A4 Module** at **A4TP2 (GND).** (See **CONTROL SECTION CONNECTOR LOCATOR** on foldout to locate ground post.)
- 3. Measure power supply voltage levels:
 - Connect test probe to A4 Service Test Points pins 1, 2 and 4 (see Figure 3C-1. A4J1 Service Test Point Signal Locator).

Figure 3C-1. A4J1 Service Test Points Signal Locator

- 4. Record test results.
- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

CTL.04
TEST AA

The **Control Section** Failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your instrument.

- Condition 1: Instrument Level Diagnostics (ILD) indicated Control Section failure.
- Condition 2: Module Level Diagnostics (MLD) for another module indicated Control Section failure.
- Condition 3: Instrument must be set to a specific operating condition to detect Control Section failure.

Condition 1

NOTE

If you were sent to the Control Section because the instrument was unable to complete the **Instrument Level Self Test**, return to the foldout now and proceed with the **A4** substitution process.

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/
 M INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use (MSSG) to scroll through messages.
 - Record test results.
- 5. Return to foldout.

Condition 2

- 1. Rerun test which indicates Control Section failure.
- 2. Record test results.
- 3. Return to foldout.

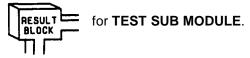
Condition 3

- 1. Set instrument to operating condition which causes Control Section failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Module Substitution	CTL.OS5
Run time: Set-up time:	0 2 min.	

Substitute Module

- 1. Switch instrument to Standby.
- 2. Remove A4 Module from instrument. (Refer to table on foldout in MECHANICAL PROCEDURES for location of removal information.)
- 3. Replace A4 Module with a known good module from On-Site Service Kit.
- 4. Turn instrument on.
- 5. Return to foldout.


Туре:	Module Tests	CTL.06
Run time: Set-up time:	Conditional Conditional	TEST AA

Test operation of substitute module by repeating test(s) performed on module before substitution.

- Condition 1: Instrument Level Diagnostics (ILD) indicated Control Section failure.
- Condition 2: Module Level Diagnostics (MLD) for another module indicated Control Section failure.
- Condition 3: Instrument must be set to a specific operating condition to detect Control Section failure.

Condition 1

- 1. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 2. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/
 M INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 3. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record test results.
- 4. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

Condition 2

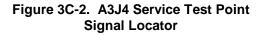
- 1. Rerun test which indicates **Control Section** failure.
- 2. Record test results.
- 3. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

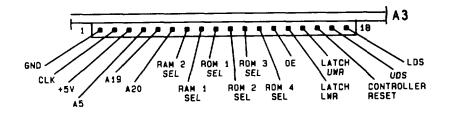
for TEST SUB MODULE.

Condition 3

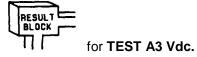
- 1. Set instrument to operating condition which causes Control Section failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB MODULE




Туре:	4, Voltage Measurements	CTL.07
Run time:	2 min.	TEST A3
Set-up time:	0 min.	Vdc

External DC voltmeter is used to test power supply levels at A3 Module.


Run Test

- 1. Turn instrument on.
- 2. Connect external DC voltmeter ground lead to A4 Module at A4TP2 (GND). (See CONTROL SECTION CONNECTOR LOCATOR on foldout to locate ground post.)
- 3. Measure power supply voltage levels:
 - Connect test probe to A3 Service Test Points (see Figure 3C-2. A3J4 Service Test Point Signal Locator).

- 4. Record test results.
- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

Туре:	Module Substitution	CTL08
Run time: Set-up time:	1 min. 3 min.	
Set-up time.	5 mm.	

In order for the instrument to operate correctly with substitute **A3 Module**, it is necessary to transfer Calibration Data from instrument's **A20 Calibration Module** to substitute A3 Module.

Substitute Module

- 1. Switch instrument to Standby.
- 2. **Remove A3** Module from instrument. (Refer to foldout in **MECHANICAL PROCEDURES** to locate removal information.)
- 3. Replace A3 Module with a known good module from ON Site Service Kit.

Down-Load Cal Data

CAUTION

Use adequate Electrostatic Discharge Techniques when handling the A20 Calibration Module.

4. Remove A20 Calibration Module from Rear Panel. (Refer to table on foldout in MECHANICAL PROCEDURES to locate removal information.)

CAUTION

Check that switch S1 on A20 Module is switched up to its "**PROTECTED**" position.

The Calibration Data stored on the A20 Module and in the instrument will be destroyed by misapplied electrical signals.

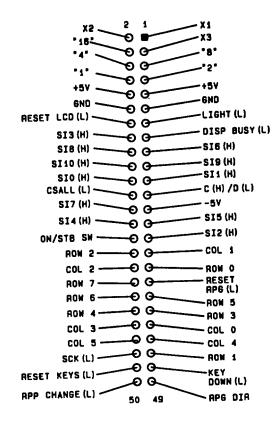
- 5. Switch instrument to Standby.
- 6. Connect A20 Module to A3 Module at A3J3 (see CONTROL SECTION CONNECTOR LOCATOR on foldout).
- 7. Turn instrument on.
- 8. When "100.000000 MZ -140.00 DM" appears:
 - Slide switch on left side of A3S2 (on A3 Module) back toward rear of instrument (see CONTROL SECTION CONNECTOR LOCATOR on foldout).
- 9. [SHIFT] [SPCL] [3] [7] [5] [HZ]
- 10. When "TRANSFER VERIFIED .U613" appears:
 - Slide **A3S2** forward, toward front of instrument to protect **A3 Module's** memory.
- 11. Switch instrument to Standby and remove A20 Module. Replace A20 Module on Rear Panel of instrument.
- 12. Return to foldout.

٠

Туре:	4, Voltage Measurements	CTL.09
Run time:	2 min.	
Set-up time:	6 min.	TEST A1 Vdc

External DC Voltmeter is used to check power supply levels at inputs to A1 Module.

Run Test


- 1. Turn instrument on.
- 2. Connect **external DC** voltmeter ground lead to **A4** Module at **A4TPZ (GND**). See **CONTROL SECTION CONNECTOR LOCATOR** on foldout to locate ground post.)

CAUTION

Opening the Front Panel without following the instructions presented in the MECHANICAL PROCEDURES section may cause damage to the Front Panel.

- 3. Measure voltage levels at A1A1 J1:
 - Open Front Panel. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate Front Panel information.)
 - Access signals from solder-side of A1A1J1. (See CONTROL SECTION CONNECTOR LOCATOR on foldout to locate A1A1 J1.)
 - Voltage levels and locations are shown in **Figure 3C-3**.

- 4. Record test results.
- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

TM 11-6625-3165-14

CONTROL SECTION DIAGNOSTICS

Туре:	Module Substitution	CTL.10
Run time: Set-up time:	0 10 min.	SUBSTITUTE

Substitute Module

- 1. Switch instrument to **Standby** and disconnect power plug.
- 2. Remove A1 Module from instrument. (Refer to table on foldout in MECHANICAL PROCEDURES for location of removal information).
- 3. Replace module with a known good A1 Module from On-Site Service Kit.

NOTE

To set-up the substitute AI Module for testing, simply connect cables at A1A1 JI and A1A1 J3 on substitute module and attach module to front panel with four nuts (I at each corner).

4. Return to foldout.

_

CONTROL SECTION DIAGNOSTICS

Type:	Module Substitution	CTL.11
Run time:	0	
Set-up time:	2 - 4 min.	T MODULE

Replace Module

-

- 1. Switch instrument to **Standby** (if you are replacing **A1 Module** disconnect line power also).
- 2. Remove substitute module from instrument and return to On-Site Service Kit.
- 3. Replace instrument's module in instrument. (Refer to foldout in **MECHANICAL PROCEDURES** to locate replacement information.)
- 4. Turn instrument on.
- 5. Return to foldout.

3-69/(3-70 BLANK)

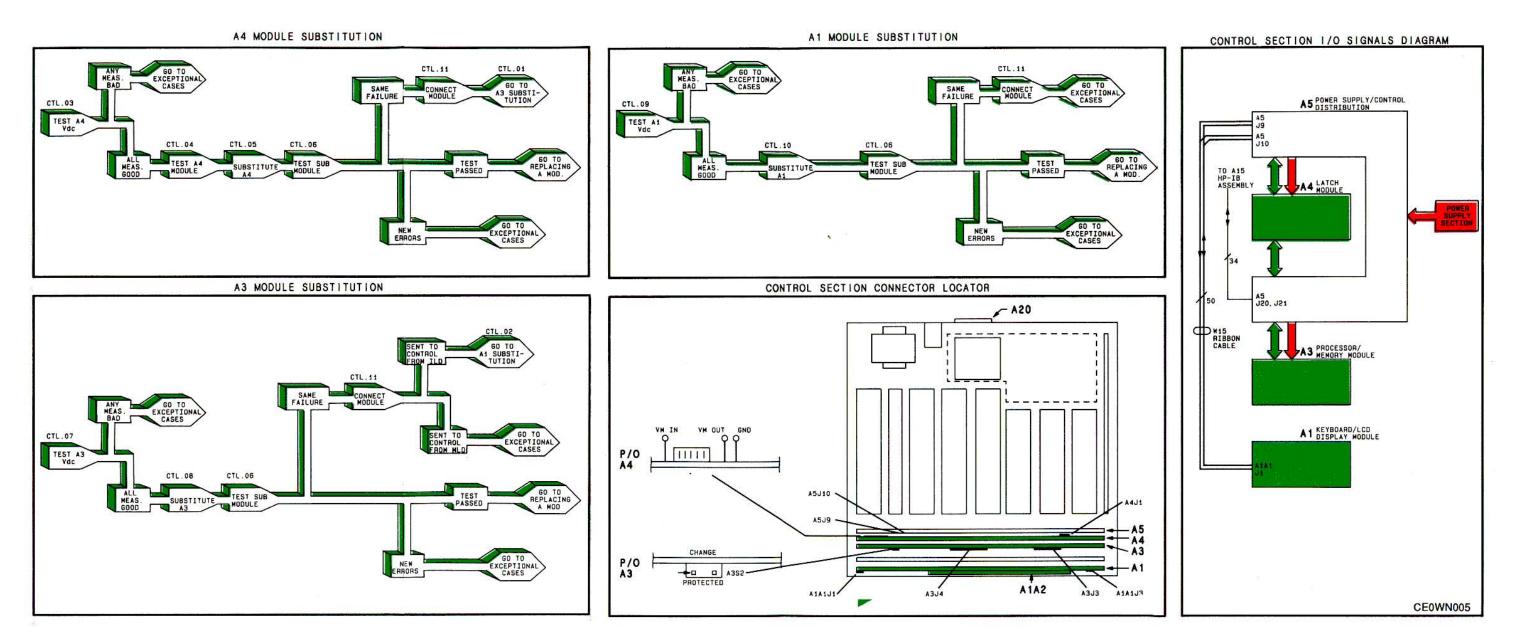


Figure 3C-100. A1, A3 AND A4 Control Section Diagnostics.

3-71/(3-72 BLANK)

3D-1. DELETED.

3-73/(3-74 BLANK)

3E-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A2 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01**, **A03** or **A04**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's **Front Panel** must be opened to run many of these tests. (Refer to the table on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Proceed to the next page to begin the A2 MLD.

3E-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page A2 INPUTS/OUTPUTS VERIFICATION.

The first step in isolating an **A2** failure is to substitute in a known good module from the On-Site Service Kit.

A2 Substitution Instructions

- 1. Find **A2 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A2 MODULE SUBSTITUTION** to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

A2 INPUTS/OUTPUTS VERIFICATION

3E-3. INTRODUCTION

If a known good **A2 Module** is not available, or if you were not able to isolate the failure using the **A2 MODULE SUBSTITUTION** procedure the Task Sequence Diagrams (shown under **A2 INPUTS/OUTPUTS VERIFICATION**) should be used to check each signal path into the A2 Module.

A2 Inputs /Outputs Verification Instructions

- 1. Find A2 INPUTS/OUTPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown under A2 INPUTS/OUTPUTS VERIFICATION, are separated into four checks: Modulation Input/Output Ports, Audio to Instrument, Control signals, and Power Supply signals.
- 3. Use the Task Sequence Diagrams to guide you through the verification process. Each Task Arrow shown in a diagram contains a task number and task title. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- Begin now by performing the first task shown under
 MODULATION I/O PORTS CHECK.

NOTE

The **A2 MODULE I/O SIGNALS DIAGRAM** shows all parts directly associated with modulation.

Туре:	1; Modulation Self Test	A2.02
Run time:	l min.	
Set-up time:	l min.	TEST A2 MODULE

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT". (See foldout in INSTRUMENT LEVEL DIAGNOSTICS (ILD) for set-up diagram.)
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

NOTE

If any error codes are displayed for modules A01, A03, or A04, you need to isolate those failure(s) before performing the A2 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A2 MODULE**.

Module Substitution	A2.03
0 5 min	SUBSTITUTE A2
	0

The following describes the technique for connecting a known good A2 Module without removing the A2 Module in the instrument.

Connect Substitute Module

- 1. Switch instrument to Standby.
- 2. Disconnect all cables to A2 Module; W14, W17 through 22 and W33. (See A2 MODULE CABLE CONNECTION LOCATOR on foldout.)
 - Clip cable ties holding cable bundle to module ties.
- 3. Without removing A2 Module from instrument, carefully lay substitute A2 Module against A2 Module in instrument.
- 4. Connect cables **W14**, **W17 through 22** and **W33** to substitute module.
- 5. Pivot substitute **A2 Module** away from **A2 Module** in instrument.
 - Support from cables should allow substitute module to be placed in a free standing position.

CAUTION

If circuit side of substitute A2 is permitted to contact A2 Module in instrument, damage could result to either module. If Front Panel contacts substitute A2 Module, damage could result to substitute A2 Module.

- 6. Carefully turn instrument on.
- 7. Return to foldout.

Туре:	Substitute Module Test	A2.04
Run time:	1 min.	
Set-up time:	1 min.	

Test operation of substitute **A2 Module** by repeating test performed on A2 Module before substitution.

CAUTION

Do not allow Front Panel to swing against substitute A2 Module while instrument is turned on.

<u>Run Test</u>

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DMZ" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [1] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 ,V24" appears:
 - Use same set-up as in previous test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A2**.

Туре:	Additional A2 Tests	A2.05
Run time: Set-up time:	Conditional Conditional	TEST A2
		FURTHER

The **A2 Module** failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:Instrument Level Diagnostics indicated A2 failure.Condition 2Failure indicated for another module appears to be modulation related.Condition 3:Instrument must be set to a specific operating condition to detect A2 failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100,000000 MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit to "FM/FM INPUT" (See foldout in INSTRUMENT LEVEL DIAGNOSTICS (ILD) for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - CFM to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use ([MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

NOTE

If any error codes are displayed for modules A01, A03, or A04, you need to isolate those failure(s) before performing the A2 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

- 1. Rerun test which generates modulation related failures.
- 2. Record test results.
- 3. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A2 failure.
- 2. Record instrument set-up and error messages.
- 3. Return to foldout.

Туре:	Additional Substitute A2 Tests	A2.06
Run time:	Conditional	
Set-up time:	Conditional	

Test operation of substitute **A2 Modul**e by repeating test(s) performed on A2 Module before substitution.

Condition 1: Instrument Level Diagnostics indicated A2 failure.

Condition 2:Failure indicated for another module appears to be modulation related.Condition 3:Instrument must be set to a specific operating condition to detect A2
failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit to "FM/FM INPUT" (See foldout in INSTRUMENT LEVEL DIAGNOSTICS (ILD) for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

NOTE

If any error codes are displayed for modules A01 A03, or A04, you need to isolate those failure(s) now.

- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A2 FURTHER**.

Condition 2

- 1. Rerun test which generates modulation related failures
- 2. Record test results.
- 3. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A2 FURTHER**.

Condition 3

- 1. Set instrument to operating condition which causes A2 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A2 FURTHER**..

Type: Run time:	Cable Connection 0 min.	A2.07
Set-up time:	5 min.	

Connect Module

- 1. Switch instrument to **Standby**.
- 2. Disconnect cables W14, W17 through W22 and W33 from substitute A2 Module.
- 3. Reconnect cables **W14**, **W17** through **W22** and **W33** to **A2 Module** and replace cable ties holding cable bundles to module with ties provided in On-Site Service Kit.
- 4. Turn instrument on.
- 5. Return substitute A2 Module to On-Site Service Kit.
- 6. Return to foldout.

Туре:	1; Modulation Self Test	A2.08
Run time:	1 min.	-
Set-up time:	1 min.	TEST MOD PORTS

This is the same test used to test **A2 Module** during module substitution process. If you made an accurate record of test results for that test, it is not necessary to rerun test now; instead proceed directly to step **5**.

Run Test

- [INSTR] [PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT" (see foldout in INSTRUMENT LEVEL DIAGNOSTICS (ILD) for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST MOD PORTS.

Туре:	1; Modulation Self Test	A2.09
Run time:	1 min.	
Set-up time:	6 min.	CABLE W21

Cable **W21** is tested by by-passing it during testing.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect "FM/⊕M INPUT", "MOD OUTPUT" and "AM INPUT" same as previous test.
- 4. Test cable W21:
 - Disconnect cable W21 from A2 Module at A2J8 (see A2 MODULE CABLE CONNECTION LOCATOR on foldout) and from A6 Module at A6A2 J3 (see Top View Diagram on inside of Top Cover to locate W21 connection on A6 Module). (See table on foldout in MECHANICAL PROCEDURES to locate Top Cover removal information.)
 - Substitute test coax cable from On-Site Service Kit between A2J8 and A6 Module at A6A2 J3.
 - [HZ] to continue.
- 5. When "DIAG DONE HIT MSSGS .V1" appears:
 - Reconnect cable W21 to modules A2 and A6.
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W21**.

Туре:	1; Modulation Self Test	A2.10
Run time:	1 min.	
Set-up time:	8 min.	CABLES W17, 18 6 19

Cables W17, W18 and W19 are tested by separately by-passing each cable and rerunning test.

Test Cable W19

- [INSTR RESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect BNC Tee connector from "FM/FM INPUT"; leave BNC cables connected to "MOD OUTPUT" and "AM INPUT" as in previous test.
 - Connect BNC-to-SMC adapter, SMC barrel adapter, and test coax cable (from On-Site Service Kit) to Tee connector.
- 4. Connect substitute cable:
 - Disconnect cable W19 from A2 Module at A2J5. (See A2 MODULE CABLE CONNECTIONS LOCATOR on foldout to locate A2JS.)
 - Connect the coax cable from Tee connector to A2 Module at A2J5.
 - [HZ] to continue.
- 5. When "DIAG DONE HIT MSSGS.V1" appears:
 - Reconnect cable W19 to A2 Module.
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

Test Cable W17

- 6. Repeat steps **1** and **2**.
- 7. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect BNC cable from "MOD OUTPUT" and connect to "FM/FM INPUT".

- 8. Connect substitute cable:
 - Disconnect cable W17 from **A2 Module** at **A2J7**.
 - Connect loose end of test cable to A2 Module at A2J7.
 - [HZ] to continue test.
- 9. When "DIAG DONE HIT MSSGS .V1" appears:
 - Reconnect cable W17 to A2 Module.
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

Test cable W18

- 10. Repeat steps 1 and 2.
- 11. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect BNC cable from "AM INPUT" and connect to "MOD OUTPUT".
- 12. To connect substitute cable:
 - Disconnect cable W18 from A2 Module at A2J2.
 - Connect loose end of test cable to A2 Module at A2J2.
 - [HZ] to continue test.
- 13. When "**DIAG DONE HIT MSSGS**,**V**" appears:
 - Reconnect cable W18 to A2 Module.
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.

NOTE

If tests did not pass for any of the cable substitution attempts, you should have gotten the same error set for each test. If you did not get the same errors, recheck cable connections and rerun test.

- 14. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST CABLES W17, 18 and 19.

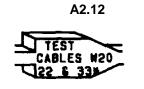
Type: Run time: Set-up time: 2; Audio Output Levels 30 sec. 6 min. A2.11

Run Test

- [INSTR] [PRESET] [SHIFT] (Hold shift key until "10.000000 MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [7] [HZ]
- 3. When **"WAITING FOR SET-UP 1 .V24**" appears:
 - Disconnect cable W22 from A13 Module at A13A2 J4 (See Top View Diagram inside Top Cover to locate W22 on A13).
 - Connect cable **W22** to "**AM INPUT**" using BNC cable and BNC-to-SMC adapter with barrel adapter from On-Site Service Kit.

CAUTION

Extending the A9 Module exposes the circuit side of the A17 Power Supply Regulators/Attenuator Drivers Module. Do not permit the loose end of W33 to contact the A17 Module.


- Disconnect cable W33 from A19 Module at A19A1J6. To access A19A1J6, extend A19 Module. (See table on foldout in MECHANICAL PROCEDURES for module extending information.)
- Connect cable W33 to "FM/FM INPUT" using cabling method described for W22.
- [HZ] to continue.

- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cables W22, W33 to modules.
 - Disconnect cable W20 from A6 Module at A6A1 J4.
 - Connect cable W20 to "AM INPUT".
 - Connect "FM/FM INPUT" to "MOD OUTPUT".
 - [HZ] to continue.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W20 to A6 Module.
 - [HZ] to continue.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use (MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.
 - If "TEST 2 OF A02 (PASSED or FAILED)" is not displayed, rerun test.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST AUDIO TO A6, 13** and **19**.

Туре:	
Run time:	
Set-up time:	

2; Audio Output Levels 30 sec. 5 min.

Cables **W20**, **W22** and **W23** are tested by substituting in a test cable for each of these cables during testing.

Run Test

- [INSTR] [PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [1] [7] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W22 from A2 Module at A2J3 (see MODULE CABLE CONNECTION LOCATOR on fold-out to locate W22). (See table on foldout in MECHANICAL PROCEDURES for opening Front Panel information.)
 - Using BNC cable and BNC-to-SMC adapter, SMC barrel, and SMC coax cable from On-Site Service Kit. connect A2 Module (at A2J3) to. "AM INPUT".
 - If an HP 8642A is being tested, push [HZ] now and proceed to step 4.
 - If an HP 8642B is being tested, disconnect cable W33 from A2 Module at A2J4.
 - Using same cabling method described for W22, connect A2 Module (at A2J4) to "FM/FM INPUT"
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cables W22 and W33 to A2 Module.
 - Disconnect cable W20 from A2 Module at A2J6.
 - Connect A2 Module (at A2J6) to "AM INPUT".
 - Connect "FM/FM INPUT" to "MOD OUTPUT".
 - [HZ} to continue.

- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W20** to **A2 Module**.
 - [HZ]to continue.
- 6. When "DIAG DONE HIT MSSGS.V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A2.
 - If "TEST 2 OF A02 (PASSED or FAILED)" is not displayed, rerun test.
- 7. If test failed, proceed directly to step 8, otherwise continue testing.
 - A passing test indicates that one of the by-passed cables (W20, W22 or W23) was cause of failure.
 - To isolate defective cable, rerun test two more times connecting cables as follows:

Test 1: Connect cables **W22** and **W33** as described in step **3** of this test (by-passed). Connect **W20** as described in step **4** of previous test (not by-passed).

Test 2: Connect cable **W22** as described in previous test (not by-passed). Connect **W33** and **W20** as described in this test (by-passed).

• Use the following chart to determine defective cable:

Test 1	Test 2	Defective Cable(s)
F	Р	W20
Р	F	W22
F	F	Cables W20 and W22
P	Р	W33

- 8. When testing is complete, return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLES W20**, 22 and 33.

Type:3; Bit TransmissionA2.13Run time:6 min.Set-up time:2 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A2 Module on Clock and Data control lines D0 through D7.

NOTES

Check control line inputs to A2 by performing test procedure for control lines shown In **Table 3E-1**

If any control line measures bad, it is not necessary to test remaining lines; proceed to step **14**.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect cable W14 from module at A2J1.
 - Plug end of W14 into 20 pin test connector, from On-site Service Kit.

NOTE

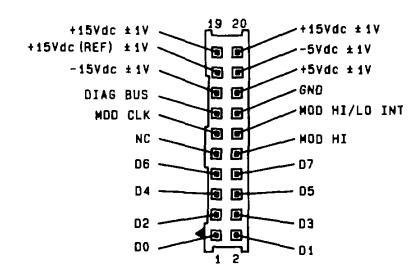
Find arrowhead on test connector and align with arrowhead on cable plug W14P2.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A2 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on.

Clock and Data Control Lines


Check High State

- 4. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 5. Enter Bit Select Keys as indicated in.**Table 3E-1. W14P2 Control Bits**, for Control Line to be tested.
- 6. Connect VM probe Control Line at Pin Number indicated in Table 3E-1. (See Figure 3E-1. Cable Plug W14P2 Signal Locator.)

Test	Control	Bit	Pin
Order	Line	Select Keys	Number
		(Steps 5 and 10)	(Step 6)
1	MOD CLK	[6] [0] [HZ]	11
2	D0	[4] [8] [HZ]	1
3	D1	[4] [9] [HZ]	2
4	D2	[5] [0] [HZ]	3
5	D3	[5] [1] [HZ]	4
6	D4	[5] [2] [HZ]	5
7	D5	[5] [3] [HZ]	6
8	D6	[5] [4] [HZ]	7
9	D7	[5] [5] [HZ]	8

Table 3E-1. W14P2 Control Bits

Figure 3E-1, Cable Plug W14P2 Signal Locator

7. [2] [5] [HZ]

(To enable voltmeter.)

8. Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 10. Enter **Bit Select Keys** as indicated in **Table 3E-1**. **W14P2 Control Bits**, for same **Control Line**.
- 11. [2] [5] [HZ]

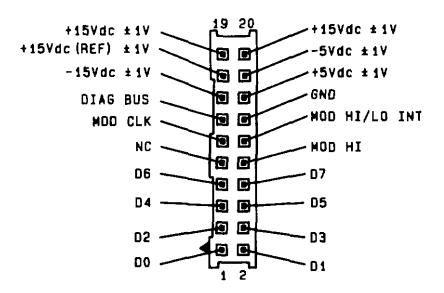
(To enable voltmeter.)

- 12. Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 13. Repeat procedure for each Control Line shown in Table 3E-1.
- 14. Record test results.
- 15. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS**.

Туре:	Voltage Measurements	A2.14
Run time:	2 min.	
Set-up time:	6 min.	TEST Vdc

Internal Voltmeter (VM) is used to check power supply levels at inputs to A2 Module.

Run Test


- 1. Switch instrument to Standby:
 - Disconnect W14 from A2 at A2J1.
 - Plug end of W14 into 20 pin test connector, from On-site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W14P2.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A2 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ]' (To enable Internal-Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3E-2. Cable Plug W14P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

Figure 3E-2. Cable Plug W14PZ Signal Locator

- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc**.

Type:	Cable Substitution	A2.15
Run time:	5 min.	SUBSTITUTE
Set-up time:	1 min.	CABLE

- 1. Testing has shown cable **W20**, **W21**, **W22**, or **W33** to be defective, temporarily replace with a test cable from the On-Site Service Kit. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted
- 3. Return to foldout.

Туре:	Cable Check	A2.16
Run time:	N/A	
Set-up time:	N/A	CABLE W14

- 1. Replacement of cable **W14** is not considered an on-site procedure due to extensive disassembly required.
- 2. To further test **W14**, verify integrity of signal source by proceeding as directed on foldout.
- 3. Reconnect cable **W14** to **A2 Module**.
- 4. Return to foldout.

3-101/(3-102 BLANK)

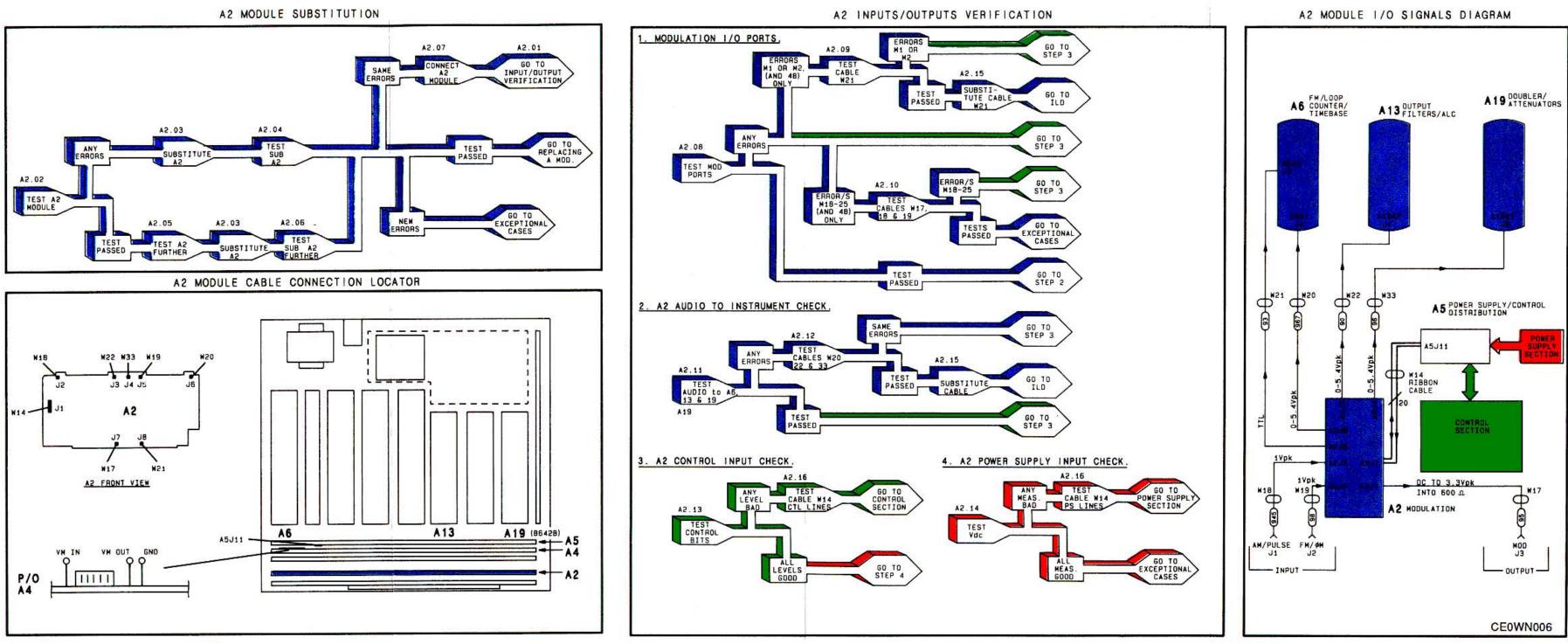


Figure 3E-100. A2 Modulation Module Diagnostics

3-103/(3-104 BLANK)

A6 FM LOOP/COUNTER/TIMEBASE MODULE

3F-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A6 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01**, **A03** or **A04**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight). When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's Top Cover must be removed to run many of these tests. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the A6 MLD.

3F-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page, **A6 INPUTS VERIFICATION**.

The first step in isolating an **A6** failure is to substitute in a known good module from the On-site Service Kit.

A6 Substitution Instructions

- 1. Find **A6 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A6 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

A6 INPUTS VERIFICATION

3F-3. INTRODUCTION

If a known good **A6 Module** is not available, or if you were not able to isolate the failure using the **A6 MODULE SUBSTITUTION** procedure, the Task Sequence Diagrams (shown under **A6 INPUTS VERIFICATION**) should be used to check each signal path into the A6 Module.

A6 Inputs Verification Instructions

- 1. Find **A6 INPUTS VERIFICATION** on the foldout.
- 2. The Task Sequence Diagrams, shown under A6 INPUTS VERIFICATION, are separated into three checks: Control, Power Supply and RF signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1. A6 CONTROL INPUT CHECK**.

NOTE

The A6 MODULE I/O SIGNALS DIAGRAM shows all parts which the A6 Module depends on for operation.

Type: Run time:	1; Loop Lock/Unlock 1 min.	A6.02
Set-up time:	0	TEET AS
		TEST A6 MODULE

<u>Run Test</u>

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [0] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 1 OF A06 (PASSED or FAILED)" is not displayed, rerun test.

NOTE

If any error codes are displayed for modules A01, A03 or A04, you need to isolate those failure(s) before performing the A6 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A6 MODULE**.

Type: Run time: Set-up time:	Module Substitution 0 7 min.	A6.03

The following describes the technique for connecting a known good A6 Module without removing the **A6 Module** in the instrument.

Connect Substitute Module

- 1. Switch instrument to Standby.
- 2. Disconnect cables W1, W20, W21, W23, W24, W26, W27, W28 and W29 from A6 Module (see A6 MODULE CABLE CONNECTION LOCATOR on foldout).
- 3. Without removing A6 Module from instrument carefully lay substitute A6 Module on top of modules A7, A9 and A11.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 4. Connect cables W1, W20, W21, W23, W24, W26, W27, W28 and W29 to substitute module.
- 5. Turn instrument on.
- 6. Return to foldout.

Type: Run time:	Substitute Module Test 1 min.	A6.04
Set-up time:	0	TEST

Test operation of substitute A6 Module by repeating test performed on A6 Module before substitution.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000 MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [0] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 1 OF A06 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A6**.

nditional
nditional

The **A6** failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1: Instrument Level Self Test indicated **A6** failure.

Condition 2: RF Power Test for another module indicated **A6** failure.

Condition 3: Instrument must be set to a specific operating condition to detect A6 failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record **A6** error codes.

NOTE

If any error codes are displayed for modules A01, A03 or A04, you need to isolate those failure(s) before performing the A6 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test,)
- 2. [SHIFT] [SPCL] [3] [3] [2] [2] [HZ]
- 3. When "WAITING FOR SET-UP 1 V24" appears:
 - Disconnect cable W28 from module at A6A2 J8.
 - Connect YELLOW PM cable to module at A6A2 J8.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W28 to module at A6A2 J8.
 - Disconnect cable W26 from module at A6A2 J6.
 - Connect **PM** cable to module at **A6A2 J6**.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable W26 to module at A6A2 J6.
 - Disconnect cable W29 from module at A6A2 J9.
 - Connect PM cable to module at A6A2 J9.
 - [HZ] to continue test.
- 6. When "WAITING FOR SET-UP 4 .V27" appears:
 - Reconnect cable W29 to module at A6A2 J9.
 - Disconnect cable W23 from module at A6A2 J5.
 - Connect PM cable to module at A6A2 J5.
 - [HZ] to continue test.
- 7. When "WAITING FOR SET-UP 5 .V28" appears:
 - Reconnect cable W23 to module at A6A2 J5.
 - Disconnect cable W24 from module at A6A1 J2.
 - Connect PM cable to module at A6A1 J2.
 - [HZ] to continue test.
- 8. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W24 to module at A6A1 J2.
 - [HZ] to continue test.
- 9. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 2A OF A06 (PASSED or FAILED)" is not displayed, rerun test.
- 10. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A6 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute A6 Tests	A6.06
Run time:	Conditional	TEST
Set-up time:	Conditional	

Test operation of substitute A6 Module by repeating test(s) performed on A6 Module before substitution.

Condition 1: Instrument Level Self Test indicated A6 failure.

Condition 2: RF Power Test for another module indicated A6 failure.

Condition 3: Instrument must be set to a specific operating condition to detect A6 failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A6 error codes.

NOTE

If any error codes are displayed for modules A01, A03 or A04, you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for TEST SUB A6 FURTHER.

Condition 2

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [2] HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W28 from module at A6A2 J8.
 - * Connect YELLOW PM cable to module at A6A2 J8.
 - * [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W28 to module at A6A2 J8.
 - Disconnect cable W26 from module at A6A2 J6.
 - Connect **PM** cable to module at **A6A2 J6**.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable W26 to module at A6A2 J6.
 - Disconnect cable W29 from module at A6A2 J9.
 - Connect PM cable to module at A6A2 J9.
 - [HZ] to continue test.
- 6. When "WAITING FOR SET-UP 4 .V27" appears:
 - Reconnect cable W29 to module at A6A2 J9.
 - Disconnect cable W23 from module at A6A2 J5.
 - Connect **PM** cable to module at **A6A2 J5**.
 - [HR] to continue test.
- 7. When "WAITING FOR SET-UP 5 .V28" appears:
 - Reconnect cable W23 to module at A6A2 J5.
 - Disconnect cable W24 from module at A6A1 J2.
 - Connect PM cable to module at A6A1 J2.
 - [HZ] to continue test.
- 8. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W24 to module at A6A1 J2.
 - [HZ] to continue test.
- 9. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 2A OF A06 (PASSED or FAILED)" is not displayed, rerun test.)
- 10. Return to foldout:
 - •Determine next task by comparing test results to conditions shown in each for **TEST SUB A6 FURTHER**.

Condition 3

- 1. Set instrument to operating condition which causes **A6** failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A6 FURTHER**.

Туре:	Cable Connection	A6.07
Run time:	0	TRANSFOR
Set-up time:	5 min.	

Connect Module

- 1. Switch instrument to Standby.
- 2. Disconnect cables W1, W20, W21 W23, W24, W26, W27, W28 and W29 from substitute A6 Module.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 3. Reconnect cables **W1**, **W20**, **W21**, **W23**, **W24**, **W26**, **W27**, **W28** and **W29** to **A6 Module**.
- 4. Turn instrument on.
- 5. Return substitute A6 Module to On-Site Service Kit.
- 6. Return to foldout.

Туре:	3; Bit Transmission	A6.08
Run time:	3 min.	
Set-up time:	2 min.	TEST CONTROL BITS

Internal Voltmeter **(VM)** is used to measure TTL level changes transmitted to **A6 Module** on Clock, Data and Control lines.

NOTE

If any control line level is bad, it is not necessary to test remaining lines; proceed to step **34**.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect cable W1 from module at A6A1 J1.
 - Plug end of **W1 into 26** pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W1P2.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

2. Connect VM probe:

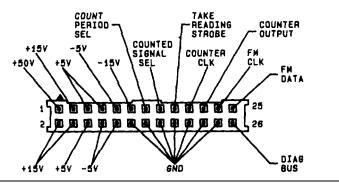
- Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
- Connect alligator clip to VM IN (A4TP1). (See A6 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on.

FM Control Lines

Check High State

4. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state)

NOTE


A "**0**" will appear in display indicating that these data bits will be set low. However, the bits are inverted in the Control Section -before they are sent to A6.

- 5. Enter **Bit Select Keys**, as indicated in **Table 3F-1**. **W1P2 Control Bits**, for **Control Line** to be tested.
- 6. Connect VM probe to Control Line at Pin Number indicated in Table 3F-1. (See Figure 3F-1. Cable Plug W1P2 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 5 and 10)	Pin Number (Step 6)
1	FM CLK	[4] [6] [HZ]	23
2	FM DATA	[4] [7] [HZ]	25

Table 3F-1. W1P2 Control Bits

Figure 3F-1. Cable Plug W1P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that these data bits will be set high. However, the bits are inverted in the Control Section before they are sent to A6.

- 10. Enter Bit Select Keys, as indicated in Table 3F-1, for same Control Line.
- 11. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc.
 ([5] [HZ] to repeat measurement.)
- Repeat procedure for each Control Line shown in Table 3F-1 before proceeding to step 14.

Counter Control Lines

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 15. Enter **Bit Select Keys**, as indicated in **Table 3F-2. W1P2 Control Bits**, for **Control Line** to be tested.
- 16. Connect VM probe to Control Line at Pin Number indicated in Table 3F-2. (See Figure 3F-1. Cable Plug W1P2 Signal Locator.)

Table 3F-2. W1P2 Control Bits

Test Order	Control Line	Bit Select Keys (Steps 15 and 20)	Pin Number (Step 16)
1	COUNTER CLK	[7] [2] [HZ]	19
2	TAKE READING STROBE	[7] [3] [HZ]	17
3	COUNT PERIOD SELECT	[7] [4] [HZ]	13
4	COUNTED SIGNAL SELECT	[7] [5] [HZ]	15

- 17. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

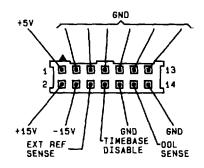
Check Low State

- 19. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 20. Enter Bit Select Keys, as indicated in Table 3F-2, for same Control Line.
- 21. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)
- Repeat procedure for each Control Line shown in Table 3F-2 before proceeding to step 24.

- 24. Switch instrument to Standby:
 - Disconnect W1 from module at A6A2 J1.
 - Plug end of **W1** into **14** pin test connector, from On-Site Service Kit, into end of **W1**. (See Figure 3F-2. Cable Plug W1P3 Signal Locator.)

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W1P3.


• Turn instrument on.

Timebase Control Line

Check High State

- 25. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 26. [1] [4] [HZ] (To select bit.)
- 27. Connect VM probe to test connector at TIMEBASE DISABLE (pin 8). (See Figure 3F-2. Cable Plug W1P3 Signal Locator.)

Figure 3F-2. Cable Plug W1P3 Signal Locator

- 28. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

Check Low State

- 30. [SHIFT] [SPCL] (30 [6] [0] [2] (To specify low state.)
- 31. [1] [4] [HZ] (To select bit.)
- 32. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 34. Record test results.
- 35. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST CONTROL BITS.

Туре:	3; Bit Transmission	A6.09
Run time:	3 min.	
Set-up time:	3 min.	
	0.1111	CABLE NI

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A6 Module on Clock, Data and Control lines.

Run Test

- 1. Switch instrument to **Standby**.
- Extend A6 Module on extender posts, from On-Site Service Kit, to disconnect cable W1 from A5 Module at A5J1. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A6 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W1.

- 3. Connect **VM** probe:
 - Connect red alligator clip and **pointed tip** probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A6 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on.

NOTE

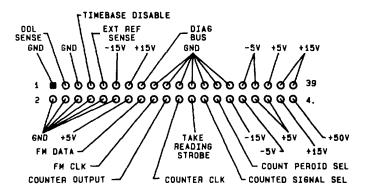
It is only necessary to perform test on failing control line.

FM Control Lines

Check High State

5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)

NOTE


A "**0**" will appear in display indicating that these data bits will be set low. However, the bits are inverted in the Control Section before they are sent to **A6**.

- 6. Enter **Bit Select Keys**, as indicated in **Table 3F-3**. **A5J1 Control Bits**, for **Control Line** to be tested.
- 7. Connect VM probe to Control Line at Pin Number indicated in Table 3F-3. (See Figure 3F-3. A5J1 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 6 and 11)	Pin Number (Step 7)
1	FM CLK	[4] [6] [HZ]	18
2	FM DATA	[4] [7] [HZ]	16

Table 3F-3. A5J1 Control Bits

Figure 3F-3. A5J1 Signal Locator (Solder-Side View)

- 8. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that these data bits will be set high. However, the bits are inverted in the Control Section before they are sent to **A6**.

- 11. Enter **Bit Select Keys**, as indicated in **Table 3F-3**, for same **Control Line**.
- 12. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Counter/Timebase Control Lines

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 15. Enter **Bit Select Keys**, as indicated in **Table 3F-4. A5J1 Control Bits**, for **Control Line** to be tested.
- 16. Connect VM probe to Control Line at Pin Number indicated in Table 3F-4. (See Figure 3F-3. A5J1 Signal Locator.)

Table 3F-4. A5J1 Control Bits

Test Order	Control Line	Bit Select Keys (Steps 15 and 20)	Pin Number (Step 16)
1	COUNTER CLK	[7] [2] [HZ]	22
2	TAKE READING STROBE	[7] [3] [HZ]	24
3	COUNT PERIOD SELECT	[7] [4] [HZ]	28
4	COUNTED SIGNAL SELECT	[7] [5] [HZ]	26
5	TIMEBASE DISABLE	[1] [4] [HZ]	7

- 17. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 19. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 20. Enter Bit Select Keys, as indicated in Table 3F-4, for same Control Line.

- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc**. ([5] [HZ] to repeat measurement.)
- 23. Repeat procedure for each Control Line shown in Table 3F-4.
- 24. Record test results.
- 25. Reconnect W1 and lower Module back into instrument.
- 26. Return to foldout:

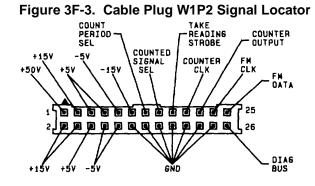
•

Determine next task by comparing test results to conditions shown in each

for TEST CABLE W1 CTL LINES.

Туре:	4, Voltage Measurements	A6.10
Run time:	2 min.	
Set-up time:	2 min.	TEST

Internal Voltmeter (VM) is used to check power supply levels at inputs to A6 Module.

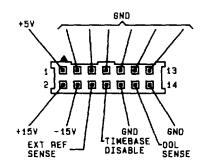

Run Test

- 1. Switch instrument to Standby:
 - Disconnect W1 from A6 at A6A1J1.
 - Plug end of W1 into 26 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug **W1P2**.

- 2. Connect **VM** probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A6 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)
- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line. (See Figure 3F-3. Cable Plug W1P2 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)


- 5. Switch instrument to Standby:
 - Disconnect W1 from A6 at A6A2J1.
 - Plug end of W1 into 14 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W1P3.

- 6. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line. (See Figure 3F 4. Cable Plug W1P3 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

Figure 3F-4. Cable Plug W1P3 Signal Locator

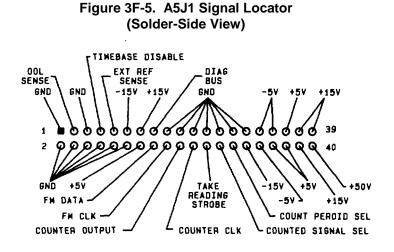
- 7. Record test results.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST Vdc.

Туре:	4, Voltage Measurements	A6.11
Run time:	2 min.	TEST
Set-up time:	3 min.	CABLE WI

Internal Voltmeter (VM) is used to check power supply levels at A5J1.

Run Test


- 1. Switch instrument to **Standby**.
- Extend A6 Module on extender posts, from On-Site Service Kit, to disconnect cable W1 from A5 Module at A5J1. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A6 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W1.

- 3. Connect **VM** probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A6 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure voltage levels at **A5J1**:
 - Access signals from solder-side of A5J1. (See Figure 3F-5. A5J1 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect W1 and lower Module back into instrument.
- 8. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

Туре:	External Reference Check	A6.12
Run Time:	10 sec.	
Set-up Time:	0	

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [5] (9) [HZ]
- 3. Record test results.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST EXT. REF.

Туре:	1; Loop Lock/Unlock	A6.13
Run Time:	1 min.	
Set-up Time:	0	LOOP

Run Test

- 1. Disconnect external reference from Rear Panel at **EXT REF INPUT (J4).**
- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 3. [SHIFT] [SPCL] [3] [3] [2] [0] [HZ].
- 4. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 1 OF A06 (PASSED or FAILED)" is not displayed, rerun test.
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST LOOP.

Туре:	External Reference	A6.14
Run time:	N/A	
Set-up time:	N/A	SUBSTI- TUTE EXT. REF.

Test results indicate that the external reference signal is not stable enough for the **A6 Module** to lock to.

- 1. Use another reference source if available or operate instrument unreferenced.
- 2. Return to foldout and proceed as directed to confirm correct operation of the rest of instrument.

TM 11-6625-3165-14

A6 MODULE DIAGNOSTICS

Туре:	Cable Substitution	A6.15
Run time:	0 min.	
Set-up time:	4 min.	

Testing has shown cable **W1** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

NOTE

Cable W1 is a single cable which splits and connects both A6A1 J1 and A6A2 J1 to A5J1.

CAUTION

When connecting ribbon cable to $\overline{A6}$ Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W1

- Switch instrument to Standby to connect cable W1 to A5 Module and A6 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W1 to A5J1.)
- 2. Return to foldout.

Туре:	Cable Connection	A6.16
Run time:	O min.	
Set-up time:	4 min.	CONNECT

CAUTION

When connecting ribbon cable to $\overline{A6}$ Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W1

- Switch instrument to Standby to reconnect cable W1 to A5 Module or A6 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W1 to A5J1.)
- 2. Return to foldout.

Туре:	2A; RF Power Levels	A6-17
Run time:	30 sec.	
Set-up time:	3 min.	

RF signal level is measured using Internal Power Meter (**PM**).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] (8) [1] [4] [HZ] (To check input levels only.)
- 3. (3) [2] [2] [HŻ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W28 from A6 module at A6A2 J8.
 - Connect YELLOW PM cable to A6 module at A6A2 J8.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears
 - Reconnect cable W28 to module at A6A2 J8.
 - Disconnect cable W26 from module at A6A2 J6.
 - Connect PM cable to module at **A6A2 J6**.
 - [HZ] to continue test.
- 6. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable W26 to module at A6A2 J6.
 - Disconnect cable W29 from module at A6A2 J9.
 - Connect PM cable to module at A6AZ J9.
 - [HZ] to continue test.
- 7. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W29 to A6 module at A6A2 J9.
 - [HZ] to continue test.
- 8. When "DIAG DONE HIT MSSGS .V1" appears
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6.
- 9. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST OUTPUT.

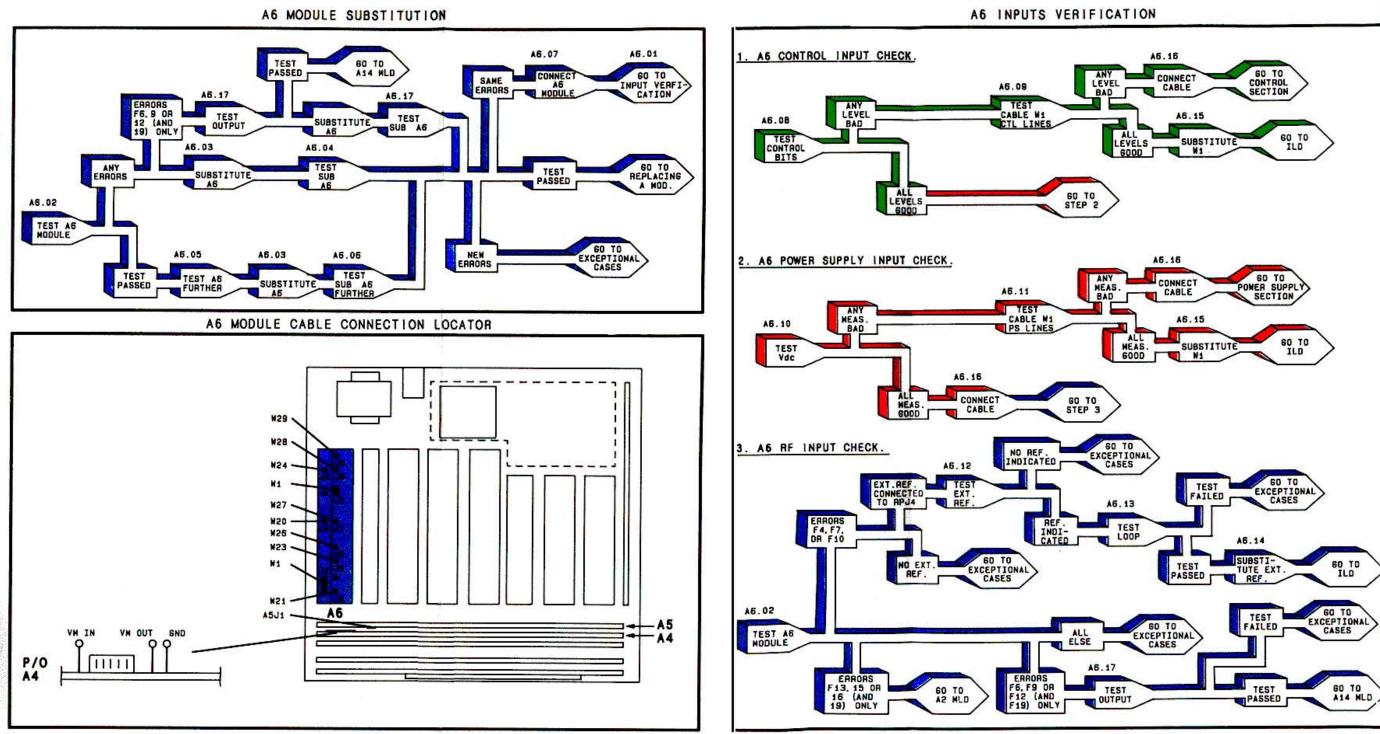
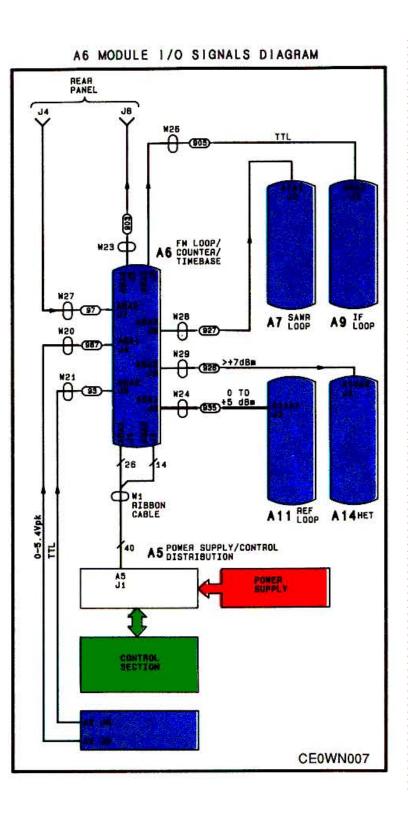



Figure 3F-100. A6 FM Loop/Counter/Timebase Module Diagnostics.

3-139/(3-140 BLANK)

3G-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A7 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01 - A06**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptable to short circuiting.

Test Instructions

- 1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the **A7 MLD**.

3G-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page, **A7 INPUTS VERIFICATION**.

The first step in isolating an **A7** failure is to substitute in a known good module from the On-site Service Kit.

A7 Substitution Instructions

- 1. Find **A7 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A7 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

A7 INPUTS VERIFICATION

3G-3. INTRODUCTION

If a known good **A7 Module** is not available or if you were not able to isolate the failure using the **A7 MODULE SUBSTITUTION** procedure the Task Sequence Diagrams (shown under **A7 INPUTS VERIFICATION**) should be used to check each signal path into the **A7 Module**.

A7 Inputs Verification Instructions

- 1. Find **A7 INPUTS VERIFICATION** on the foldout.
- 2. The Task Sequence Diagrams, shown under **A7 INPUTS VERIFICATION**, are separated into three checks: **RF, Control** and **Power Supply** signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1. A7 RF INPUT CHECK**.

NOTE

The A7 MODULE I/O SIGNALS DIAGRAM shows all parts which the A7 Module depends on for operation.

Туре:	1; Loop Lock/Unlock	A7.02
Run time:	1 min.	
Set-up time:	0	TEST A7 MODULE

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [5] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 1 OF A07 (PASSED or FAILED)" is not displayed, rerun test.

NOTE

If any error codes are displayed for modules A01 - A06, you need to isolate those failure(s) before performing the A7 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST A7 MODULE.

Туре:	Module Substitution	A7.03
Run time:	0	SUBSTITUTE
Set-up time:	5 min.	

The following describes the technique for connecting a known good A7 Module without removing the A7 module in the instrument.

Connect Substitute Module

- 1. Switch instrument to **Standby**.
- 2. Disconnect cables W2, W25 and W28 from A7 Module (see A7 MODULE CABLE CONNECTION LOCATOR on foldout).
- 3. Without removing **A7 Module** from instrument, carefully lay substitute **A7 Module** on top of modules **A9, A11** and **A12**.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 4. Connect cables **W2**, **W25** and **W28** to substitute module.
- 5. Turn instrument on.
- 6. Return to foldout.

Туре:	Substitute Module Test	A7.04
Run time:	1 min.	TEST
Set-up time:	0	

Test operation of substitute A7 Module by repeating test performed on A7 Module before substitution.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [5] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 1 OF A07 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A7.

Туре:	Additional A7 Tests	A7.05
Run time:	Conditional	TEST AT
Set-up time:	Conditional	FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The A7 failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

- Condition 1: Instrument Level Self Test indicated A7 failure.
- Condition 2: A11 Module RF Power Test indicated A7 failure.
- **Condition 3:** Instrument must be set to a specific operating condition to detect **A7** failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .VI" appears:
 - Use [MSSG] to scroll through messages.
 - Record A7 error codes.

NOTE

If any error codes are displayed for modules A01-A06, you need to isolate those failure(s) before performing the A7 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000 MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [6] [HZ]
- 3. When **"WAITING FOR SET-UP 1 .V24"** appears:
 - Disconnect cable **W28** from module at **A7A1 J2**.
 - Connect YELLOW PM cable and adapter to cable W28.
 - [HZ] to continue test.
- 4. When **"WAITING FOR SET-UP 2 .V25"** appears:
 - Reconnect cable **W28** to module at **A7A1 J2**.
 - Disconnect cable W25 from module at A7A1 J3.
 - Connect PM cable to module at **A7A1 J3**.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W25** to module at **A7A1 J3**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS.V1" appears:
 - Use [MSSG j to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 2A OF A07 (PASSED or FAILED)" is not displayed, rerun test.
- 7. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes **A7** failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute	A7.06
Run time:	A7 Tests Conditional	TEST
Set-up time:	Conditional	SUB A7

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Test operation of substitute A7 Module by repeating test(s) performed on A7 Module before substitution.

Condition 1: Instrument Level Self Test indicated A7 failure.

Condition 2: All Module RF Power Test indicated A7 failure.

Condition 3: Instrument must be set to a specific operating condition to detect **A7** failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When **"WAITING FOR SET-UP 1.V24**" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "**MOD OUTPUT**".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "**DIAG DONE HIT MSSGS .V1**" appears:
 - Use [MSSG] to scroll through messages.
 - Record A7 error codes.

NOTE

If any error codes are displayed for modules A01 - A06, you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A7 FURTHER.

Condition 2

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W28 from module at A7A1 J2.
 - Connect YELLOW PM cable and adapter to cable W28.
 - [HZ] to continue test.
- 4. When **"WAITING FOR SET-UP 2 .V25"** appears:
 - Reconnect cable **W28** to module at **A7A1 J2**.
 - Disconnect cable **W25** from module at **A7A1 J3**.
 - Connect **PM** cable to module at **A7A1 J3**.
 - [HZ] to continue test.
- 5. When **"RECONNECT ALL CABLES .V29"** appears:
 - Reconnect cable **W25** to module at **A7A1 J3**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 2A OF A7 (PASSED or FAILED)" is not displayed, rerun test.)
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A7 FURTHER.

Condition 3

- 1. Set instrument to operating condition which causes **A7** failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST SUB A7 FURTHER.

Туре:	Cable Connection	A7.07
Run time:	0	
Set-up time:	5 min.	LICONNECT A7 MODULE

Connect Module

- 1. Switch instrument to **Standby**.
- 2. Disconnect cables **W2**, **W25** and **W28** from substitute **A7 Module**.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 3. Reconnect cables **W2**, **W25** and **W28** to **A7 Module**.
- 4. Turn instrument on.
- 5. Return substitute A7 Module to On-Site Service Kit.
- 6. Return to foldout.

Туре:	2A; RF Power Levels	A7.08
Run time:	30 sec.	
Set-up time:	2 min.	TEST RF

RF signal level is measured using Internal Power Meter (PM).

CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] (8) [1] [2] [HZ] (To check Input levels only)
- 3. [3] [2] [6] [HŻ].
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W28 from module at A7A1 J2.
 - Connect **YELLOW PM** cable and adapter to cable **W28**.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W28** to module at **A7A1 J2**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 2A OF A07 (PASSED or FAILED)" is not displayed, rerun test.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST RF POWER.

2A; RF Power Levels	A7.09
30 sec.	K
2 min.	CABLE
	30 sec.

RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.0000000M -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] (8) [1] [2] [HZ] (To check input levels only.)
- 3. [3] [2] [6] [HŻ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W28 from module at A6A2 J8. (See Top View Diagram inside Top Cover to locate W28 connection on A6 Module.)
 - Connect YELLOW PM cable to module at A6A2 J8.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W28** to module at **A6A2 J8**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A7. If "TEST 2A OF A07 (PASSED or FAILED)" is not displayed, rerun test.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST CABLE W28.

Туре:	3; Bit Transmission	A7.10
Run time:	3 min.	
Set-up time:	2 min.	TEST CONTROL BITS

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A7 Module on SAWR oscillator select lines A and B.

Run Test

- 1. Switch instrument to **Standby**:
 - Disconnect cable W2 from module at A7A1 J1.
 - Plug end of W2 into 14 pin test connector, from On-Site Service Kit.

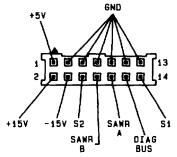
NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W2P2.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A7 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- Turn instrument on. (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)


SAWR Select Line A

Check High State

- 4. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 5. [3] [0] [HZ] (To select bit.)

6. Connect VM probe to test connector line A (pin 10). (See Figure 3G-1. Cable Plug W2P2 Signal Locator.)

Figure 3G-1. Cable Plug W2P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] To specify low state.)
- 10. [3] [0] [HZ] (To select bit.)
- 11. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

SAWR Select Line B

Check High State

- 13. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 14. [3] [1] [HZ] (To select bit.)

- 15. Connect VM probe to test connector line B (pin 8). (See Figure 3G-1. Cable Plug W2P2 Signal Locator.)
- 16. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

Check Low State

- 18. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 19. [3] [1] [HZ] (To select bit.)
- 20. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc.
 ([5] [HZ] to repeat measurement.)
- 22. Record test results.
- 23. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each

for TEST CONTROL BITS.

Туре:	3; Bit Transmission	A7.11
Run time:	3 min.	TEST
Set-up time:	3 min.	CABLE M2 CABLE M2 CTL LINES

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A7 Module on SAWR oscillator select lines A and B.

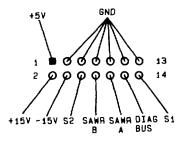
Run Test

- 1. Switch instrument to Standby.
- Extend A7 Module on extender posts, from On-Site Service Kit, to disconnect cable W2 from A5 Assembly at A5J2. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A7 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W2.

- 3. Connect **VM** probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A7 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on.


SAWR Select Line A

Check High State

- 5. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 6. [3] [0] [HZ] (To select bit.)

7. Connect VM probe to solder-side of A5J2 line A (pin 10). (See Figure 3G-2. ASJ2 Signal Locator.)

Figure 3G-2. A5J2 Signal Locator (Solder-Side View)

- 8. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 10. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 11. [3] [0] [HZ] (To select bit.)
- 12. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

SAWR Select Line B

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 15. [3] [1] [HZ] (To select bit.)

- Connect VM probe to solder-side of A5J2 line B (pin 8).
 (See Figure 3G-2. A5J2 Signal Locator.)
- 17. [2] [5] [HZ] (To enable voltmeter.)
- 18. Voltage should read approximately +2.5 to +5.5 Vdc.[5] [HZ] to repeat measurement.)

Check Low State

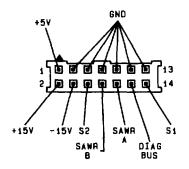
- 19. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 20. [3] [1] [HZ] (To select bit.)
- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately -0.5 to +1.5 Vdc.[5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Reconnect W2 and lower Module back into instrument.
- 25. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W2 CTL LINES**.

Туре:	4, Voltage Measurements	A7.12
Run time:	2 min.	
Set-up time:	2 min.	

Internal Voltmeter (VM) is used to check power supply levels at inputs to A7 Module.

Run Test

- 1. Switch instrument to **Standby**:
 - Disconnect W2 from A7 at A7A1 J1.
 - Plug end of W2 into 14 pin test connector, from On-Site Service Kit.


NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W2P2.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A7 MODULE CABLE CONNECTION LOCATOR on fold- out for VM IN location.)
- Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3G-3. Cable Plug W2P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc.**

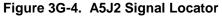
3-161

Туре:	4, Voltage Measurements	A7.13
Run time:	2 min.	CABLE N2
Set-up time:	3 min.	PS LINES

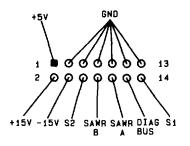
Internal Voltmeter (VM) is used to check power supply levels at A5J2.

Run Test

- 1. Switch instrument to **Standby**.
- Extend A7 Module on extender posts, from On-Site Service Kit, to disconnect cable W2 from A5 Assembly at A5J2. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A7 Module extension and A5 cable disconnection information.)


NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W2.


3. Connect VM probe:

- Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
- Connect alligator clip to VM IN (A4TP1). (See A7 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure voltage levels at A5J2:
 - Access signals from solder-side of A5J2. (See Figure 3G-4. A5J2 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

(Solder-Side View)

- 6. Record test results.
- 7. Reconnect W2 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W2 PS LINES.**

Туре:	Cable Substitution	A7.14
Run Time:	5 min.	
Set-up Time:	1 min.	SUBSTITUTE
		W28

- 1. Testing has shown cable W28 to be suspect, temporarily replace with a test cable from the On-Site Service Kit. **Rerun INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitution	A7.15
Run time:	0 min.	SUBSTITUTE
Set-up time:	3 min.	W2

Testing has shown cable WZ to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to A7 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W2

- Switch instrument to Standby to connect cable W2 to A5 Assembly and A7 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W2 to A5J2.)
- 2. Return to foldout.

Туре:	Cable Connection	A7.16
Run time:	0 min.	
Set-up time:	3 min.	CONNECT
		CABLE

CAUTION

When connecting ribbon cable to $\overline{A7}$ Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W2

- Switch instrument to Standby to reconnect cable W2 to A5 Assembly or A7 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W2 to A5J2.)
- 2. Return to foldout.

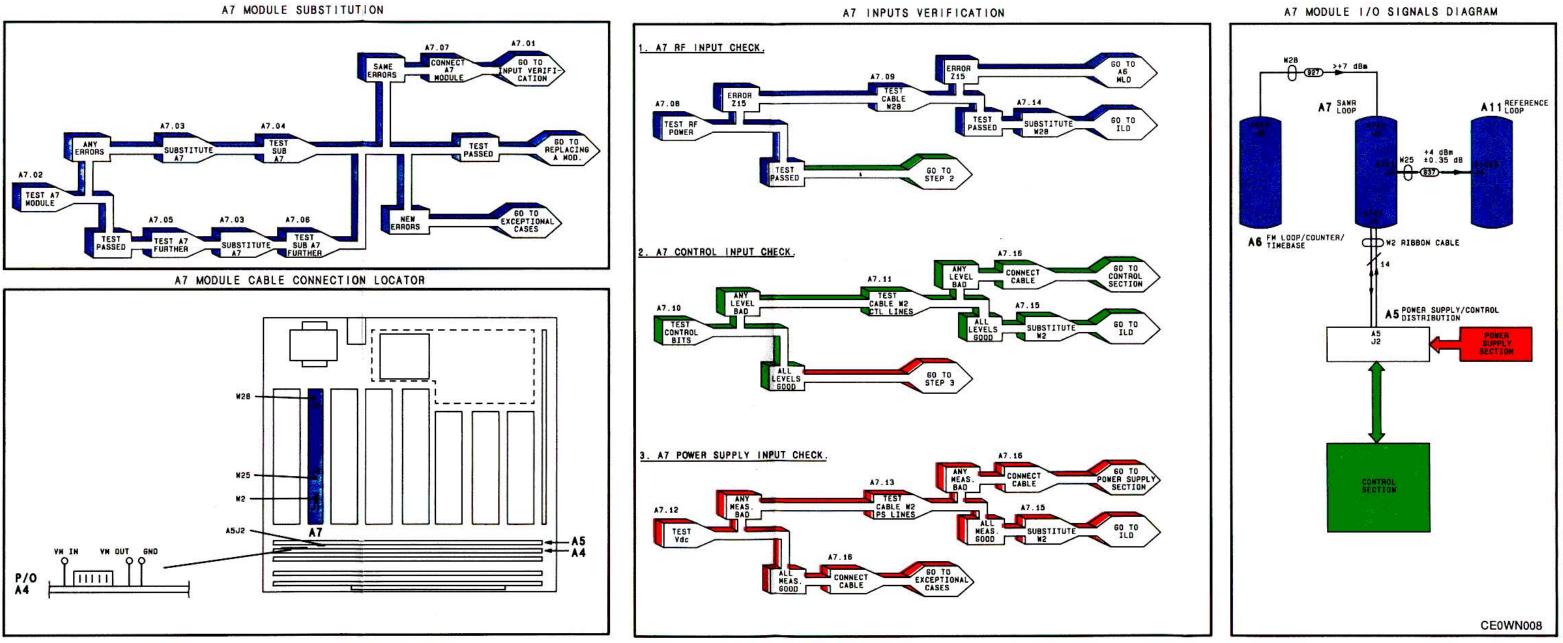


Figure 3G-100. A7 SAWR Loop Module Diagnostics.

3-167/(3-168 BLANK)

3H-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the A9 Module. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01 - A07**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to the table shown on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the A9 MLD.

3H-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page, **A9 INPUTS VERIFICATION**.

The first step in isolating an **A9** failure is to substitute in a known good module from file On-Site Service Kit.

A9 Substitution Instructions

- 1. Find **A9 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A9 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

A9 INPUTS VERIFICATION

3H-3. INTRODUCTION

If a known good **A9 Module** is not available, or if you were not able to isolate the failure using the **A9 MODULE SUBSTITUTION** procedure, the Task Sequence Diagrams, shown under **A9 INPUTS VERIFICATION**, should be used to check each signal path into the A9 Module.

A9 Inputs Verification Instructions

- 1. Find **A9 INPUTS VERIFICATION** on the foldout.
- 2. The Task Sequence Diagrams, shown under A9 INPUTS VERIFICATION, are separated into three checks: RF, Control and Power Supply signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the page indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1.** A9 RF INPUT CHECK.

NOTE

The A9 MODULE I/O SIGNALS DIAGRAM shows all parts which the A9 Module depends on for operation.

Туре:	1; Loop Lock/Unlock	A9.02
Run time:	2 min. 40 sec.	
Set-up time:	0	TEST A9 MODULE

<u>Run Test</u>

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [5] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.

NOTE

If any error codes are displayed for modules A01 - A07, you need to isolate those failure(s) before performing the A9 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A9 MODULE**.

Туре:	Module Substitution	A9.03
Run time:	0	
Set-up time:	5 min.	

The following describes the technique for connecting a known good A9 Module **without removing** the A9 Module in the instrument.

Connect Substitute Module

- 1. Switch instrument to **Standby**.
- 2. Disconnect cables **W3**, **W26** and **W30** from **A9 Module** (see **A9 MODULE CABLE CONNECTION LOCATOR** on foldout).
- 3. Without removing A9 Module from instrument, carefully lay substitute A9 Module on top of modules A11, A12 and A13.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 4. Connect cables **W3**, **W26** and **W30** to substitute module.
- 5. Turn instrument on.
- 6. Return to foldout.

Туре:	Substitute Module Test	A9.04
Run time:	1 min.	
Set-up time:	0	

Test operation of **substitute A9 Module** by repeating test performed on A9 Module before substitution.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [5] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A9**.

Type: Run time: Set-up time: Additional A9 Tests Conditional Conditional

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The **A9** failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1: Instrument Level Self Test indicated A9 failure.

Condition 2: A12 Module RF Power Test indicated A9 failure.

Condition 3: Instrument must be set to a specific operating condition to detect **A9** failure.

Condition 1

- [INSTR PRESET] [SHIFT) (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SETUP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/,FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .VI" appears:
 - Use [MSSG] to scroll through messages.
 - Record A9 error codes.

NOTE

If any error codes are displayed for modules A01 - A07, you need to isolate those failure(s) before performing the A9 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [7] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W26 from module at A9A2 J3.
 - Connect YELLOW PM cable and adapter to cable W26.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W26** to module at **A9A2 J3**.
 - Disconnect cable W30 from module at A9A1 J4.
 - Connect **PM** cable to module at **A9A1 J4**.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W30 to module at A9A1 J4.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.
- 7. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A9 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute	A9.06
Run time: Set-up time:	A9 Tests Conditional Conditional	SUB A9

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Test operation of substitute A9 Module by repeating test(s) performed on A9 Module before substitution.

- Condition 1: Instrument Level Self Test indicated A9 failure.
- Condition 2: A12 Module RF Power Test indicated A9 failure.
- **Condition 3:** Instrument must be set to a specific operating condition to detect **A9** failure.

Condition 1

- [INSTR PRESET] [SHIFT] Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] SPCL) [3] [3] [0] [HZ].
- 3. When "WAITING FOR SETUP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .VI" appears:
 - Use [MSSG] to scroll through messages.
 - Record A9 error codes.

NOTE

If any error codes are displayed for modules A01 - A07, you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for TEST SUB A9 FURTHER.

Condition 2

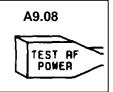
- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ 140.0DM" appears, to override 20 second reset test.)
- 2. (SHIFT [SPCL] [3] [3] [3] [7] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W26 from module at A9A12 J3.
 - Connect YELLOW PM cable and adapter to cable W26.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W26 to module at A9A2J3.
 - Disconnect cable W30 from module at A9A1J4.
 - Connect PM cable to module at A9A1J4.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W30 to module at A9A1 J4.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A9 FURTHER**.

Condition 3

- 1. Set instrument to operating condition which causes A9 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A9 FURTHER. BLOCK.**

Туре:	Cable Connection	A9.07
Run time: Set-up time:	0 5 min.	A9 MODULE

Connect Module


- 1. Switch instrument to Standby.
- 2. Disconnect cables W3, W26 and W30 from substitute A9 Module.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

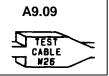
- 3. Reconnect cables W3, W26 and W30 to A9 Module.
- 4. Turn instrument on.
- 5. Return substitute A9 Module to On-Site Service Kit.
- 6. Return to foldout.

Type: Run time: Set-up time: 2A; RF Power Levels 2 min. 30 sec. 3 min.

RF signal level is measured using Internal Power Meter (PM).

CAUTION

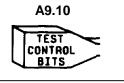
Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.


Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.0000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] SPCL) [3] [6] [8] [1] [2] [HZ] (To check input levels only
- 3. [3] [3] [7] [HZ].
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable **W26** from module at **A9A2 J3**.
 - Connect YELLOW PM cable and adapter to cable W26.
 - (HZ to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W26** to module at **A9A2 J3**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for RF POWER.

l ype:
Run time:
Set-up time:

2A; RF Power Levels 2 min. 30 sec. 3 min.


RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [2] [HZ] (To check input levels only.)
- 3. [3] [3] [7] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W26 from A6 Module at A6A2 J6. (See Top View Diagram inside **Top Cover** to locate W26 connection on A6 Module.)
 - Connect YELLOW PM cable to module at A6A2 J6.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W26 to module at A6A2 J6.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A9.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W26**.

Type: Run time: Set-up time: 3; Bit Transmission 0 min. 5 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A9 Module Data and Clock lines.

NOTE

If any control line level measures bad, it is not necessary to test remaining lines; proceed directly to step **23**.

Run Test

- 1. Switch instrument to **Standby:**
 - Disconnect cable W3 from module at A9A2 J1.
 - Plug end of W3 into 26 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W3PZ.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

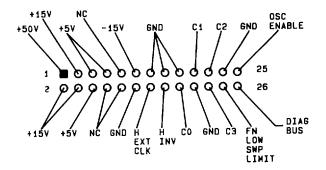
- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A9 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on.

Data and Clock Control Lines

Check High State

4. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)

NOTE


A "**0**" will appear in display indicating that these data bits will be set low. However, the bits are inverted in the Control Section before they are sent to **A9**.

- 5. Enter **Bit Select Keys**, as indicated in Table **3H-1**. **W3P2 Control Bits**, for **Control Line** to be tested.
- 6. Connect VM probe to Control Line at Pin Number indicated in Table 3H-1. (See Figure 3H-1. Cable Plug W3P2 Signal Locator.)

		Bit	Pin
Test	Control	Select Keys	Number
Order	Line	(Steps 5 and 10)	(Step 6)
1	C0	[3] [2] [HZ]	18
2	C1	[3] [3] [HZ]	19
3	C2	[3] (4) [HZ]	21
4	C3	[3] [5] [HZ]	22
5	H INV	[3] [6] [HZ]	16
6	H EXT CLK	[3] [7] [HZ]	14

Table 3H-1. W3P2Control Bits

Figure 3H-1. Cable Plug W3P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 [5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.

NOTE

A "1" will appear in display indicating that these data bits will be set high. However, the bits are inverted in the Control Section before they are sent to **A9**.

- 10. Enter Bit Select Keys, as indicated in Table 3H-1. W3P2 Control Bits, for same Control Line.
- 11. [2] [5] (H) (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc.
 ([5] [HZ] to repeat measurement.)
- 13. Repeat procedure for each Control Line shown in Table 3H-1.

Oscillator Enable

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 15. [3] [8] [HZ] (To select bit.)
- 16. Connect VM probe to test connector line OSC ENABLE (pin 25).
- 17. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2..5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 19. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 20. [3] [8] [HZ] (To select bit.)
- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS.**

3; Bit Transmission	A9.11
3 min.	
3 min.	CABLE W3
	3 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A9 Module Clock and Data lines.

Run Test

- 1. Switch instrument to **Standby.**
- Extend A9 Module on extender posts, from On-Site Service Kit, to disconnect cable W3 from A5 Assembly at A5J3. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A9 Module extension and AS cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W3.

- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A9 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on.

NOTE

It is only necessary to perform this test on failing control line.

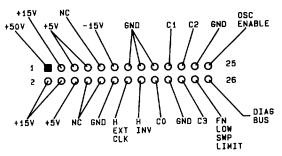
Data and Clock Control Lines

Check High State

5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.

NOTE

A "**0**" will appear in display indicating that these data bits will be set low. However, the bits are inverted in the Control Section before they are sent to **A9**.


6. Enter **Bit Select Keys**, as indicated in Table **3H-2. A5J3 Control Bits**, for **Control Line** to be tested.

7. Connect VM probe to Control Line at Pin Number indicated in Table 3H-2. (See Figure 3H-2. Cable Plug A5J3 Signal Locator.)

		Bit	Pin
Test	Control	Select Keys	Number
Order	Line	(Steps 5 and 10)	(Step 6)
1	C0	[3] [2] [HZ]	18
2	C1	[3] [3] [HZ]	19
3	C2	[3] (4) [HZ]	21
4	C3	[3] [5] [HZ]	22
5	H INV	[3] [6] [HZ]	16
6	H EXT CLK	[3] [7] [HZ]	14

Table 3H-2. ASJ3 Control Bits

Figure 3H-2. Cable Plug A5J3 Signal Locator

- 8. [2] [5] [HZ] (To enable voltmeter.)
- 9. Voltage should read approximately +2.5 to +5.5 Vdc.
 [5] [HZ] to repeat measurement.)

Check Low State

10. (SHIFT [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that these data bits will be set high. However, the bits are inverted in the Control Section before they are sent to A9.

- 11. Enter **Bit Select Keys**, as indicated in **Table 3H-2. W3P2 Control Bits**, for same Control Line.
- 12. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Oscillator Enable

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 15. [3] [8] [HZ] (To select bit.)
- 16. Connect VM probe to test connector line OSC ENABLE (pin 25).
- 17. [2] [5] [HZ] (To enable voltmeter.)
- 18. Voltage should read approximately **+2.5** to **+5.5 Vdc.** ([5] [HZ] to repeat measurement.)

Check Low State

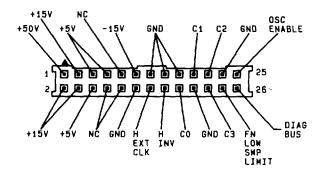
- 19. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)
- 20. [3] [8] [HZ] (To select bit.)
- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Reconnect W3 and lower Module back into instrument.
- 25. Determine next task by comparing test results to conditions shown in each for **TEST CABLE W3 CTL LINES.**

Туре:	4, Voltage Measurements	A9.12
Run time:	2 min.	
Set-up time:	2 min.	TEST
		Vac

Internal Voltmeter (VM) is used to check power supply levels at inputs to A9 Module.

Run Test

- 1. Switch instrument to **Standby:**
 - Disconnect W3 from A9 at A9A2 J1.
 - Plug end of W3 into 26 pin test connector, from On-Site Service Kit.


NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W3P2.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A9 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3H-3. Cable Plug W3P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

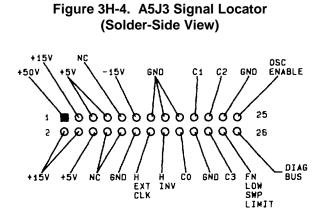
- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc.**

3-190

4, Voltage Measurements	A9.13
2 min. 3 min.	CABLE N3
	2 min.

Internal Voltmeter (VM) is used to check power supply levels at A5J3.

Run Test


- 1. Switch instrument to **Standby.**
- Extend A9 Module on extender posts, from On-Site Service Kit and disconnect cable W3 from A5 Assembly at A5J3. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A9 Module extension and AS cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W3.

- 3. Connect **VM** probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A9 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] (SPCL [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure voltage levels at A5J3:
 - Access signals from solder-side of A5J3. (See Figure 3H-4. A5J3 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect W3 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W3 PS LINES.**

Туре:	Cable Substitution	A9.14
Run Time:	5 min.	
Set-up Time:	1 min.	
		W26

- 1. Testing has shown cable **W26** to be suspect, temporarily replace with a test cable from the On-Site Service Kit. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitution	A9.15
Run time: Set-up time:	0 min. 3 min.	SUBSTITUTE
	-	SOBSTITUTE M3

Testing has shown cable **W3** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to $\overline{A9}$ Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W3

- Switch instrument to Standby to connect cable W3 to A5 Assembly and A9 Module. (Refer to MECHANICAL PROCEDURES for information on connecting cable W3 to A5J3.)
- 2. Return to foldout.

Туре:	Cable Connection	A9.16
Run time:	0 min.	
Set-up time:	3 min.	

CAUTION

When connecting ribbon cable to $\overline{A9}$ Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W3

- Switch instrument to Standby to reconnect cable W3 to A5 Assembly or A9 Module. (Refer to MECHANICAL PROCEDURES for information on reconnecting cable W3 to A5J3.)
- 2. Return to foldout.

3-195/(3-196 BLANK

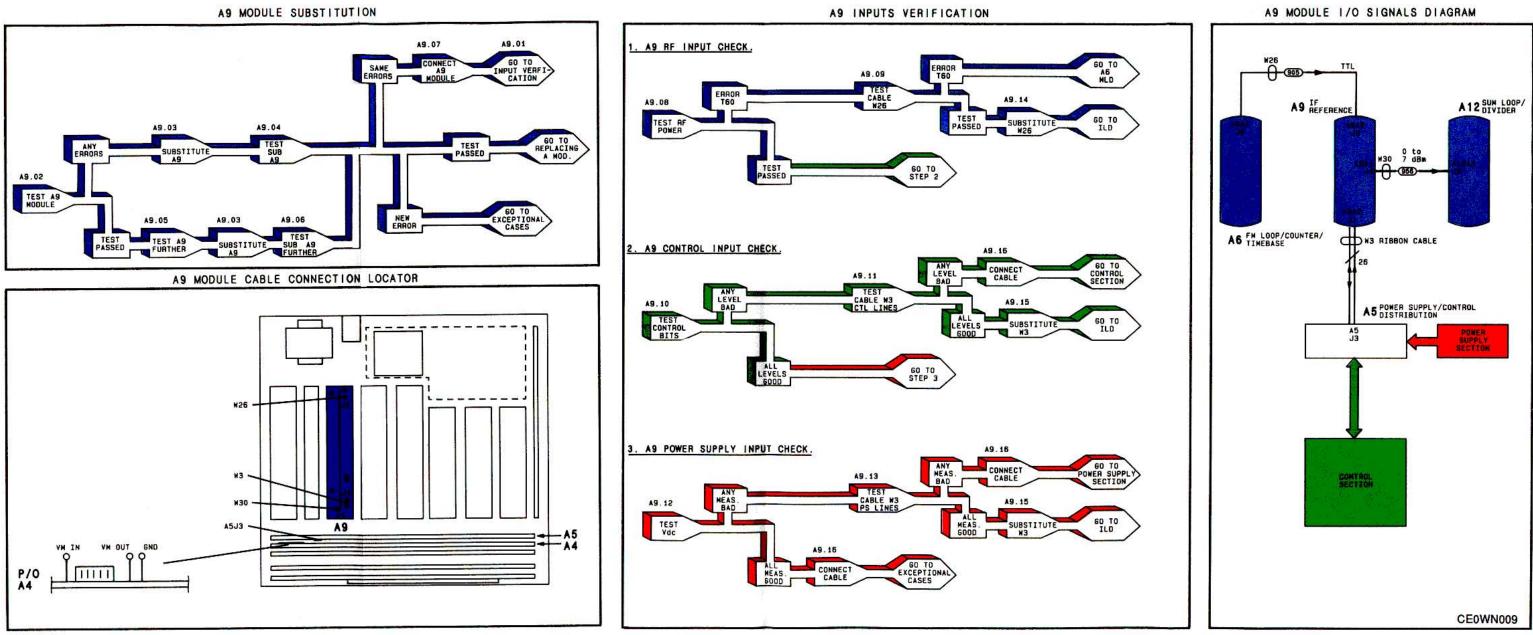


Figure 3H-100. A9 IF Reference Module Diagnostics.

3-197/(3-198 BLANK)

31-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A11 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01 - A09.** (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptable to short circuiting.

Test Instructions

- 1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to the table shown on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the A11 MLD.

31-2. INTRODUCTION

The first step in isolating a failure in the **A11 Module** is to verify correct operation of each input signal. Use the **A11 INPUTS VERIFICATION** procedure to check each signal path into the A11 Module.

A11 Inputs Verification Instructions

- 1. Find A11 INPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown under A11 INPUTS VERIFICATION, are separated into three checks: **RF, Control** and **Power Supply** signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1. A11 RF INPUT CHECK.**

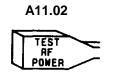
NOTE

The A11 MODULE I/O SIGNALS DIAGRAM shows all parts which the All Module depends on for operation.

A11 MODULE SUBSTITUTION

31-3. INTRODUCTION

If you were unable to isolate the failure using the **A11 INPUTS VERIFICATION** procedure, then follow the Task Sequence Diagram, shown under **A11 MODULE SUBSTITUTION**, to substitute in a known good module from the On-site Service Kit.


NOTE

If a known good module is not available, proceed to **Exceptional Case 1** (Condition 2) in the **EXCEPTIONAL CASES** Section.

A11 Substitution Instructions

- 1. Find **A11 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under A11 MODULE SUBSTITUTION, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

Type: Run time: Set-up time: 2A; RF Power Levels 20 sec. 3 min.

RF signal level is measured using Internal Power Meter (PM).

CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [3] [HZ] (To check Input levels only.)
- 3. [3] [3] [1] [HZ].
- 4. When **"WAITING FOR SET-UP 1 .V24**" appears:
 - Disconnect cable W25 from module at A11A3 14.
 - Connect YELLOW PM cable and adapter to cable W25.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W25 to module at A11A3 J4.
 - Disconnect cable W24 from module at A11A1 J3.
 - Connect YELLOW PM cable and adapter to cable W24.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W24 to module at A11A1 J3.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST RF POWER**.

Туре:	2A; RF Power Levels	A11.03
Run time:	10 sec.	
Set-up time:	2 min.	TEST
		N25

RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [2] [HZ] (To check input levels only.)
- 3. [3] [3] [1] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W25 from A7 Module at A7A1 J3. (See Top View Diagram inside Top Cover to locate W25 connection on A7 Module.)
 - Connect YELLOW PM cable to module at A7A1 J3.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W25** to module at **A7A1 J3**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS.V1" appears:
 - Use [MSSG] to scroll through messages.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W25**.

Туре:	2A; RF Power Levels	A11.04
Run time:	15 sec.	TEST
Set-up time:	2 min.	CABLE W24

RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [3] [HZ] (To check input levels only.)
- 3. [3] [3] [1] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W25 from module at A7A1 J3. (See Top View Diagram inside Top Cover to locate W25 connection on A7 Module.)
 - Connect YELLOW PM cable to module at A7A1 J3.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W25 to module at **A7A1 J3**.
 - Disconnect cable W24 from module at A6A1 J2.
 - Connect YELLOW PM cable to module at A6A1 J2.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W24 to module at A6A1 J2.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W24**.

Туре:	3; Bit Transmission	A11.05
Run time:	3 min.	
Set-up time:	2 min.	TEST CONTROL BITS

Internal Voltmeter **(VM)** is used to measure TTL level changes transmitted to **A11 Module** on Clock and Data control lines.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect cable W4 from module at A11A1 J1.
 - Plug end of W4 into 16 pin test connector, from On-Site Service Kit.

NOTE

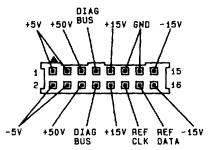
Find arrowhead on test connector and align with arrowhead on cable plug W4P2.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect Alligator clip to VM IN (A4TPI). (See A11 MODULE CABLE CONNECTION LOCATOR on fold- out for VM IN location.)
- 3. Turn instrument on.

Clock Line


Check High State

4. [SHIFT] [SPCL].[3] [6] [0] [2] (To specify high state.)

NOTE

A "**0**" will appear in display indicating that the data bit will be set low. However, the bit is inverted in the Control Section before it is sent to **A11**.

- 5. [4] [2] [HZ] (To select bit.)
- 6. Connect VM probe to test connector line REF CLK (pin 12). (See Figure 31-1. Cable Plug W4P2 Signal Locator.)

Figure 31-1. Cable Plug W4P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] (SPCL)[3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will be appear in display indicating that the data bit will be set high. However, the bit is inverted in the Control Section before it is sent to **A11**.

10. [4] [2] [HZ]

(To select bit.)

- 11. [2] [5] [HZ] To enable voltmeter.)
- 12. Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Data Line

Check High State

- 13. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 14. [4] [3] [HZ] (To specify bit.)
- 15. Connect VM probe to test connector line REF DATA (pin 14). (See Figure 31-1. Cable Plug W4P2 Signal Locator.)
- 16. [2] [5] [HZ] (To enable voltmeter.)
- 17. Voltage should read approximately **+2.5** to **+5.5 Vdc.** ([5] [HZ] to repeat measurement.)

Check Low State

- 18. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)
- 19. [4] [3] [HZ] (To select bit)
- 20. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 22. Record test results.
- 23. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS.**

Туре:	3; Bit Transmission	A11.06
Run time:	3 min.	
Set-up time:	3 min.	TEST
		CABLE WA

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A11 Module on Clock and Data control lines.

<u>Run Test</u>

- 1. Switch instrument to **Standby.**
- Extend A11 Module on extender posts, from On-Site Service Kit to disconnect cable W4 from A5 Assembly at A5J4. (See table on foldout in MECHANICAL PROCEDURES to locate A11 Module extension and A5 cable disconnection information.)

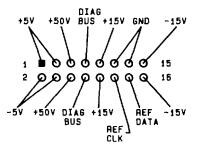
NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W4.

- 3. Connect **VM** probe:
 - Connect red Alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect Alligator clip to VM IN (A4TP1). (See A11 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on.

Clock Line

Check High State


5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)

<u>NOTE</u>

A "**0**" will appear in display indicating that the data bit will be set low. However, the bit is inverted in the Control Section before it is sent to **A11**.

6. [4] [2] [HZ] (To select bit.) 7. Connect VM probe to solder-side of A5J4, line REF CLK (pin 12). (See Figure 31-2. A5J4 Signal Locator.)

Figure 31-2. A5J4 Signal Locator (Solder-Side View)

- 8. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] to repeat measurement.)

Check Low State

10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will be displayed indicating that the data bit will be set high. However, the bit is inverted in the Control Section before it is sent to **A11**.

11. [4] [2] [HZ]

(To select bit.)

- 12. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Data Line

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 15. [4] [3] [HZ] (To select bit.)
- 16. Connect VM probe to solder-side of A5J4 line REF DATA (pin 14). (See Figure 31-2. A5J4 Signal Locator.)
- 17. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

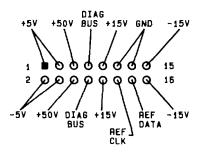
- 19. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)
- 20. [4] [3] [HZ] (To enable voltmeter.)
- 21. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately -0.5 to +1.5 Vdc. ([5] HZ) to repeat measurement.)
- 23. Record test results.
- 24. Reconnect W4 and lower Module back into instrument.
- 25. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST CABLE W4 CTL LINES

Туре:	4, Voltage Measurements	A11.07
Run time:	3 min.	
Set-up time:	2 min.	TEST

Internal Voltmeter (VM) is used to check power supply levels at inputs to A11 Module.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect W4 from A11 at A11A1 J1. Plug end of W4 into 16 pin test connector, from On-Site Service Kit.


NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W4P2.

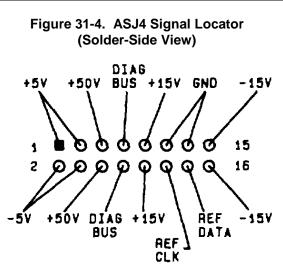
- 2. Connect VM probe:
 - Connect red Alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect Alligator clip to VM IN (A4TP1). (See A11 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 31-3. Cable Plug W4P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc.**

Туре:	4, Voltage Measurements	A11.08
Run time:	3 min.	
Set-up time:	3 min.	CABLE WA

Internal Voltmeter (VM) is used to check power supply levels at A5J4.


Run Test

- 1. Switch instrument to Standby.
- Extend A11 Module on extender posts, from On-Site Service Kit, to disconnect cable W4 from A5 Assembly at A5J4. (See table on foldout in MECHANICAL PROCEDURES to locate A11 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W4.

- 3. Connect VM probe:
 - Connect red Alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect Alligator clip to VM IN (A4TP1). (See A11 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)
- 5. Measure voltage levels at **A5J4**:
 - Access signals from solder-side of A5J4. (See Figure 31-4. A5J4 Signal Locator.) It may be necessary to extend the A11 Module to access the solder-side of A5J4. (Refer to table on foldout in MECHANICAL PROCEDURES for information.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7 Reconnect W4 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W4 PS LINES.**

3-214

Туре:	1 Loop Lock/Unlock	A11.09
Run time:	15 sec.	
Set-up time:	0	TEST A11 MODULE

<u>Run Test</u>

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] (9) [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use (MSSG) to scroll through messages.
 - Record error code(s) displayed for A11. If "TEST 1 OF A11 (PASSED or FAILED) is not displayed, rerun test.

NOTE

If any error codes are displayed for modules A01 - A09, you need to isolate those failure(s) before performing the A11 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

4. Return to foldout:

• Determine next task by comparing test results to conditions shown in each for **TEST A11 MODULE**.

Type: Run time:	Module Substitution	A11.10
Run time:	0	SUBSTITUTE
Set-up time:	5 min.	A11

The following describes the technique for connecting a known good A11 Module **without removing** the A11 module in the instrument.

Connect Substitute Module

- 1. Switch instrument to Standby.
- 2. Disconnect cables W4, W24 W25 and W31 from A11 Module (see A11 MODULE CABLE CONNECTION LOCATOR on foldout).
- 3. Without removing A11 Module from instrument, carefully lay substitute A11 Module on top of modules A6, A7 and A9.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

4. Connect cables W4, W24, W25 and W31 to substitute module.

Down-Load Cal Data

CAUTION

Use adequate Electrostatic Discharge Techniques when handling the A20 Calibration Module.

5. Remove from On-Site Service Kit **A20 Calibration Module** provided for substitute A11 Module.

CAUTION

Check that switch S1 on A20 Module is switched up to its "**PROTECTED**" position.

- 6. With instrument switched to **Standby** connect **A20 Module** to **A3 Module** at **A3J3** (see **A11 MODULE CABLE CONNECTION LOCATOR** on foldout).
- 7. Turn instrument on.
- 8. When "100.00000MZ -140.00 DM" appears:
 - Slide switch on left side of A3S2 on A3 Module back toward rear of instrument (see A11 MODULE CABLE CONNECTION LOCATOR on foldout).
- 9. [SHIFT] [SPCL] [3] [7] [3] [1] [HZ]
- 10. When "TRANSFER VERIFIED .U613" appears:
 - Slide A3S2 forward toward front of instrument to protect A3 Module's memory.
- 11. Switch Instrument to Standby and remove A20 Module. Replace A20 Module in On-Site Service Kit.
- 12. Return to foldout.

Type: Run time: Set-up time:	Substitute Module Test 1 min. 0	A11.11

Test operation of **substitute A11 Module** by repeating test performed on A11 Module before substitution.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] (9) [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use[MSSG] to scroll through messages.
 - Record error code(s) displayed for A11. If "TEST 1 OF A11 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A11**.

Туре:	Additional A11 Tests	A11.12
Run time:	Conditional	
Set-up time:	Conditional	TEST A11 FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The **A11** failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:	Instrument Level Self Test indicated A11 failure.
Condition 2:	A12 Module RF Power Test indicated A11 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect A11 failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/ΦM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A11 error codes.

NOTE

If any error codes are displayed for modules A01 - A09, you need to isolate those failure(s) before performing the A11 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.).

- 2. [SHIFT] [SPCL] [3] [3] [3] [1] [HZ]
- 3. When "WAITING FOR SET-UP 1 V24" appears:
 - Disconnect cable W25 from module at A11A3 J4.
 - Connect YELLOW PM cable and adapter to cable W25. •
 - [HZ] to continue test. •
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W25 to module at A11A3 J4.
 - Disconnect cable W24 from module at A11A1 J3.
 - Connect **PM** cable and adapter to W24.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable W24 to module at A11A1 J3.
 - Disconnect cable W31 from module at A11A3 J2. •
 - Connect PM cable to module at A11A3 J2. [HZ] to continue test.
- 6. When "RECONNECT A11 CABLES .V29" appears:
 - Reconnect cable W31 to module at A11A3 J2.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use[MSSG] to scroll through messages.
 - Record error code(s) displayed for A11.
- 8. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A11 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute A11 Tests	A11.13
Run time:	Conditional	TEST A11
Set-up time:	Conditional	FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Test operation of substitute **A11 Module** by repeating test(s) performed on **A11 Module** before substitution.

Condition 1:	Instrument Level Self Test indicated A11 failure.
Condition 2:	A12 Module RF Power Test indicated A11 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect A11
	failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/ΦM INPUT' (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A11 error codes.

NOTE

If any error codes are displayed for modules A01 - A09. you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A11 FURTHER.**

Condition 2

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [1] [HZ]
- 3. When **"WAITING FOR SET-UP 1 .V24"** appears:
 - Disconnect cable W25 from module at A11A3 J4.
 - Connect YELLOW PM cable and adapter to cable W25.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W25** to module at **A1A3 J4**.
 - Disconnect cable **W24** from module at **A11A1 J3**.
 - Connect **PM** cable to module at **A11A1 J3**.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable **W24** to module at **A11A1 J3**.
 - Disconnect cable W31 from module at A11A3 J2.
 - Connect PM cable to module at A11A3 J2.
 - [HZ] to continue test.
- 6. When "RECONNECT A11 CABLES .V29" appears:
 - Reconnect cable W31 to module at A11A3 J2.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use (MSSG) to scroll through messages.
 - Record error code(s) displayed for A11.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST SUB A11 FURTHER.

Condition 3

- 1. Set instrument to operating condition which causes A11 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A11 FURTHER.**

RESULT

ΠΙ

٦.

A11 MODULE DIAGNOSTICS

Туре:	Module Replacement	A11.14
Run time:	10 sec.	CONNECT
Set-up time:	5 min.	

Connect Module

Г

- 1. Switch instrument to Standby.
- 2. Disconnect cables W4, W24, W25 and W31 from substitute A11 Module.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 3. Reconnect cables **W4**, **W24**, **W25** and **W31** to **A11 Module**.
- 4. Return substitute A11 Module to On-Site Service Kit.

Down-Load Cal Data

CAUTION

Use adequate Electrostatic Discharge Techniques when handling the A20 Calibration Module.

 After making sure that A20 Module for substitute A11 Module has been returned to On-Site Service Kit, remove A20 Calibration Module from Rear Panel (see MECHANICAL PROCEDURES for removal information).

CAUTION

Check that switch S1 on A20 Module is switched up to its "**PROTECTED**" position.

- 6. With instrument switched to Standby, connect A20 Module to A3 Module at A3J3.
- 7. Turn instrument on.
- 8. When "100.00000MZ -140.00 DM" appears:
 - Slide switch on left side of A3S2 on A3 Module back toward rear of instrument.
- 9. [SHIFT] [SPCL] [3] [7] [3] [1] [HZ]
- 10. When **"TRANSFER VERIFIED** .U613" appears:
 - Slide A3S2 forward toward front of instrument to protect A3 Module's memory.
- 11. Switch Instrument to Standby and remove A20 Module. Replace A20 Module on Rear Panel.
- 12. Return to foldout.

Туре:	Cable Substitution	A11.15
Run Time:	5 min.	
Set-up Time:	1 min.	SUBSTITUTE

- 1. Testing has shown cable **W24** or **W25** to be suspect, temporarily replace it with a test cable from the On-Site Service Kit. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitution	A11.16
Run time:	0 min.	
Set-up time:	3 min.	

Testing has shown cable **W4** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to A11 Module, find arrowhead on the cable plug and align with arrow-head on the board connector.

Reconnect W4

- Switch instrument to Standby to connect cable W4 to A5 Assembly and A11 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W4 to A5J2.)
- 2. Return to foldout.

Cable Connection 0 min. 3 min.	A11.17
	0 min.

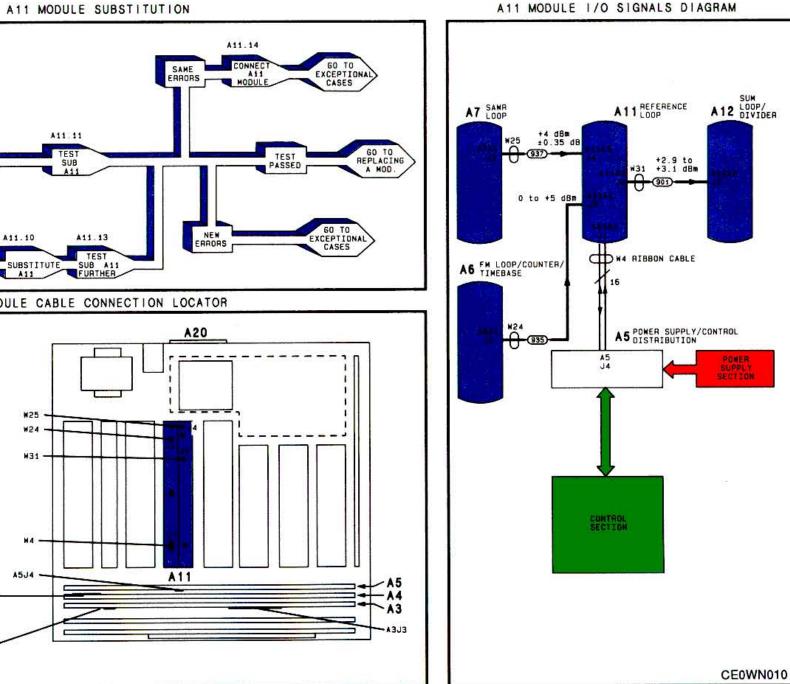
CAUTION

When connecting ribbon cable to A11 Module, find arrowhead on the cable plug and align with arrow- head on the board connector.

Reconnect W4

- Switch instrument to Standby to reconnect cable W4 to A5 Assembly or A11 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W4 to ASJ2.)
- 2. Return to foldout.

3-227/(3-228 BLANK)


A11 RF INPUT CHECK. A7 HLD A11.03 GO TO CONTROL SECTION TEST CABLE W25 ERRORS A11.15 GO TO ILD NO ERROR R30-32 ERRORS A30, 31 OR 32 A11.10 A11.11 A11.02 GO TO STEP 2 TEST SUB A11 TEST RF POWER PASSED SUBSTITUTE ERROR R33 A11.09 GO TO A5 MLD ERAOF R33 TEST ASS MODULE A11.04 TEST CABLE W24 A11.15 A11.12 A11.10 A11.13 60 TO ILD ERROR R33 W24 TEST TEST A11 PASSED FURTHER TEST SUBSTITUTE SUB A11 A11 MODULE CABLE CONNECTION LOCATOR A11.17 2. A11 CONTROL INPUT CHECK. GO TO CONTROL SECTION CABLE A11.06 CABLE W4 A11.16 A11.05 GO TO ILD ALL LEVELS SUBSTITUTE TEST CONTROL BITS ALL LEVELS GOOD GO TO STEP 3 W25 W24 W31 A11.17 VM OUT GND VM IN GO TO POWER SUPPLY SECTION 3. A11 POWER SUPPLY INPUT CHECK. CONNECT P/0 11111 MEAS A11.08 W4 -TEST CABLE W4 PS LINES MEAS A11.16 A11.07 A5J4 ALL MEAS. SUBSTITUTE GOOD W4 GO TO ILD TEST Vdc A11.01 A11.17 ALL MEAS, GOOD GO TO AT CHANGE P/0 A3 PROTECTED A352

A11 INPUTS VERIFICATION

Figure 31-100. A11 reference Loop Module Diagnostics.

3-229/(3-230 BLANK)

TM 11-6625-3165-14

A11 MODULE 1/O SIGNALS DIAGRAM

3J-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A12 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01 - A11.** (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to the table shown on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the A12 MLD.

3J-2. INTRODUCTION

The first step in isolating a failure in the A12 Module is to verify correct operation of each input signal. Use the A12 INPUTS VERIFICATION procedure to check each signal path into the A12 Module.

A12 Inputs Verification Instructions

- 1. Find A12 INPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown under A12 INPUTS VERIFICATION, are separated into three checks: RF, Control and Power Supply signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the page indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1.** A12 RF INPUT CHECK

NOTE

The A12 MODULE I/O SIGNALS DIAGRAM shows A11 parts which the A12 Module depends on for operation.

A12 MODULE SUBSTITUTION

A12.01

3J-3. INTRODUCTION

If you were unable to isolate the failure using the A12 INPUTS VERIFICATION procedure, then follow the Task Sequence Diagram, shown under A12 MODULE SUBSTITUTION, to substitute in a known good module from the On-Site Service Kit.

NOTE

If a known good module is not available, proceed to **Exceptional Case 2** (Condition 2) in the **EXCEPTIONAL CASES** Section.

A12 Substitution Instructions

- 1. Find A12 MODULE SUBSTITUTION on the foldout.
- 2. Use the Task Sequence Diagram, shown under A12 MODULE SUBSTITUTION, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

Туре:	2A; RF Power Levels	A12.02
Run time:	4 min.	
Set-up time:	3 min.	TEST AF POWER

RF signal level is measured using Internal Power Meter (PM).

CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

<u>Run Test</u>

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [3] [HZ] (To check Input levels only.)
- 3. [3] [4] [5] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W31 from module at A12A2 J2.
 - Connect YELLOW PM cable and adapter to cable W31.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W31** to module at **A12A2 J2**.
 - Disconnect cable W30 from module at A12A3 J6.
 - Connect YELLOW PM cable and adapter to cable W30.
 - [HZ] to continue test.
- 6. When "RECONNECT A11 CABLES .V29" appears:
 - Reconnect cable W30 to module at A12A3 J-6.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record test results.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST RF POWER**.

Туре:	2A; RF Power Levels	A12.03
Run time:	4 min.	
Set-up time:	2 min.	CABLE W30

RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [3] [HZ] (To check input levels only)
- 3. [3] [4] [5] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W31 from A11 Module at A11A3 J2. (See Top View Diagram inside Top Cover to locate W31 connection on A11 Module.)
 - Connect YELLOW PM cable to module at A11A3 J2.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W31 to module at A11A3 J2.
 - Disconnect cable W30 from module at A9A1 J4.
 - Connect YELLOW PM cable to module at A9A1 J4.
 - [HZ] to continue test.
 - 6. When "RECONNECT A11 CABLES .V29" appears:
 - Reconnect cable **W30** to module at **A9A1 J4**.
 - to continue test.
- 7. When "DIAG DONE HIT MSSGS .V" appears:
 - Use [MSSG] to scroll through messages.
 - Record test results.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST CABLE W30.

Type: Run time:	2A; RF Power Levels 4 min.	A12.04
Set-up time:	2 min.	CABLE W31

RF signal level is measured using Internal Power Meter (PM).

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [2] [HZ] (To check input levels only.)
- 3. [3] [4] [5] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W31 from A11 Module at A11A3 J2. (See Top View Diagram inside Top Cover to locate W31 connection on A11 Module.)
 - Connect YELLOW PM cable to module at A11A3 J2.
- [HZ] to continue test.
- 5. When "RECONNECT A11 CABLES .V29" appears:
 - Reconnect cable W31 to module at A11A3 J2.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .VI" appears:
 - Use [MSSG] to scroll through messages.
 - Record test results.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W31**.

Туре:	3; Bit Transmission	A12.05
Run time: Set-up time:	5 min. 5 min.	TEST CONTROL BITS
		·

Internal Voltmeter **(VM)** is used to measure TTL level changes transmitted to **A12 Module** on Clock, Data and Divider control lines.

NOTE

If any control line level is bad, it is not necessary to test remaining lines; proceed to step **24**.

<u>Run Test</u>

1. Switch instrument to **Standby**:

NOTE

A12 Module must be lifted slightly to disconnect WS. Release module retaining clips (at each end of module) from slide posts. Lift module up high enough to disconnect W5.

- Disconnect cable W5 from module at A12A3 J1.
- Plug end of W5 into 26 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug **WSP2**.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A12 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)

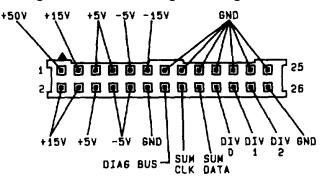
3. Turn instrument on.

Clock and Data Control Lines

Check High State

4. [SHIFT] [SPCL] [3] [6] [0] [2] (To set bit high).

NOTE


A "**0**" will appear in display indicating that the data bits will be set low. However, the bits are inverted in the Control Section before they are sent to **A12**.

- 5. Enter **Bit Select Keys**, as indicated in Table **3J-1**. **W5P2 Control Bits**, for **Control Line** to be tested.
- 6. Connect VM probe Control Line at Pin Number indicated in Table 3J-1. (See Figure 3J-1. Cable Plug W5P2 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 5 and 10)	Pin Number (Step 6)
		(Steps 5 and 10)	(Step 0)
1	SUM CLK	[4] [4] [HZ]	16
2	SUM DATA	[4] [5] [HZ]	18

Table 3J-1. W5P2 Control Bits

Figure 3J-1. Cable Plug W5P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] [SPCL] [3] [6] [0] [1] (To set bit low.)

NOTE

A "1" will appear in display indicating that the data bits will be set high. However, the bits are inverted in the Control Section before they are sent to **A12**.

- 10. Enter Bit Select Keys, as indicated in Table 3J-1. W5P2 Control Bits, for same Control Line.
- 11. [2] [5] [HZ] (To enable voltmeter.)
- 12. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 13. Repeat procedure for each **Control Line** shown in **Table 3J-1**.

Divider Control Lines

Check High State

14. [SHIFT] [SPCL] [3] [6] [0] [1] (To set bit high.)

NOTE

This bit is not inverted in the Control Section before it is sent to A 12.

- 15. Enter **Bit Select Keys**, as indicated in Table **3J-2. W5P2 Control Bits**, for **Control Line** to be tested.
- 16. Connect VM probe Control Line at Pin Number indicated in Table 3J-2. (See Figure 3J-1. \ Cable Plug WSP2 Signal Locator.)

Table 3J-2. W5P2 Control Bits

Test Order	Control Line	Bit Select Keys (Steps 15 and 20)	Pin Number (Step 16)
1	DIV 0	[2] (7) [HZ]	20
2	DIV 1	[2] [8] [HZ]	22
3	DIV 2	[2] (9) [HZ]	24

- 17. [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat message.)

Check Low State

- 19. [SHIFT] [SPCL] (To set bit low.)
- 20. Enter Bit Select Keys, as indicated in Table 3J-2. W5P2 Control Bits, for same Control Line.
- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS.**

Туре:	3; Bit Transmission	A12.06
Run time: Set-up time:	5 min. 2 min.	CABLE W5

Internal Voltmeter **(VM)** is used to measure **TTL** level changes transmitted to **A12 Module** on Clock, Data and Divider control lines.

<u>Run Test</u>

- 1. Switch instrument to Standby.
- Extend A12 Module on extender posts, from On-Site Service Kit. to disconnect cable W5 from A5 Assembly at A5J5. (See table on foldout in MECHANICAL PROCEDURES to locate A12 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W5.

- 3. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A12 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location).
- 4. Turn instrument on.

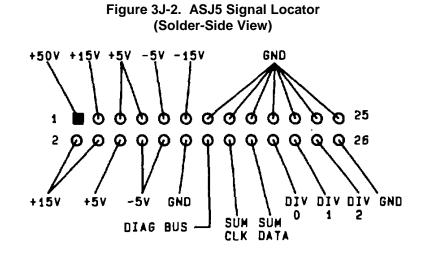
NOTE

It is only necessary to perform test on failing control line.

Clock and Data Control Lines

Check High State

5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)


NOTE

A "**0**" will appear in display indicating that the data bits will be set low. However, the bits are inverted in the Control Section before they are sent to **A12**.

- 6. Enter **Bit Select Keys**, as indicated in **Table 3J-3. A5J5 Control Bits**, for **Control Line** to be tested.
- 7. Connect VM probe Control Line at Pin Number indicated in Table 3J-3. (See Figure 3J-2. A5J5 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 6 and 11)	Pin Number (Step 7)
1	SUM CLK	[4] [4] [HZ]	16
2	SUM DATA	[4] [5] [HZ]	18

Table 3J-3. A5J5 Control Bits

- 8 [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that the data bits will be set high. However, the bits are inverted in the Control Section before they are sent to **A12**.

- 11. Enter **Bit Select Keys**, as indicated in **Table 3J-3. A5J5 Control Bits**, for same **Control Line**.
- 12. [2] [5] [HZ]

(To enable voltmeter.)

 Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Divider Control Lines

Check High State

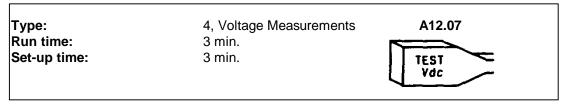
14. [SHIFT] [SPCL] [3] [6] [0] [1] (To set bit high)

NOTE

This bit is not inverted in the Control Section before it is sent to A 12.

- 15. Enter **Bit Select Keys**, as indicated in **Table 3J-4. A5J5 Control Bits**, for **Control Line** to be tested.
- 16. Connect VM probe Control Line at PIN NUMBER indicated in Table 3J-4. (See Figure 3J-2. A5J5 Signal Locator.)

Table 3J-4. A5J5 Control Bits


Test Order	Control Line	Bit Select Keys (Steps 15 and 20)	Pin Number (Step 16)
1	DIV 0	[2] (7) [HZ]	20
2	DIV 1	[2] [8] [HZ]	22
3	DIV 2	[2] (9) [HZ]	24

- 17. [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat message.)

Check Low State

- 19. [SHIFT] [SPCL] [3] [6] [0] [2] (To set bit low.)
- 20. Enter **Bit Select Keys**, as indicated in **Table 3J-4. A5J5 Control Bits**, for same **Control Line.**
- 21 [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Reconnect **W5** and lower **Module** back into instrument.
- 25. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W5 CTL LINES.**

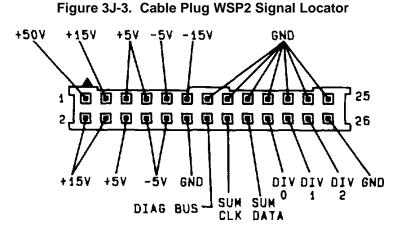
Internal Voltmeter (VM) is used to check power supply levels at inputs to A12 Module.

Run Test

1. Switch instrument to Standby:

NOTE

A 12 Module must be lifted slightly to disconnect W5. Release module retaining clips (at each end of module) from slide posts. Lift module up high enough to disconnect W5.


- Disconnect W5 from A12 at A12A3 J1.
- Plug end of W5 into 26 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W5P2.

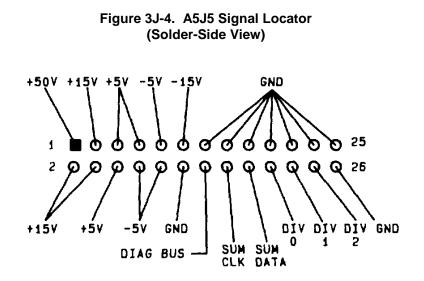
- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A12 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3J-3. Cable Plug WSP2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc.**

Type: Run time:	4, Voltage Measurements 3 min.	A12.08
Set-up time:	3 min.	CABLE N5

Internal Voltmeter (VM) is used to check power supply levels at A5J5.


Run Test

- 1. Switch instrument to Standby.
- Extend A12 Module on extender posts, from On-Site Service Kit to disconnect cable WS from A5 Assembly at A5J5. (See table on foldout in MECHANICAL PROCEDURES to locate A12 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W5.

- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A12 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)
- 5. Measure voltage levels at A5J5:
 - Access signals from solder-side of A5J5. (See Figure 3-4. A5J5 Signal Locator.)
 [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect W5 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W5 PS LINES**.

Туре:	1; Loop Lock/Unlock	A12.09
Run time:	40 sec.	TEST A12
Set-up time:	0	MODULE

Run Test

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [4] [1] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A12.

NOTE

If any error codes are displayed for modules A01 - A11, you need to isolate those failure(s) before performing the A12 MODULE SLUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A12 MODULE**.

Type:	Module Substitution	A12.10
Run time: Set-up time:	10 sec. 5 min.	SUBSTITUTE

The following describes the technique for connecting a known good A 12 Module without removing the A12 Module in the instrument.

Connect Substitute Module

- 1. Switch instrument to **Standby.**
- 2. Disconnect cables **W5**, **W30 W31** and **W33** from A12 Module (see **A12 MODULE CABLE CONNECTION LOCATOR** on foldout).
- 3. Without removing A12 Module from instrument, carefully lay substitute A12 Module on top of modules A7, A9 and A11.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

4. Connect cables **W5**, **W30**, **W31** and **W33** to substitute module.

Down-Load Cal Data

CAUTION

Use adequate Electrostatic Discharge Techniques when handling the A20 Calibration Module.

5. Remove from On-Site Service Kit, **A20 Calibration Module** provided for substitute A12 Module.

CAUTION

Check that switch S1 on A20 Module is switched up to its "**PROTECTED**" position.

- 6. With instrument switched to **Standby**, connect **A20 Module** to **A3 Module** at **A3J3** (see **A12 MODJULE CABLE CONNECTION LOCATOR** on foldout).
- 7. Turn instrument on.
- 8. When "100.00000MZ -140.00 DM" appears:
 - Slide switch on left side of A3S2 on A3 Module back toward rear of instrument (see A12 MODULE CABLE CONNECTION LOCATOR on foldout).
- 9. [SHIFT] [SPCL] [3] [7] [3] [2].[HZ]
- 10. When "TRANSFER VERIFIED . U613" appears:
 - Slide A3S2 forward toward front of instrument to protect A3 Module's memory.
- 11. Switch Instrument to **Standby** and remove **A20 Module**. Replace **A20 Module**. in On-Site Service Kit.
- 12. Return to foldout.

Type:Substitute Module TestRun time:1 min.Set-up time:0	A12.11
---	--------

Test operation of substitute A12 Module by repeating test performed on A12 Module before substitution.

Run Test

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [4] [1] [HZ]
- 3. When "DIAG DONE HIT MSSG V1" appears:
 - Use t MSSG I to scroll through messages.
 - Record error code(s) displayed for A 12
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A12**.

Type:AdditionalRun time:ConditionalSet-up time:Conditional	
--	--

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The A12 failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:	Instrument Level Self Test indicated A12 failure.
Condition 2:	A13 Module RF Power Test indicated A12 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect A12 failure.

Condition 1

- INSTR PRESET: SHIFT (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:

 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A 12 error codes.

NOTE

If any error codes are displayed for modules A01 - A11, you need to isolate those failure(s) before performing the A12 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.) 5. Return to foldout.

5. Return to foldout.

Condition 2

- INSIR PRESET SHIFT (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [4] [5] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W31 from module at A12A2 J2.
 - Connect YELLOW PM cable and adapter to cable W31.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W31** to module at **A12A2 J2**.
 - Disconnect cable W30 from module at A12A3J6.
 - Connect **PM** cable and adapter to **W30**.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable **W30** to module at **A12A3 J6**.
 - Disconnect cable W32 from module at A12A3 J3.
 - Connect **PM** cable to module at **A12A3J3**.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W32** to module at **A12A3 J3**.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A12.
- 8. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A12 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute	A12.13
Run time: Set-up time:	A 12 Tests Conditional Conditional	TEST A12 FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Test operation of substitute **A12 Module** by repeating test(s) performed on **A12 Module** before substitution.

Condition 1:	Instrument Level Self Test indicated A12 failure.
Condition 2:	A13 Module RF Power Test indicated A12 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect A12
	failure.

Condition 1

- INSTR PRESET SHIFT (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/ΦM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A12 error codes.

NOTE

If any error codes are displayed for modules A01 - A11,. you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for TEST SUB A12 FURTHER.

Condition 2

- 1. INSTR PRESET SHIFT)
 - (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [3] [4] [5] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W31 from module at A12A2 J2.
 - Connect YELLOW PM cable and adapter to cable W31
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W31** to module at A12A2 J2.
 - Disconnect cable W30 from module at A12A3 J6.
 - Connect **PM** cable and adapter to **W30**.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3. V26" appears:
 - Reconnect cable W30 to module at A12A3 J6.
 - Disconnect cable W32 from module at A12A3 J3.
 - Connect PM cable to module at A12A3 J3.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W32** to module at **A12A3 J3**.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use I MSSG I to scroll through messages.
 - Record error code(s) displayed for A12,.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A12 FURTHER**.

Condition 3

- 1. Set instrument to operating condition which causes A12 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A12 FURTHER**.

Type: Run time	Module Replacement 10 sec.	A12.14
Set-up time:	5 min.	TEST A12 FURTHER

Connect Module

- 1. Switch instrument to Standby.
- 2. Disconnect cables W5, W30, W31 and W33 from substitute A 12 Module.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 3. Reconnect cables W5, W30, W31 and W33 to A12 Module.
- 4. Return substitute A12 Module to On-Site Service Kit.

Down-Load Cal Data

CAUTION

Use adequate Electrostatic Discharge Techniques when handling the A20 Calibration Module.

 After making sure that A20 Module for substitute A12 Module has been returned to On-Site Service Kit, remove A20 Calibration Module from Rear Panel (see MECHANICAL PROCEDURES for removal information).

CAUTION

Check that switch S1 on A20 Module is switched up to its "**PROTECTED**" position.

- 6. With instrument switched to Standby, connect A20 Module to A3 Module at A3J3.
- 7. Turn instrument on.
- 8. When "100.000000 MZ -140.00 DM" appears:
 - Slide switch on left side of A3S2 on A3 Module back toward rear of instrument.
- 9. [SHIFT] [SPCL] [3] [7] [3] [2] [HZ]
- 10. When "TRANSFER VERIFIED. .U613" appears:
 Slide A3S2 forward toward front of instrument to protect A3 Module's memory.
- 11. Switch Instrument to Standby and remove A20 Module. Replace A20 Module on Rear Panel.
- 12. Return to foldout.

Туре:	Cable Connection	A12.15
Run time:	5 min.	
Set-up time:	1 min.	

- 1. Testing has shown **W30** or **W31** to be suspect, temporarily replace it with a test cable from the On-Site Service Kit. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitution	A12.16
Run time:	0 min.	
Set-up time:	3. Min.	

Testing has shown cable **W5** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

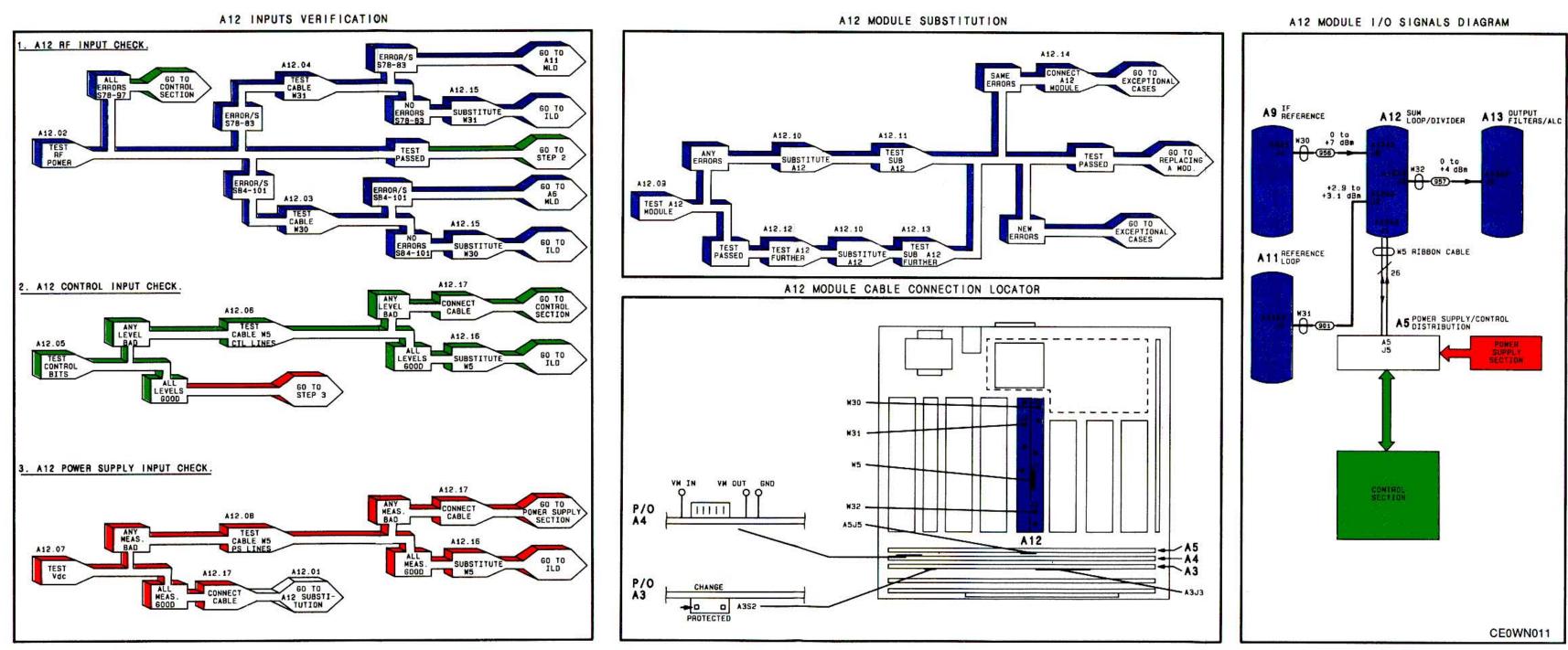
CAUTION

When connecting ribbon cable to A12 Module, find arrowhead on the cable plug and align with arrow-head on the board connector.

Reconnect W5

- Switch instrument to Standby to connect cable W5 to A5 Assembly and A12 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W5 to A5J5.)
- 2. Return to foldout.

Туре:	Cable Substitution	A12.17
Run time:	6 min.	\sim
Set-up time:	8. Min.	
		BLE


CAUTION

When connecting ribbon cable to A12 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W5

- Switch instrument to Standby to reconnect cable W5 to A5 Assembly or A12 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W5 to A5J5.)
- 2. Return to foldout.

3-261/(3-262 BLANK)

3-263/(3-264 BLANK)

3K-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A13 Module**. The objective is to isolate the failure indicated for this module the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01 - A12**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's Top Cover must be removed to run many of these tests. (Refer to the table shown on the foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. Turn to the next page to begin the A13 MLD.

3K-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page A13 INPUTS VERIFICATION.

The first step in isolating an **A13** failure is to substitute in a known good module from The On-site Service Kit.

A13 Substitution Instructions

- 1. Find **A13 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A13 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

A13 INPUTS VERIFICATION

A13.01

3K-3. INTRODUCTION

If a known good **A13 Module** is not available or if you were not able to isolate the failure using the **A13 MODULE SUBSTITUTION** procedure, the Task Sequence Diagrams (shown under **A13 INPUTS VERIFICATION**) should be used to check each signal path into the A13 Module.

A13 Inputs Verification Instructions

- 1. Find A13 INPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown **under A13 INPUTS VERIFICATION**, are separated into three checks: **RF**, **Control** and **Power** Supply signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they appear in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1. A13 RF INPUT CHECK**.

NOTE

The A13 MODULE I/O SIGNALS DIAGRAM shows all parts which the A13 Module depends on for operation.

Туре:	1;Loop Lock/Unlock	A13.02
Run time: Set-up time:	30 sec. 0	TEST A13 MODULE
		HODOLE

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [1] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use -[MSSG] to scroll through messages.
 - Record error code(s) displayed for A13. If "TEST 1 OF A13 (PASSED or FAILED)" is not displayed, rerun test.

NOTE

If any error codes are displayed for modules A01 - A12, you need to isolate those failure(s) before performing the A13 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A13 MODULE**.

Type: Run time:	Module Substitution	A13.03
Set-up time:	0 5 min.	SUBSTITUTE
		A13

The following describes the technique for connecting a known good A13 Module without removing the A13 Module in the instrument.

Connect Substitute Module

- 1. Switch instrument to **Standby**.
- 2. Disconnect cables W6, W2, W32 and W34 from A13 Module (see A13 MODULE CABLE CONNECTION LOCATOR on foldout).
- 3. Without removing A13 Module from instrument, carefully lay substitute A13 Module on top of modules A9, A11 and A12.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 4. Connect cables **W6**, **W22**, and **W32** to substitute module.
- 5. Substitute a flexible coax cable, SMC-to-SMA adapters, and barrel adapters from On-Site Service Kit for cable **W34**, to connect output of substitute module to **A14 Module**.
- 6. Turn instrument on.
- 7. Return to foldout.

Type: Run time:	Substitute Module 1 min	A13.04
Set-up time:		TEST SUB A13

Test operation of substitute **A13 Module** by repeating test performed on A13 Module before substitution.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [4] [9] [HZ].
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A13. If "TEST 1 OF A13 (PASSED OR FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A13**.

Туре:	Additional A13 Tests	A13.05
Run time:	Conditional	
Set-up time:	Conditional	TEST A13
		FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The A13 failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:	Instrument Level Self Test indicated A13 failure.
Condition 2:	A14 Module RF Power Test indicated A13 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect
	A13 failure.

Condition 1

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ-140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1. V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ]to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A13 error codes.

NOTE

If any error codes are displayed for modules A01 - A12, you need to isolate those failure(s) before performing the A13 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

1. (INSIR PRESET) [SHIFT]

(Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)

- 2. [SHIFT] [SPCL] [3] [3] [5] [1] [HZ]
- 3. When "WAITING FOR SET-UP 1. V24" appears:
 - Disconnect cable W32 from module at A13A2 J6.
 - Connect YELLOW PM cable and adapter to cable W32.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W32** to module at **A13A2 J6**.
 - Disconnect cable W34 from module at A13A2 J3.
 - Connect **PM** cable, SMC-to-SMA adapter and barrel adapter from On-Site Service Kit to module at **A13A2 J3**.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W34 to module at A13A2 J3.
 - [HZ]M to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A13.
- 7. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A13 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute A 13 Tests	A13.06
Run time:	Conditional	TEST
Set-up time:	Conditional	SUB A13

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Test operation of **substitute A13 Module** by repeating test(s) performed on A13 Module before substitution.

Condition 1:	Instrument Level Self Test indicated A13 failure.
Condition 2:	A14 Module RF Power Test indicated A13 failure.
Condition 3:	Instrument must be set to a specific operating condition to detect A13 failure.

Condition 1

- [INSTR PRESET] [SHIFT] Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/⊕M INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A13 error codes.

NOTE

If any error codes are displayed for modules A01 - A12, you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A13 FURTHER.**

Condition 2

- (INSTR) PRESET) [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [1] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W32 from module at A13A2 J6.
 - Connect YELLOW PM cable and adapter to cable **W32**.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W32** to module at **A13A2 J6**.
 - Disconnect cable W34 from module at A13A2 J3.
 - Connect PM cable and adapters to module at A13A2 J3.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W34 to module at A13A2 J3.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A13.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A13 FURTHER.**

Condition 3

- 1. Set instrument to operating condition which causes A13 failure.
- 2. Record instrument set-up error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A13 FURTHER**.

RESUL

BLOCK

Туре:	Cable Connection	A13.07
Run time:	0	
Set-up time:	5 min.	

Connect Module

- 1. Switch instrument to Standby.
- 2. Disconnect cables W6, W22, W32 and substitute output cable from substitute A13 Module.

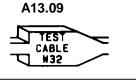
CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 3. Reconnect cables W6, W22, W32 and W34 to A13 Module.
- 4. Turn instrument on.
- 5. Return substitute A 3 Module to On-Site Service Kit.
- 6. Return to foldout.

Type: Run time: Set-up time: 2A;RF Power Levels 1 min. 30 sec. 2 min.

RF signal level is measured using Internal Power Meter (**PM**).


CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Run Test

- (INSRT) (PRESET) [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second test)
- 2. [SHIFT] [SPCL] [3] [6] (8) [1] [2] [HZ] (To check Input levels only.)
- 3. [3] [5] [1] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W32 from module at A13A2 J6.
 - Connect YELLOW PM cable and adapter to cable W32.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W32 to module at A13A2 J6.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A13.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST RF POWER.

Type: Run time: Set-up time: 2A;RF Power Levels 1 min. 30 sec. 2 min.

RF signal level is measured using Internal Power Meter (PM).

<u>Run</u> T<u>es</u>t

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second test.)
- 2. [SHIFT] [SPCL] [3] [6] [8] [1] [2] [HZ] (To check input levels only.)
- 3. [3] [5] [1] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W32 from A12 Module at A12A3 J3. (See Top View Diagram inside Top Cover to locate W32 connection on A12 Module.)
 - Connect YELLOW PM cable to module at A12A3J3.
 - CM to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W32** to module at **A12A3J3**.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A13.
- 7. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W32**.

Туре:		
Run	time:	
Set-u	ıp time:	

3;Bit Transmission 3 min. 2 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A13 Module on Clock and Data control lines.

Run Test

- 1. Switch instrument to **Standby**:
 - Disconnect cable W6 from module at A13A2 J1.
 - Plug end of W6 into 16 pin test connector, from On-Site Service Kit.

NOTE

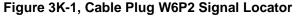
Find arrowhead on test connector and align with arrowhead on cable plug W6P2.

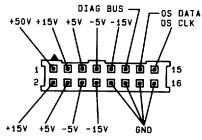
CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A13 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- Turn instrument on. (Hold shift key until "100.00000MZ -140.00DM" appears, to override 20 second reset test.)

Clock Line


Check High State


4. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)

NOTE

A "**0**" will appear In display indicating that the data bit will be set low. However, the bit is inverted in the Control Section before it Is sent to **A13**.

- 5. [4] [0] [HZ] (To select bit.)
- 6. Connect VM probe to test connector line OS CLK (pin 15). (See Figure 3K-1, Cable plug W6PZ Signal Locator.)

- 7. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

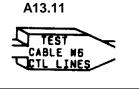
NOTE

A "1" will appear in display indicating that the data bit will be set high. However, the bit is inverted in the Control Section before it is sent to **A13**.

- 10. [4] [0] [HZ] (To select bit.)
- 11. [2] [5] [HZ] To enable voltmeter.)
- 12. Voltage should read approximately -**0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)

Data Line

Check High State


- 13. [SHIFT] [SPCL] (To specify high state.)
- 14. [4] [1] [HZ] (To select bit.)
- 15. Connect VM probe to test connector line OS DATA (pin 13). (See Figure 3K-1. Cable Plug W6P2 Signal Locator.)
- 16. [2] [5] [HZ] (To enable voltmeter.)
- 17. Voltage should read approximately **+2.5** to **+5.5 Vdc.** ([5] [HZ] to repeat measurement.)

Check Low State

- 18. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)
- 19. [4] [1] [HZ] (To select bit.)
- 20. [2] [5] [5] [HZ] (To enable voltmeter.)
- 21. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)
- 22. Record test results.
- 23. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS**.

Type: Run time: Set-up time: 3; Bit Transmission 3 min. 3 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A13 Module on Clock and Data control lines.

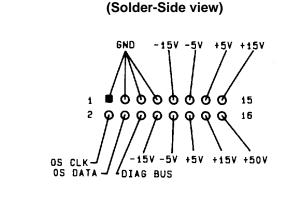
Run Test

- 1. Switch instrument to **Standby.**
- Extend A13 Module on extender posts, from On-Site Service Kit. to disconnect cable W6 from A5 Assembly at A5J6. (See table on foldout in MECHANICAL PROCEDURES to locate A13 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W6.

- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A13 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on.


Clock Line

Check High State

- 5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 6. [4] [0] [HZ] (To select bit.)

Figure 3K-2. A5J6 Signal Locator

7. Connect VM probe to solder-side of A5J6 line OS CLK (pin 2). (See Figure 3K-2. A5J6 Signal Locator.)

- 8. [2] [5] [HZ] (To enable voltmeter.)
- 9. Voltage should read approximately **+2.5** to **+5.5 Vdc** ([5] HZ] to repeat measurement.)

Check Low State

- 10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state).
- 11. [4] [0] [HZ] (To select bit)
- 12. [2] [5] [HZ] (To enable voltmemeter.)
- 13. Voltage should read approximately -0.5 to +1.5 Vdc. ([5] [HZ] to repeat measurement.)

Data Line

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 15. [4] [1] [HZ] (To select bit.)

- 16. Connect VM probe to solder-side of A5J6 line OS DATA (pin 4). (See Figure 3K-2. A5J6 Signal Locator.)
- 17. [2] [5] [HZ] (To enable voltmeter.)
- 18. Voltage should read approximately +2.5 to +5.5 Vdc
- [5] [HZ] to repeat measurement.)

Check Low State

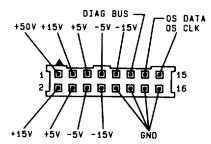
- 19. [SHIFT] [SPCL] [3] [6] [0] [1] To specify low state.)
- 20. [4] [1] [HZ] (To select bit).
- 21. [2] [5] [HZ]
- 22. Voltage should read approximately -0.5 to +1.5 Vdc ([5] [HZ] to repeat measurement.)
- 23. Record test results.
- 24. Reconnect W6 and lower Module back into instrument.
- 25. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W6 CTL LINES**.

Type: Run time: Set-up time:	4, Voltage Measurements 2 min. 2 min.	A13.12
		Vdc

Internal Voltmeter (VM) is used to check power supply levels at inputs to inputs to A13 Module.

Run Test

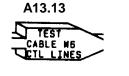

- 1. Switch instrument to Standby:
 - Disconnect W6 from A13 at A13A 2 J1.
 - Plug end of W6 into 16 pin test connector, from On-Site Service Kit.


NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W6P2.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A13 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3K-3. Cable Plug W6P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

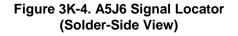


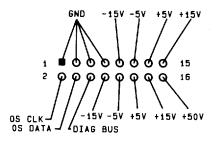
- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST Vdc.

Type: Run time: Set-up time: 4, Voltage Measurements
 2 min.
 3 min.

Internal Voltmeter (VM) is used to check power supply levels at A5J6.

Run Test


- 1. Switch instrument to Standby.
- Extend A13 Module on extender posts, from On-Site Service Kit. to disconnect cable W6 from A5 Assembly at A5J6. {See table on foldout in MECHANICAL PROCEDURES to locate A13 Module extension and A5 cable disconnection information.)


NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W6.

- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A13 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure voltage levels at A5J6:
 - Access signals from solder-side of A5J6. (See Figure 3K-4. AsJ6 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect W6 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W6 PS LINES**.

Type:	Cable Substitution A13.14
Run time:	5 min.
Set-up time:	

- Testing has shown cable W32 to be suspect, temporarily replace with a test cable from the On-Site Service Kit. Rerun INSTRUMENT LEVEL DIAGNOSTICS (ILD) to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Additional Substitute	A13.15
Run time: Set-up time:	Conditional Conditional	
Set-up time.	Conditional	SUBSTITUTE W6

Testing has shown cable **W6** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT ILEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to A13 Module, find arrowhead on the cable plug and align with arrow-head on the board connector.

Reconnect W6

- Switch instrument to Standby to connect cable W6 to A5 Assembly and A13 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W6 to A5J6.)
- 2. Return to foldout.

Туре:	Cable Connection	A13.16
Run time:	0 min.	
Set-up time:	3 min.	

CAUTION

When connecting ribbon cable to A13 Module, find arrowhead on the cable plug and align with arrow-head on the board connector.

Reconnect W6

- Switch instrument to Standby to reconnect cable W6 to A5 Assembly or A13 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W6 to A5J6.)
- 2. Return to foldout.

3-291/(3-292 BLANK)

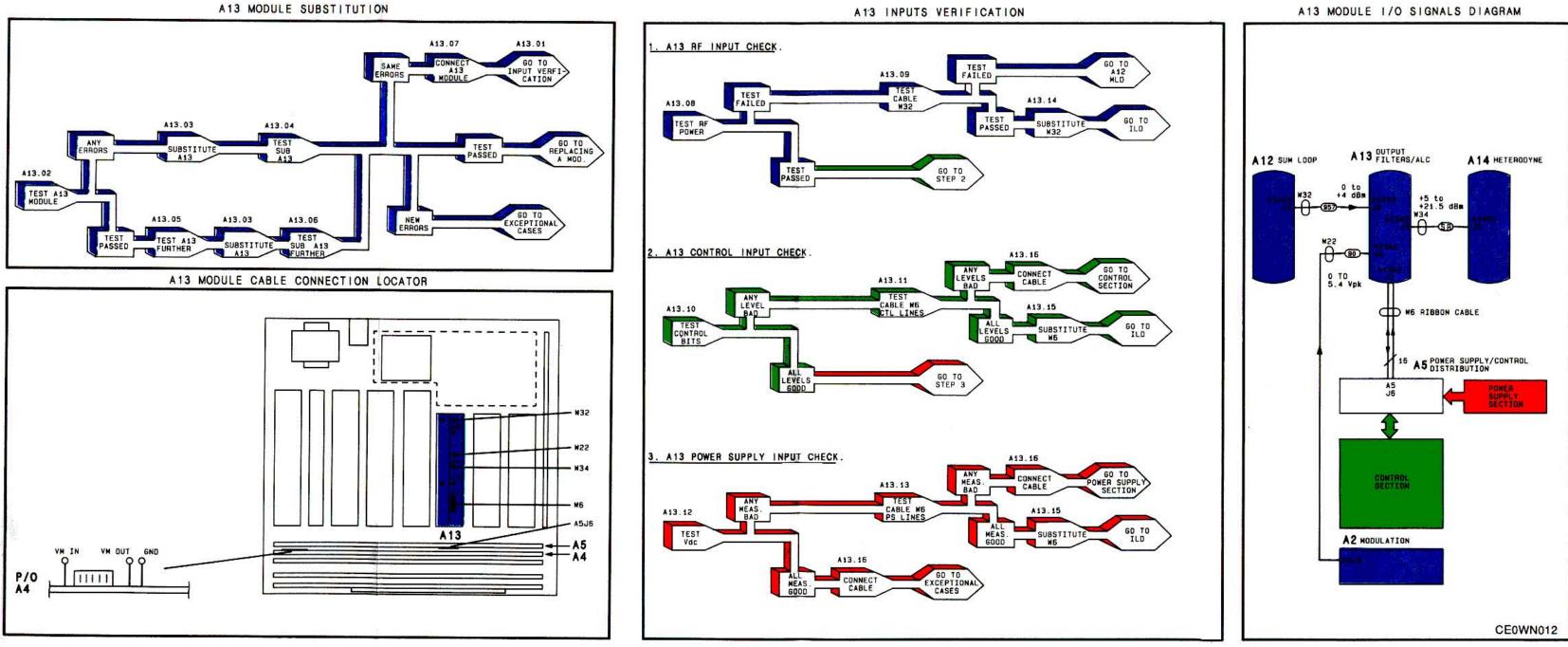


Figure 3K-100. A13 Output Filters/ALC Module Diagnostics.

3-293/(3-294 BLANK)

TM 11-6625-3165-14

3L-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A14 Module**. The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01-A04** and **A07-A13**. (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION


When tightening the coax cable connectors, do not exceed a torque of 10 Nm or .74 ft-lbs (slightly tighter than finger tight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

- 1. The instrument's Top Cover must be removed to run many of these tests. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate instructions.)
- 2. The last page in this group of tests is a foldout and should be pulled out now.
- 3. If you have been directed here to troubleshoot an **RF** power level failure, turn to page **3-4** to begin diagnostics, otherwise, proceed to the next page to begin the **A14 MLD**.

3L-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page A14 INPUTS VERIFICATION.

A14 Substitution Instructions

- 1. Find **A14 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under A14 MODULE SUBSTITUTION to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

3L-3. INTRODUCTION

If a known good A14 Module is not available or if you were not able to isolate the failure using the A14 MODULE SUBSTITUTION procedure, the Task Sequence Diagrams (shown under A14 INPUTS VERIFICATION) should be used to check each signal path into the A14 Module.

A14 Inputs Verification Instructions

- 1. Find A14 INPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown under A14 INPUTS VERIFICATION, are separated into three checks: RF, Control and Power Supply signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the page indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under **1.** A14 RF INPUT CHECK.

NOTE

The A14 MODULE I/O SIGNALS DIAGRAM shows all parts which the A14 Module depends on for operation.

3L-4. INTRODUCTION

The first step in isolating an **RF** power level failure is to check the power levels into and out of the **A14 Module**.

Power Diagnostics Instructions

- 1. Find A14 RF POWER LEVEL DIAGNOSTICS on the foldout.
- 2. Use the Task Sequence Diagram, shown under A14 RF POWER LEVEL DIAGNOSTICS, to direct you through the testing process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the page indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

Туре:	2A; RF Power Levels	A14.03
Run time:	1 min. 35 sec.	
Set-up time:	3 min.	TEST POWER LEVELS

RF signal levels are measured using Internal Power Meter (PM).

CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Run Test

- 1. [INSTR PRESET] [SHIFT]
- (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [6] [HZ]
- 3. When **"WAITING FOR SET-UP 1 .V24"** appears:
 - Disconnect cable W29 from A14 Module at A14A2 J1.
 - Connect YELLOW PM cable and adapter to cable W29.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W29 to module at A14A2 J1.
 - Disconnect cable W34 from A13 Module at A13A2 J3.
 - Connect PM cable to A13 Module at A13A2 J3 using adapter and barrel adapter from On-Site Service Kit.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Reconnect cable W34 to A13 Module at A13A2 J3.
 - Remove cable W36 from A14 Module at A14U1 J3 and A19K1 J2.
 - Connect PM cable to A14 Module at A14U1 J3.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W36 to A14 Module at A14U1 J3 and A19K1 J2.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A14.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST POWER LEVELS**.

2A; RF Power Levels	A14.04
1 min. 35 sec.	
3 min.	TEST
	CABLE H34
	1 min. 35 sec.

Cable **W34** is tested by substituting in a test cable from the On-Site Service Kit.

Run Test

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [6] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W29 from A14 Module at A14A2 J1.
 - Connect YELLOW PM cable and adapter to cable W29.
 - [HZ] to continue test.
- 4. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable W29 to module at A14A2 J1.
 - Disconnect cable W34 from A13 and A14 modules at A13A2 J3 and A14U1 J3.
 - Connect PM cable to A13 Module at B using adapter and barrel adapter from On-Site Service Kit.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 3 .V26" appears:
 - Connect test cable (flexible) to A13 and A14 modules at A13A2 J3 and A14U1 J3.
 - Remove cable W36 from A14 Module at A14U1 J3 and A19K1J 2.
 - Connect PM cable to A14 Module at A14U1 J3.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W36 to A14 Module at A14U1 J3 and A19K1 J2.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A14.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W34**

Туре:	1; Loop Lock/Unlock	A14.05
Run time:	1 min.	
Set-up time:	0	TEST A14 MODULE

Run Test

- 1. [INSTR PRESET] [SHIFT]
- (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.) 2. [SHIFT] [SPCL] [3] [3] [2] [0] [HZ]
- 3. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 1 OF A06 (PASSED OR FAILED)" is not displayed, rerun test.

NOTE

The A14 Module's loop test is included in this A6 Module test.

NOTE

If any error codes are displayed for modules A01-A04 or A07-A13, you need to isolate those failure(s) before performing the A14 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A14 MODULE**

Туре:	Module Substitution	A14.06
Run time:	0	
Set-up time:	5 min.	SUBSTITUTE A14

The following describes the technique for connecting a known good A 14 Module.

Connect Substitute Module

- 1. Switch instrument to **Standby**.
- 2. Remove A14 Module and install substitute module (refer to table on foldout in MECHANICAL PROCEDURES to locate removal and replacement information.)
- 3. Turn instrument on.
- 4. Return to foldout.

Туре:	Substitute Module Test	A14.07
Run time:	1 min.	TEST
Set-up time:	0	

This procedure tests operation of **substitute A14 Module** by repeating test performed on **A14 Module** before substitution.

Run Test

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [2] [0] [HZ]
- 3. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A6. If "TEST 1 OF A06 (PASSED OR FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A14.**

Туре:	Additional A14 tests	A14.08
Run time:	Conditional	
Set-up time:	Conditional	TEST A14

The **A14** failure conditions for arriving t this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:Instrument Level Self Test indicated A14 failure.Condition 2:A14 Module failed POWER LEVEL DIAGNOSTICS.Condition 3:Instrument must be set to a specific operating condition to detect A14 failure.

Condition 1

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/fM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record any A06 and A14 error codes.

NOTE

If any error codes are displayed for modules A01-A04 or A07-A13, you need to isolate those failure(s) before performing the A14 MODULE SUBSTITUTION. (Refer to INSTRUMENT LEVEL DIAGNOSTICS to determine correct order for troubleshooting modules.)

5. Return to foldout:

Condition 2

- 1. Use results from **TEST RF POWER** to check substitute module.
- 2. Rerun test now if necessary to ensure all test results have been recorded accurately.
- 3. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes **A14** failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute	A14.09
	A14 tests	
Run time:	Conditional	TEST
Set-up time:	Conditional	SUB A14

This procedure tests operation of substitute **A14 Module** by repeating test(s) performed on **A14 Module** before substitution.

Condition 1: Instrument Level Self Test indicated A14 failure.

Condition 2: A14 Module failed POWER LEVEL DIAGNOSTICS.

Condition 3: Instrument must be set to a specific operating condition to detect **A14** failure.

Condition 1

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/fM INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record A06 and A14 error codes.

NOTE

If any error codes are displayed for modules A01-A04 or A07-A13, you need to isolate those failure(s) now.

- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A14 FURTHER.**

Condition 2

- 1. Use results from A14.03 to check substitute module.
- 2. Rerun test now if necessary to ensure all test results have been recorded accurately.
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A14 FURTHER**.

Condition 3

- 1. Set instrument to operating condition which causes **A14** failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A14 FURTHER.**

Туре:	Cable Connection	A14.10
Run time:	0	
Set-up time:	5 min.	
		MODULE

Connect Module

- 1. Switch instrument to **Standby.**
- 2. Disconnect cables W7, W29, W34 and W36 from substitute A14 Module.
- 3. Return substitute A14 Module to On-Site Service Kit.

CAUTION

When connecting ribbon cable, find arrowhead on cable connector and align with arrowhead on board connector.

- 4. Reconnect **W7** to module at **A14A3 J6** and lower module back into instrument.
- 5. Reconnect cables W7, W29, W34 and W36 to A14 Module.
- 6. Turn instrument on.
- 7. Return to foldout.

TM 11-6625-3165-14

A14 MODULE DIAGNOSTICS

Туре:		
Run t	ime:	
Set-u	p time:	

2A; RF Power Levels 1 min. 2 min. A14.11

TEST RF POWER

RF signal level is measured using Internal Power Meter (PM).

CAUTION

Do not permit end of Internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [6] **[8]** [1] [3] [HZ]
- 3. [3] [5] [6] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W29 from A14 Module at A14A2 J1.
 - Connect YELLOW PM cable and adapter to cable W29.
 - [HZ] to continue test.
- 5. When "WAITING FOR SET-UP 2 .V25" appears:
 - Reconnect cable **W29** to module at **A14A2 J1**.
 - Disconnect cable W34 from A13 Module at A13A2 J3.
 - Connect PM cable to A13 Module at A13A2 J3 using adapter and barrel adapter from On-Site Service Kit.
 - [HZ] to continue test.
- 6. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable **W34** to module at **A14A2 J3**.
 - [HZ] to continue test.
- 7. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A14.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST RF POWER**.

Туре:	2A; RF Power Levels	A14.12
Run time:	10 sec.	TEST
Set-up time:	1 min.	

RF signal level is measured using Internal Power Meter (PM).

Run Test

- 1. [INSTR PRESET] [SHIFT]
- (Hold shift key until **"100.000000MZ -140.0DM"** appears, to override 20 second reset test.) 2. [SHIFT] [SPCL] [3] [6] **[8]** [1] [2] [HZ]
- 3. [3] [5] [6] [HZ]
- 4. When "WAITING FOR SET-UP 1 .V24" appears:
 - Disconnect cable W29 from A6 module at A6A2 J9. (See Top View Diagram inside Top Cover to locate W29 connection on A6 Module).
 - Connect YELLOW PM cable and adapter to A6 module at A6A2 J9.
 - [HZ] to continue test.
- 5. When "RECONNECT ALL CABLES .V29" appears:
 - Reconnect cable W29 to A6 Module at A6A2 J9.
 - [HZ] to continue test.
- 6. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A14.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W29.**

Type:Additional SubstituteA14.13Run time:ConditionalSet-up time:Conditional

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A14 Module on MUX and Band select lines.

Run Test

- 1. Switch instrument to **Standby:**
 - Disconnect cable **W7** from module at **A14A2 J2**.
 - Plug end of W7 into 16 pin test connector, from On-Site Service Kit.

NOTE

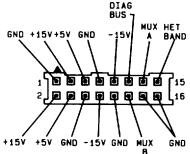
Find arrowhead on test connector and align with arrowhead on cable plug W7P2.

CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on. (Hold shift key until **"100.000000MZ -140.0DM"** appears, to override 20 second reset test.)

MUX and Band Select Lines


Check High State

- 4. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state).
- 5. Enter **Bit Select Keys** as indicated in **Table 3L-1**. **W7P2 Control Bits**, for **Control Line** to be tested.
- 6. Connect VM probe to Control Line at Pin Number indicated in Table 3L-1. (See Figure 3L-1. Cable Plug W7P2 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 5 and 10)	Pin Number (Step 6)
1	MUX A	[9] [HZ]	12
2	MUX B	[1] [1] [HZ]	12
3	HET BAND	[2] [6] [HZ]	15

Table 3L-1. W7P2 Control Bits

Figure 3L-1.	Cable Plug W7P2 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter).
- Voltage should read approximately + 2.5 to + 5.5 Vdc. ([5] [HZ] to repeat measurement).

Check Low State

- 9. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 10. Enter Bit Select Keys as indicated in Table 3L-1. W7P2 Control Bits, for same Control Line.
- 11. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately 0.5 to + 1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 13. Repeat Procedure for each Control Line shown in Table 3L-1.
- 14. Record test results.
- 15. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CONTROL BITS**.

A14.14	3; Bit transmission	Туре:
	3 min.	Run time:
	3 min.	Set-up time:

Internal Voltmeter **(VM)** is used to measure TTL level changes transmitted to **A14 Module** on MUX and Band select lines.

Run Test

- 1. Switch instrument to **Standby**.
- Extend A14 Module on extender posts, from On-Site Service Kit, to disconnect cable W7 from A5 Assembly at A5J7. (See table on foldout in MECHANICAL PROCEDURES to locate A14 Module extension and AS cable disconnection information.)

NOTE

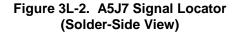
It may be necessary to remove A4 (para 5-6) to disconnect cable W7.

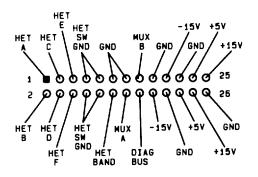
- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on.

NOTE

It is only necessary to perform this test on failing control line.

MUX and Band Select Lines


Check High State


- 5. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 6. Enter **Bit Select Keys** as indicated in **Table 3L-2. A5J7 Control Bits**, for **Control Line** to be tested.

7. Connect VM probe to Control Line at Pin Number indicated in Table 3L-2. (See Figure 3L-2. ASJ7 Signal Locator.)

Test Order	Control Line	Bit Select Keys (Steps 6 and 11)	Pin Number (Step 7)
1	MUX A	(9) [HZ]	14
2	MUX B	[1] [1] [HZ]	15
3	HET BAND	[2] [6] [HZ]	12

Table 3L-2. A5J7 Control Bits

- 8. [2] [5] [HZ] (To enable voltmeter).
- Voltage should read approximately + 2.5 to + 5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 10. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 11. Enter Bit Select Keys as indicated in Table 3L-2. A5J7 Control Bits, for same Control Line.
- 12. [2] [5] [HZ] (To enable voltmeter).
- Voltage should read approximately 0.5 to + 1.5 Vdc. ([5] [HZ] to repeat measurement.)
- 14. Record test results.
- 15. Reconnect W7 and lower Module back into instrument.
- 16. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W7**.

Туре:	Driver Transmission	A14.15
Run time:	3 min.	
Set-up time:	4 min.	

Internal Voltmeter (VM) is used to measure level changes transmitted to A14 Module on Switch Driver control lines.

Run Test

- 1. Switch instrument to Standby:
 - A14 Module will have to be extended to access A14A3 J6. (See table on foldout in MECHANICAL PROCEDURES to locate module extension instructions.)
 - Disconnect cable W7 from module at A14A3 J6.
 - Plug end of **W7** into 10 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W7P3.

CAUTION

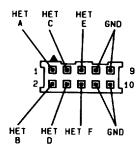
To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

2. Connect VM probe:

- Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
- Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)

3. Turn instrument on. (Hold shift key until **"100.000000MZ -140.0DM"** appears, to override 20 second reset test.)

Check High State


4. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state).

NOTE

A "**0**" will appear in display indicating that the data bit will be set low. However, the bit is inverted before it is sent to **A14**.

- 5. [7] [1] [HZ] (To select bits).
- 6. Connect VM probe to test connector HET A (pin 1). (See Figure 3L-3. Cable plug W7P3 Signal Locator.)

Figure 3L-3. Cable Plug W7P3 Signal Locator

- 7. [2] [5] [HZ] (To enable voltmeter).
- 8. Voltage should read approximately + 20 Vdc.
- 9. Check each driver line (pins 1-6), by connecting VM probe to each pin and keying [5] [HZ]. Voltage should read approximately + 20 Vdc on each line.

Check Low State

10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that the data bit will be set high. However, the bit is inverted before it is sent to **A14**.

- 11. [7] [1] [HZ] (To select bits)
- 12. [2] [5] [HZ] (To enable voltmeter.)
- Voltage should read approximately **0 Vdc**.
 [[5] [HZ] to repeat measurement.)
- 14. Check each driver line by connecting **VM** probe to each pin and keying [5] [HZ]. Voltage should read approximately **0 Vdc** on each line.
- 15. Record test results.
- 16. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SWITCH DRIVE.**

Driver Transmission	A14.16
3 min.	
3 min.	CABLE W7
	3 min.

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A14 Module Switch Driver control lines.

Run Test

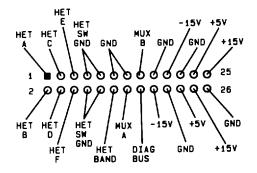
- 1. Switch instrument to **Standby.**
- Extend A14 Module on extender posts, from On-site Service Kit to disconnect cable W7 from A5 Assembly at A5J7. (See table on foldout in MECHANICAL PROCEDURES to locate A14 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W7.

- 3. Connect VM probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on.

Check High State


5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)

NOTE

A "**0**" will appear in display indicating that the data bit will be set low. However, the bit is inverted in the Control Section before it is sent to **A14**.

6. [7] [1] [HZ] (To select bit) 7. Connect VM probe to solder-side of A5J7 line HET A (pin 1). (See Figure 3L-4. A5J7 Signal Locator.)

Figure 3L-4, A5J7 Signal Locator (Solder-Side View)

- 8. [2] [5] [HZ] (To enable voltmeter.)
- 9. Voltage should read approximately +20 Vdc.
- 10. Check each driver line (pins 1-6) by connecting VM probe to each pin and keying [5] [HZ].

Check Low State

11. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)

NOTE

A "1" will appear in display indicating that the data bit will be set high. However, the bit is inverted in the Control Section before it is sent to **A14**.

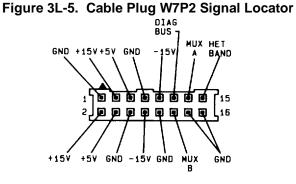
12. [7] [1] [HZ] (To select bit).

- 13. Connect VM probe to solder-side of A5J7 line HET A (pin 1).
- 14. [2] [5] [HZ] (To enable voltmeter).
- Voltage should read approximately **0 Vdc**.
 [[5] [HZ] to repeat measurement.)
- 16. Check each driver line (pins 1-6).
- 17. Record test results.
- 18. Reconnect W7 and lower Module back into instrument.
- 19. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W7 SW LINES.**

Туре:	4, Voltage Measurements	A14.17
Run time:	2 min.	
Set-up time:	2 min.	TEST Vdc

Internal Voltmeter (VM) is used to check power supply levels at inputs to A14 Module.

Run Test


- 1. Switch instrument to **Standby:**
 - Disconnect W7 from A14 at A14A2 J2.
 - Plug end of W7 into 16 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug W7P2.

- 2. Connect VM probe:
 - Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line (see Figure 3L-5. Cable Plug W7P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement).

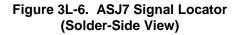
- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST Vdc.**

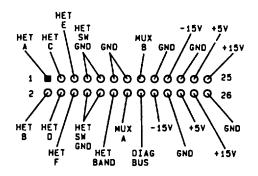
Туре:	4, Voltage Measurements	A14.18
Run time:	2 min.	
Set-up time:	3 min.	CABLE W7
		PS LINES

Internal Voltmeter (VM) is used to check power supply levels at A5J2.

Run Test

- 1. Switch instrument to Standby.
- Extend A14 Module on extender posts, from On-Site Service Kit, to disconnect cable W7 from A5 Assembly at A5J2. (See table on foldout in MECHANICAL PROCEDURES to locate A14 Module extension and A5 cable disconnection information.)


NOTE


It may be necessary to remove A4 (para 5-6) to disconnect cable W7.

3. Connect VM probe:

- Connect rid alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
- Connect alligator clip to VM IN (A4TP1). (See A14 MODULE CABLE CONNECTION LOCATOR on fold-out for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure all voltage levels at A5J7:
 - Access signals from solder-side of A5J7. (See Figure 3L-6. A5J7 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect W7 and lower Module back into instrument.
- 8. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W7 PS LINES.**

Туре:	Cable Substitute	A14.19
Run time:	5 min.	
Set-up time:	1 min.	
		W29

- 1 Testing has shown cable **W29** or **W34** to be suspect, temporarily replace **W29** with a test cable from the On-Site Service Kit. Cable **W34** should be replaced by a semi-rigid cable. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitute	A14.20
Run time:	0 min.	
Set-up time:	3 min.	

Testing has shown cable **W7** to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to A14 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W7

- Switch instrument to Standby to connect cable W7 to A5 Assembly and A14 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W7 to A5J7.)
- 2. Return to foldout.

Туре:	Cable Connection	A14.21
Run time:	0 min.	
Set-up time:	3 min.	

CAUTION

When connecting ribbon cable to A14 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W7

- Switch instrument to Standby to reconnect cable W7 to A5 Assembly or A14 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W7 to A5J7.)
- 2. Return to foldout.

3-239/(3-330 BLANK)

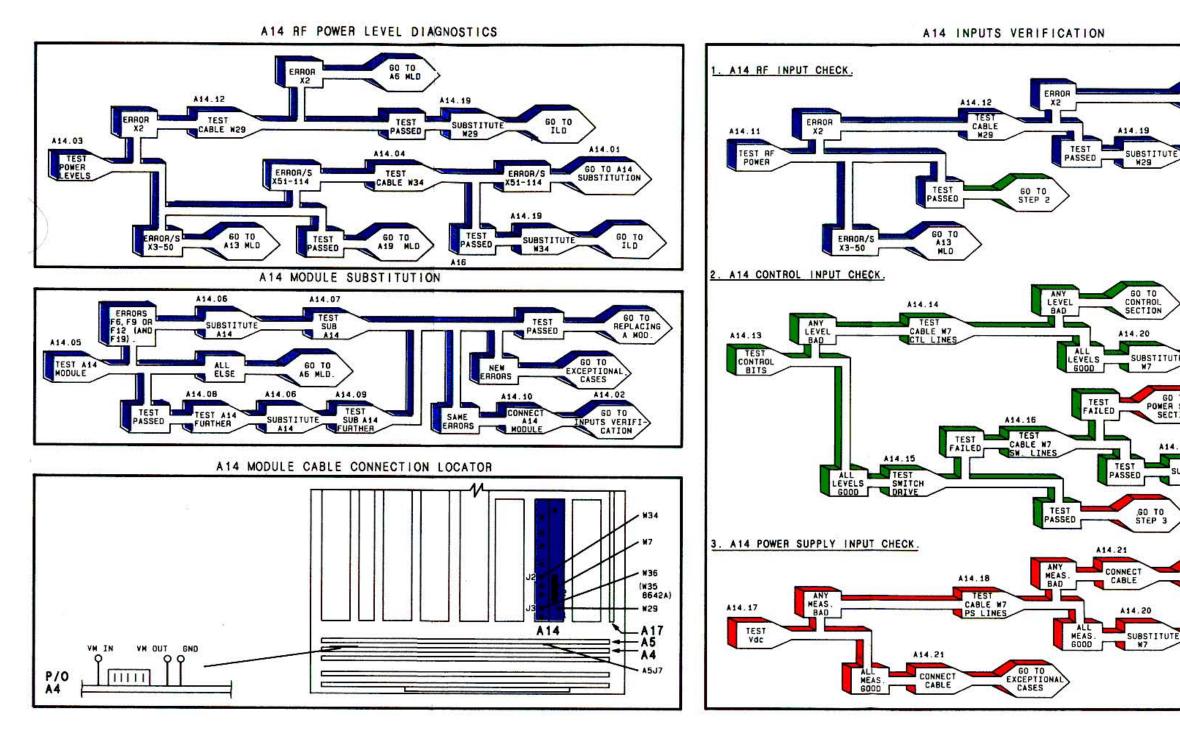
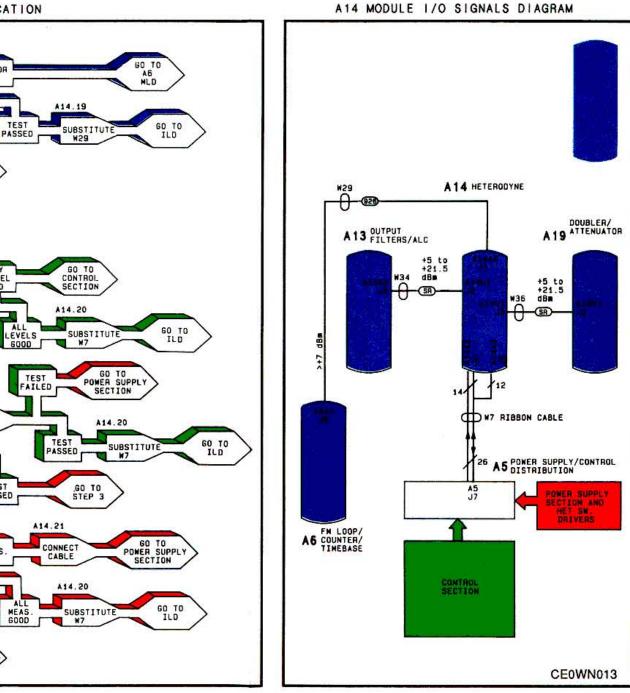



Figure 3L-100. A14 Heterodyne Module Diagnostics.

3-331/(3-332 BLANK)

3M-1. DELETED.

3-333/(3-334 BLANK)

3N-1. INTRODUCTION

The **MODULE LEVEL DIAGNOSTICS (MLD)** contained in this section are used to further interrogate the **A19 Module (HP 8642B only).** The objective is to isolate the failure indicated for this module to the module itself or to a part on which it depends for operation.

NOTE

At this level of testing, recommendations for further action are made on the assumption that the **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** showed no failures for modules **A01-A17.** (For information on using the on-site diagnostics, refer to the **INTRODUCTION** section of this manual.)

CAUTION

When tightening the coax cable connectors, do not exceed a torque of 1.0 Nm or. 74 ft-lbs (slightly tighter than fingertight).

When coax cables are disconnected from instrument, do not allow loose ends to come in contact with any exposed circuitry susceptible to short circuiting.

Test Instructions

1. The instrument's **Top Cover** must be removed to run many of these tests. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate instructions.)

2. The last page in this group of tests is a foldout and should be pulled out now.

3. Turn to the next page to begin the A19 MLD.

3N-2. INTRODUCTION

NOTE

If a known good module is not available, proceed to the next page, **A19 INPUTS VERIFICATION.**

The first step in isolating an **A19** failure is to substitute in a known good module from the On-site Service Kit.

A19 Substitution Instructions

- 1. Find **A19 MODULE SUBSTITUTION** on the foldout.
- 2. Use the Task Sequence Diagram, shown under **A19 MODULE SUBSTITUTION**, to direct you through the substitution process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 3. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 4. Begin now by performing the first task shown on the diagram.

3N-3. INTRODUCTION

If a known good **A19 Module** is not available or, if you were not able to isolate the failure using the **A19 MODULE SUBSTITUTION** procedure the Task Sequence Diagrams (shown under **A19 INPUTS VERIFICATION)** should be used to check each signal path into the **A19 Module**.

A19 Inputs Verification Instructions

- 1. Find A19 INPUTS VERIFICATION on the foldout.
- 2. The Task Sequence Diagrams, shown under A19 INPUTS VERIFICATION, are separated into three checks: RF, Control and Power Supply signals.
- 3. Use the Task Sequence Diagrams to direct you through the verification process. Each Task Arrow shown in a diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown under
 - 1. POWER SUPPLY INPUT CHECK.

NOTE

The A19 MODULE I/O SIGNALS DIAGRAM shows all parts which the A19 Module depends on for operation.

Туре:	1; Loop Lock/Unlock	A19.02
Run time:	40 sec.	
Set-up time:	0	TEST A19 MODULE

Run Test

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until **"100.000000MZ -140.0DM"** appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [8] [HZ].
- 3. When "DIAG DONE HIT MSSG V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A19.

NOTE

If any error codes are displayed for modules **A01-A17** you need to isolate those failure(s) before performing the **A19 MODULE SUBSTITUTION.** (Refer to **INSTRUMENT LEVEL DIAGNOSTICS** to determine correct order for troubleshooting modules.)

- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST A19 MODULE**.

Туре:	Module Substitution	A19.03
Run time:	0	
Set-up time:	7 min.	
•		

Connect Substitute Module

- 1. Switch instrument to Standby.
- 2. Remove A19 Module and install substitute module (refer to table on foldout in MECHANICAL PROCEDURES to locate removal and replacement information).
- 3. Turn instrument on.
- 4. Return to foldout.

Туре:	Substitute Module Test	A19.04
Run time:	40 sec.	TEST
Set-up time:	0	SUB

Test operation of **substitute A19 Module** by repeating test performed on A19 Module before substitution.

Run Test

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] (SPCL) [3] [3] [5] [8] [HZ]
- 3. When "DIAG DONE HIT MSSG .V1" appears:
 - Use [MSSG] to scroll through messages.
 - Record error code(s) displayed for A19. If "TEST 1 OF A19 (PASSED or FAILED)" is not displayed, rerun test.
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A19**.

Туре:	Additional A19 Tests	A19.05
Run time:	Conditional	TEST A19
Set-up time:	Conditional	FURTHER

CAUTION

Do not permit end of internal Power Meter cable to short circuit instrument by coming in contact with any exposed circuitry.

The **A19** failure conditions for arriving at this task are described below. Follow the procedure for the condition which fits your module.

Condition 1:	Instrument Level Self Test indicated A19 failure.
Condition 2:	Instrument has a power level failure and A14 Module RF Power Level
	Test indicated power level good out of A14.
Condition 3:	Instrument must be set to a specific operating condition to detect A19 failure.

Condition 1

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until **"100.000000MZ -140.0DM**" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [5] [8] [HZ]
- 3. When "WAITING FOR SET-UP 1 .V24" appears:
 - Connect BNC Tee connector from On-Site Service Kit, to "FM/
 M INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
- 4. When "DIAG DONE HIT MSSGS .V1" appears:
 - Use [MSSG] to scroll through messages.'
 - Record A19 error codes.

NOTE

If any error codes are displayed for modules **A01- A17**, you need to isolate those failure(s) before Performing the **A19 MODULE SUBSTITUTION**. Refer to **INSTRUMENT LEVEL DIAGNOSTICS** to determine correct order for troubleshooting modules.)

5. Return to foldout.

Condition 2

NOTE

If an external power measuring instrument is available, use it to make power measurements.

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. Connect Power Meter (PM):
 - Connect Yellow PM cable and adapters to instrument's RF Output port CP1.
- 3. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ]
 - [4] [HZ] to repeat measurement.
 - Key sequence must be repeated for each amplitude or frequency setting change.

NOTE

Internal Power Meter should read within ±3 dB of amplitude setting. The internal power meter cannot measure power levels less than -10 dBm.

- 4. Measure power level:
 - Set instrument's frequency to 2 GHz.
 - Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
 - Repeat measurement for same amplitude settings at 990 and 4 MHz.
 - Supplement these measurements with additional readings at other instrument settings if desired.
- 5. Record test results.
- 6. Return to foldout.

Condition 3

- 1. Set instrument to operating condition which causes A19 failure.
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout.

Туре:	Additional Substitute A 19 Tests	A19.06
Run time: Set-up time:	Conditional Conditional	SUB A19

Test operation of **substitute A19 Module** by repeating test(s)

performed on AI 19 Module before substitution.

Condition 1:	Instrument Level Self Test indicated A19 failure.
Condition 2:	Instrument has a power level failure and A14
	Module RF Power Level Test indicated power
	level good out of A14.
Condition 3:	Instrument must be set to a specific operating
	condition to detect A19 failure.

Condition 1

4.

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until **"100.000000MZ** -140.0DM" appears, to override 20 second reset test.)
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .VZ4" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/ f M INPUT" (see INSTRUMENT LEVEL DIAGNOSTICS foldout for set-up diagram).
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue test.
 - When "DIAG DONE HIT MSSGS .V1" appears:
 - Use (MSSG) to scroll through messages.
 - Record A19 error codes.

NOTE

If any error codes are displayed for modules A01-A17, you need to isolate those failure(s) now.

- 5. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST SUB A19**

RESULT

BLOCK

tions shown in each FURTHER.

Condition 2

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until **"100.000000MZ** -140.0DM" appears, to override 20 second reset test.)
- 2. Connect Power Meter:
 - Connect Yellow PM cable and adapters to instrument's RF Output port CP1.
- 3. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ] '
 - [4] [HZ] to repeat measurement.

Key sequence must be repeated for each amplitude or frequency setting change.

NOTE

Internal Power Meter should read within ±3 dB of amplitude setting. The internal power meter cannot measure power levels less than -10 dBm.

- 4. Measure power level:
 - Set instrument's frequency to 2 GHz.
 - Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
 - Repeat measurements for same amplitude settings at 990 and 4 MHz.
 - Supplement these measurements with additional readings at other instrument settings if desired.
- 5. Record test results.
- 6. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each FURTHER.

Condition 3

- 1. Set instrument to operating condition which causes **A19 failure.**
- 2. Record instrument set-up and error message(s).
- 3. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each FURTHER.
 FURTHER.

Туре:	Module Substitution	A19.07
Run time:	0	Loounit of
Set-up time:	7 min.	
·		MODULE

Connect Module

- 1. Switch instrument to **Standby.**
- 2. Remove substitute **A19 Module** and replace instrument's **A19 Module**.
- 3. Return **substitute** A 19 Module to On-Site Service Kit.
- 4. Return to foldout.

Туре:	4, Voltage Measurements	A19.08
Run time:	2 min.	
Set-up time:	2 min.	

Internal Voltmeter (VM) is used to check power supply levels at inputs to A19 Module.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect W11 from A19 at A19A1 J2.
 - Plug end of W11 into 34 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug **W11P2.**

2. Connect VM probe:

- Connect red alligator clip and retractable hook probe to red test lead provided in On-Site Service Kit.
- Connect alligator clip to VM IN (A4TP1). (See A19 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 3. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 4. Measure voltage levels:
 - Connect VM probe to test connector pin for each power supply line including +20V ATN/SW lines. (See Figure 3N-1. Cable Plug W11P2 Signal Locator).
 - [5] [HZ] (To make each voltage measurement.)

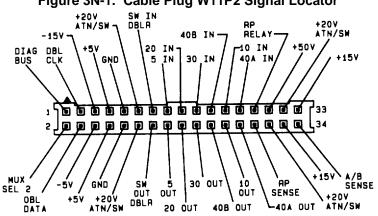


Figure 3N-1. Cable Plug W11P2 Signal Locator

- 5. Record test results.
- 6. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST Vdc. RESULT

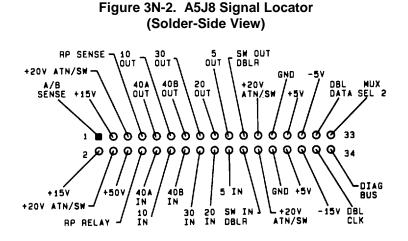
BLOCK

3-347

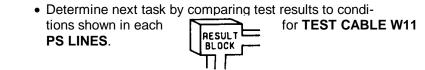
Туре:	4, Voltage Measurements	A19.09
Run time:	2 min.	
Set-up time:	3 min.	CABLE W11 PS LINES

Internal Voltmeter (VM) is used to check power supply levels at A5J2.

Run Test


- 1. Switch instrument to Standby.
- Extend A19 Module on extender posts, from On-Site Service Kit, to disconnect cable W11 from AS Assembly at A5J8. (Refer to table on foldout in MECHANICAL PRO-CEDURES to locate A19 Module extension and A5 cable disconnection information.)

NOTE


It may be necessary to remove A4 (para 5-6) to disconnect cable W11.

- 3. Connect **VM** probe:
 - Connect red alligator clip and pointed tip probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A19 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on and enter: [SHIFT] [SPCL] [3] [2] [5] [HZ] (To enable Internal Voltmeter.)

- 5. Measure voltage levels at **A5J8**:
 - Access signals from solder-side of **A5J8**. (See Figure 3N-2. A5J8 Signal Locator.)
 - [5] [HZ] (To make each voltage measurement.)

- 6. Record test results.
- 7. Reconnect **W11** and lower **Module** back into instrument.
- 8. Return to foldout:

Туре:	3; Driver Transmission	A19.10
Run time:	1 min.	
Set-up time:	0	TEST ATN DRIVE LINES
•		

Attenuator drive lines are checked by separately selecting relays and listening for attenuator pads to click in and out.

> **NOTE** Instrument's Top Cover should be removed to perform this test.

Run Test

1. [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ second reset test.)

-140.0DM" appears, to override 20

- 2. Set instrument to zero attenuation:
 - [AMPTD] [1] [0] [DBM]
- 3. Check relay drivers:
 - Select Amplitude Setting for Attenuator Relay to be tested (from Table 3N-1. A19 Attenuator Relay Selection) and listen for pad to click in.
 - Select [1] [0] [DBM] and listen for attenuator pad to click out.
 - Repeat process for each relay listed in Table 3N-1.

Test Order	Amplitude Setting	Attenuator Relay
1	[0] [DBM]	5 dB pad
2	[-] [5] [DBM]	10 dB pad
3	[-] [1] [5] [DBM]	20 dB pad
4	[-] [2] [5] [DBM]	30 dB pad

Table 3N-1. Attenuator Relay Selection

NOTE

This procedure does not check the two **40 dB** relay drivers. They can be checked using an external power measuring device connected at the output of A19. Check power out at settings of -60.1 dBm to -100 dBm (40 dB pad A) and -100.1 to -140 dBm (40 dB pad B).

- 4. Record test results.
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **TEST ATN DRIVE**

tions shown in each LINES.

Type:	3; Bit Transmission	A19.11
Run time:	3 min.	TEST
Set-up time:	2 min.	

Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A19 Module on Clock and Data control Lines.

Run Test

- 1. Switch instrument to Standby:
 - Disconnect cable W11 from module at A19A1 J2.
 - Plug end of W11 into 34 pin test connector, from On-Site Service Kit.

NOTE

Find arrowhead on test connector and align with arrowhead on cable plug **W11P2**.

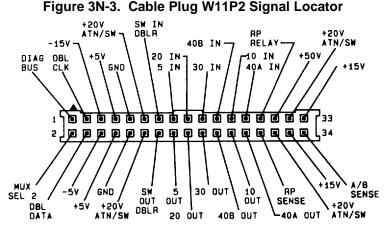
CAUTION

To prevent damage to the Power Supply and Control sections, do not permit the exposed pins on the test connector to short circuit.

- 2. Connect **VM** probe:
 - Connect red alligator clip and -retractable hook probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A19 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- Turn instrument on. (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.)

Clock Line

Check High State


4. [SHIFT] [SPCL] [3] [6] [0] [2] To specify high state.)

NOTE

A "0" will appear in display indicating that the data bit will be set low. However, the bit is inverted in the Control Section before it is sent to A19. 5. [2] [4] [HZ]

(To select bit.)

6. Connect VM probe to test connector line DBL CLK (pin 3). (See figure 3N-3. Cable Plug W11P2 Signal Locator.)

- 7. [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

Check Low State

9. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.

NOTE

A "1" will appear in display indicating that the data bit will be set high. However, the bit is inverted in the Control Section before it is sent to **A19**.

- 10. [2] [4] [HZ]
 - (To enable voltmeter.)
- 11. [2] [5] [HZ]
 - (To enable voltmeter.)
- 12. Voltage should read approximately **-0.5** to **+1.5 Vdc**, ([5] [HZ] to repeat measurement.)

Data Line

Check High State

- 13. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 14. [2] [5] [HZ]
- (To select bit.)
- 15. Connect VM probe to test connector line DBL DATA (pin
- 4). (See figure 3N-3. Cable Plug W11P2 Signal Locator.)
 16. [2] [5] [HZ]
 - (To enable voltmeter.)
- 17. Voltage should read approximately **+2.5** to **+5.5 Vdc**. ([5] [HZ] to repeat measurement.)

Check Low State

- 18. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state)
- 19. [2] [5] [HZ] (To select bit.)
- 20. [2] [5] [HZ] (To enable voltmeter.)
- 21. Voltage should read approximately **-0.5** to **+1.5 Vdc**. ([5] [HZ] to repeat measurement.)

Multiplexer Select Line

Check High State

- 22. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify high state.)
- 23. [8] [HZ]
 - (To select bit.)

- 24. Connect VM probe to test connector line MUX SEL 2 (pin
 2). (See figure 3N-3. Cable Plug W11P2 Signal Locator.)
- 25 [2] [5] [HZ]
- (To enable voltmeter.)
- 26. Voltage should read approximately +2.5 to +5.5 Vdc.
 [5] [HZ] to repeat measurement.)

Check Low State

- 27. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 28. [8] [HZ] (To select bit.)
- 29 [2] [5] [HZ]
- (To enable voltmeter.)30. Voltage should read approximatel
- 30. Voltage should read approximately -0.5 to +1.5 Vdc.
 ([5] [HZ] to repeat measurement.)
- 31. Record test results.
- 32. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for TEST CONTROL

tions shown in each **BITS.**

3-355

Туре:	3; Bit Transmission	A19.12
Run time:	3 min.	K
Set-up time:	3 min.	CABLE W11

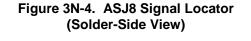
Internal Voltmeter (VM) is used to measure TTL level changes transmitted to A19 Module on SAWR oscillator select lines A and B.

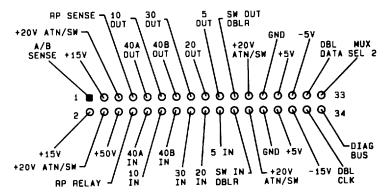
Run Test

- 1. Switch instrument to **Standby**.
- Extend A19 Module on extender posts, from On-Site Service Kit, to disconnect cable W11 from A5 Assembly at A5J8. (Refer to table on foldout in MECHANICAL PROCEDURES to locate A19 Module extension and A5 cable disconnection information.)

NOTE

It may be necessary to remove A4 (para 5-6) to disconnect cable W11.


- 3. Connect **VM** probe:
 - Connect red alligator clip and **pointed tip** probe to red test lead provided in On-Site Service Kit.
 - Connect alligator clip to VM IN (A4TP1). (See A19 MODULE CABLE CONNECTION LOCATOR on foldout for VM IN location.)
- 4. Turn instrument on.


Clock Line

Check High State

- 5. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 6. [2] [4] [HZ]

7. Connect VM probe to solder-side of A5J8 line DBL CLK (pin 32). (See Figure 3N-4. A5J8 Signal Locator.)

- 8. [2] [5] [HZ]
 - (To enable voltmeter.)
- 9. Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

Check Low State

- 10. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state)
- 11. [2] [4] [HZ] (To select bit.)
- 12. [2] [5] [HZ] (To enable voltmeter.)
- 13. Voltage should read approximately **-0.5** to **+1.5 Vdc**. ([5] [HZ] to repeat measurement.)

Data Line

Check High State

- 14. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify high state.)
- 15. [2] [5] [HZ] (To select bit.)

- 16. Connect VM probe to solder-side of A5J8 line DBL DATA (pin 31). (See Figure 3N-4. A5J8 Signal Locator.)
- 17. [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc. ([5] [HZ] to repeat measurement.)

Check Low State

- 19. [SHIFT] [SPCL] [3] [6] [0] [1] (To specify low state.)
- 20. [2] [5] [HZ] (To select bit
- 21. [2] [5] [HZ] (To enable voltmeter.)
- 22. Voltage should read approximately **-0.5** to **+1.5 Vdc.** ([5] [HZ] to repeat measurement.)

Multiplexer Select Line

Check High State

- 23. [SHIFT] [SPCL] [3] [6] [0] [1]
- (To specify high state.)
- 24. [8] [HZ] (To select bit.)

- 25. Connect VM probe to solder-side of A5J8 line MUX SEL 2 (pin 33). (See Figure 3N-4. A5J8 Signal Locator.)
- 26. [2] [5] [HZ]
 - (To enable voltmeter.)
- Voltage should read approximately +2.5 to +5.5 Vdc.
 ([5] [HZ] to repeat measurement.)

Check Low State

- 28. [SHIFT] [SPCL] [3] [6] [0] [2] (To specify low state.)
- 29. [8] [HZ] (To select bit.)
- 30. [2] [5] [HZ] (To enable voltmeter.)
- 31. Voltage should read approximately **-0.5** to **+1.5 Vdc**.
- ([5] [HZ] to repeat measurement.)
- 32. Record test results.
- 33. Reconnect **W11** and lower **Module** back into instrument.
- 34. Return to foldout:
 - Determine next task by comparing test results to condi-

for TEST CABLE W11

tions shown in each **CTL LINES**.

Туре:	RF Power	A19.13
Run Time:	4 min.	
Set-up Time:	3 min.	TEST POMER OUTPUT

Internal Power Meter (PM) is used to test output power levels.

NOTE

If an external power measuring instrument is available, use it to make power measurements.

Run Test

- 1. [INSTR PRESET] [SHIFT]
 - (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. Connect Power Meter:
 - Connect Yellow PM cable and adapters to instrument's RF Output port CP1.
- 3. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ]
 - [4] [HZ] to repeat measurement.
 - Key sequence must be repeated for each amplitude or frequency setting change.

NOTE

Internal Power Meter should read within **+3 dB** of amplitude setting. The internal power meter cannot measure power levels less than **-10 dBm**.

- 4. Measure power level:
 - Set instrument's frequency to 2 GHz.
 - Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
 - Repeat measurements for same amplitude settings at **990** and **4 MHz**.
 - Supplement these measurements with additional readings at other instrument settings if desired.
- 5. Record test results.
- 6. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for TEST POWER

OUTPUT.

RF Power	A19.14
4 min.	
	RF Power 4 min. 3 min.

Internal Power Meter (PM) is used to test output power levels.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. Connect Power Meter:
 - Disconnect cable W38 from A19 Module at A19A2 J2.
 - Connect power meter to module at A19A2 J2.
- 3. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ]
 - [4] [HZ] to repeat measurement.
 - Key sequence must be repeated for each amplitude or frequency setting change.

NOTE

Internal Power Meter should read within **+3 dB** of amplitude setting. The internal power meter cannot measure power levels less than **-10 dBm**.

- 4. Measure power level:
 - Set instrument's frequency to 2 GHz.
 - Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
 - Repeat measurements for same amplitude settings at **990** and **4 MHz**.
 - Supplement these measurements with additional readings at other instrument settings if desired.
- 5. Record test results.
- 6. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each OUTPUT.

Туре:	RF Power	A19.15
Run Time:	4 min.	TEST
Set-up Time:	4 min.	

Internal Power Meter (PM) is used to test output power levels.

Run Test

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.000000MZ -140.0DM" appears, to override 20 second reset test.)
- 2. Connect Power Meter:
 - Disconnect cable W38 from A19 Module at A19A2 J2.
 - Connect power meter to module at A19A2 J2.
- 3. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ]
 - [4] [HZ] to repeat measurement.

NOTE

Internal Power Meter should read within **+3 dB** of amplitude setting. The internal power meter cannot measure power levels less than **-10 dBm**.

4. Measure power level:

- Set instrument's frequency to 2 GHz.
- Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
- Repeat measurements for same amplitude settings at **990** and **4 MHz**.
- 5. Substitute cable **W36**:
 - Disconnect cable W36 from A14 and A19 modules at A14U1 J3 and A19K1 J2.
 - Connect flexible coax cable from On-Site Service Kit to modules at A14U1 J3 and A19K1 J2.

- 6. Measure power level:
 - Repeat measurements made in step 4.
- 7. Record test results.
- 8. If power level still fails, reconnect semi-rigid cable **W36** to **A14** and **A19** modules.
- 9. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each for **TEST CABLE W36**.

RF Power	A19.16
5 min.	TEST
5 min.	CABLE N35
	5 min.

Internal Power Meter (PM) is used to test output power levels.

Run Test

- 1. [INSTR PRESET] [SHIFT] (Hold shift key until **"100.000000MZ -140.0DM**" appears, to override 20 second reset test.)
- 2. Connect Power Meter:
 - Connect Yellow **PM** cable and adapters to instrument's **RF Output** port **CP1**.
- 3. Substitute cable **W38**:
 - Disconnect cable W38 from A19 Module at A19A2 J2 and from cable W16 at W16P2
 - Connect flexible coax cable from On-Site Service Kit to A19 Module and cable W16.
- 4. To use Internal Power Meter:
 - [SHIFT] [SPCL] [3] [2] [4] [HZ]
 - [4] [HZ] to repeat measurement.
 - Key sequence must be repeated for each amplitude or frequency setting change.

NOTE

Internal Power Meter should read within **+3 dB** of amplitude setting. The internal power meter cannot measure power levels less than **-10 dBm**.

- 5. Measure power level:
 - Set instrument's frequency to 2 GHz.
 - Measure power at amplitude settings of +10, +5, 0 and -5 dBm.
 - Repeat measurements for same amplitude settings at 990 and 4 MHz.
- 6. Record test results.
- 7. If power level still fails, reconnect semi-rigid cable **W38** to **A19 Module** and cable.
- 8. Return to foldout.
 - Determine next task by comparing test results to conditions shown in each

Cable Substitution	A19.17
5 min.	
1 min.	
	5 min.

- 1. Testing has shown cable **W36** or **W38** to be suspect, replace with a semi-rigid. Rerun **INSTRUMENT LEVEL DIAG-NOSTICS (ILD)** to confirm repair.
- 2. Deleted.
- 3. Return to foldout.

Туре:	Cable Substitution	A19.18
Run time:	0 min.	
Set-up time:	3 min.	
	0	W11

Testing has shown cable W11 to be suspect, temporarily replace with a spare ribbon cable if available. Rerun **INSTRUMENT LEVEL DIAGNOSTICS (ILD)** to confirm repair.

CAUTION

When connecting ribbon cable to A19 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W11

- Switch instrument to Standby to connect cable W11 to A5 Assembly and A19 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on connecting cable W11 to A5J8.)
- 2. Return to foldout.

Cable Connection	A19.19
0 min.	
3 min.	
	0 min.

CAUTION

When connecting ribbon cable to A19 Module, find arrowhead on the cable plug and align with arrowhead on the board connector.

Reconnect W11

- Switch instrument to Standby to reconnect cable W11 to A5 Assembly or A19 Module. (Refer to table on foldout in MECHANICAL PROCEDURES for information on reconnecting cable W11 to A5J8.)
- 2. Return to foldout.

3-367/(3-368 BLANK)

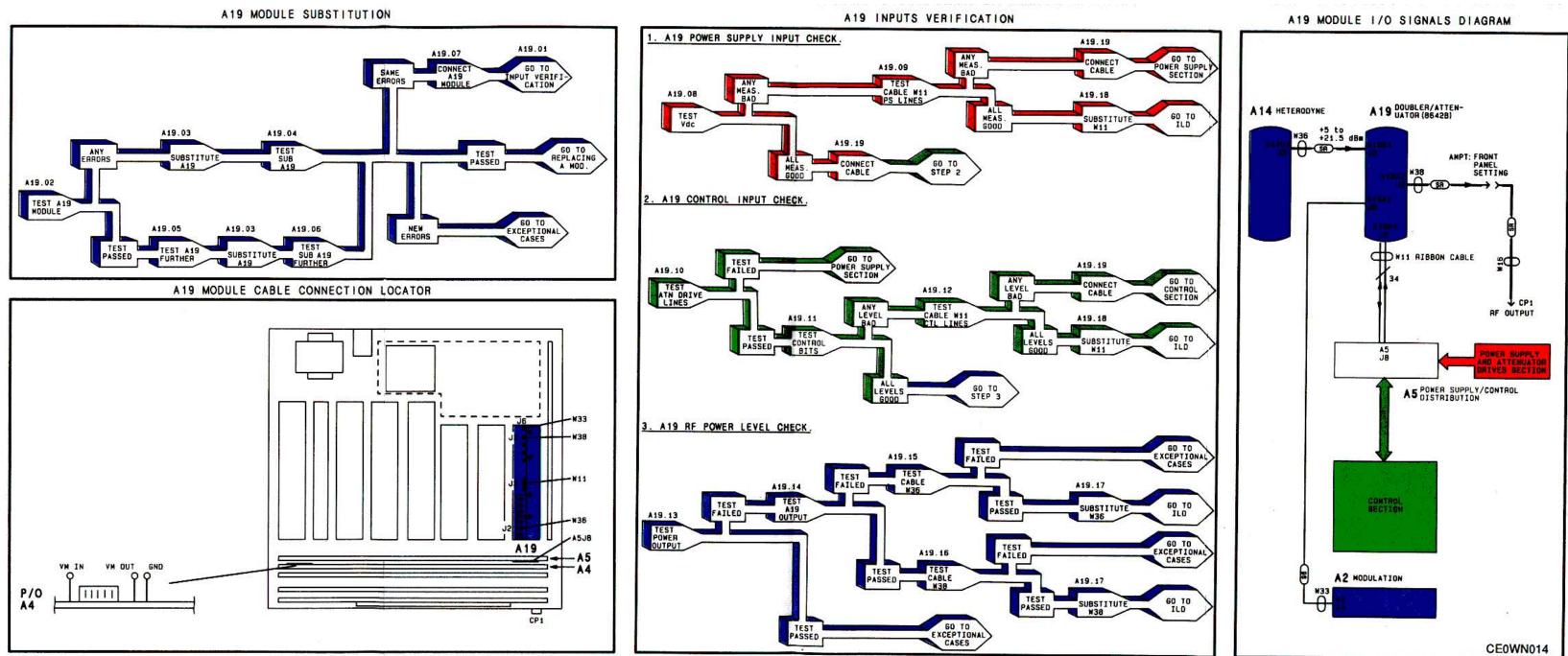


Figure 3N-100. A19 Double/Attenuator Module Diagnostics.

30-1. INTRODUCTION

This section contains suggestions for isolating HP 8642 failures which are beyond the 80% coverage provided by the troubleshooting techniques in the Diagnostics Section of this manual.

NOTE

The material in this section places a higher reliance on the training and experience of the user. Certain suggestions and techniques presented in this section may seem vague to those without prior service training or experience on the HP 8642.

30-2. EXCEPTIONAL CASE DESCRIPTIONS

To use this section, begin by identifying the **Exceptional Case Description** which best describes your circumstance. Then reference to the Troubleshooting Suggestions provided for that particular **Exceptional Case**.

Exceptional Case 1

You were directed here from the DIAGNOSTICS Section by a gotogon labeled, (refer to paragraph **30-4**).

Exceptional Case 2

You are here because of an output power level problem which is less than 10 dB out of specification or which occurs only at output amplitude settings of below -10 dBm (refer to paragraph **30-5**).

Exceptional Case 3

Miscellaneous failure conditions not covered directly by the **DIAGNOSTICS** Section procedures (refer to paragraph **30-6**).

30-3. TROUBLESHOOTING SUGGESTIONS

Reference to the appropriate **Exceptional Case** to find the troubleshooting suggestions which apply to your circumstances.

30-4. EXCEPTIONAL CASE 1

NOTE

Before proceeding with any of the troubleshooting suggestions, check all cable connections on the suspect module. Verify that the connections are correct at both ends of each cable that connects to the suspect module. (Refer to the Top View diagram on the inside top cover of the instrument for cable connection information.)

- **Condition 1:** Failure not isolated after performing module substitution and verifying all inputs.
- **Condition 2:** Failure not isolated after verifying all inputs; however a known good substitute module is not available.
- **Condition 3:** The substitute module produced "new" failure data.
- **Condition 4:** Miscellaneous failure conditions that are not covered by conditions 1, 2, or 3.

Condition 1: Troubleshooting

If you have an On-Site Service Kit, or access to a set of known good modules, the most efficient way to isolate a fault, under the present circumstances, is to systematically substitute the parts on which the suspect module depends for its operation.

NOTE

If you do not have access to known good modules, refer to the troubleshooting suggestions provided for Condition 2.

If you were directed here by the A2, A17, or A18 module diagnostics, proceed directly to step 3.

- 1. Identify modules to be substituted:
 - Turn back to the diagnostics section for the suspect module and pull out the foldout.
 - Find the I/O Signals Diagram shown on the foldout. This diagram shows all RF modules which send their output signals directly to the suspect module. These are the modules you will be substituting.

- 2. Substitute RF Modules:
 - Repeat the Module Substitution procedure provided for the suspect module except this time when you are directed to substitute a known good module for the suspect module, substitute instead a known good module for one of the input modules shown on the **I/O** Signals Diagram.
 - Repeat procedure for each input module, or until failure is Isolated. (If known good test cables are available, use them to connect substitute module into circuit.)
- 3. Substitute Control Modules:
 - If failure has not yet been isolated, go to the Control Section diagnostics and perform the Module Substitution procedures for the A4 and A3 modules.

NOTES

If you were sent to this section by the A14 or A19 diagnostics, substitute the A17 Module Also.

If you were sent to this section by the A17.06 test for the Al 7 Module, substitute the AJ9 Module Also.

Condition 2: Troubleshooting

NOTES

Verification of all inputs to a module that the **Instrument Level Diagnostics** has designated as the appropriate failing module to troubleshoot, provides an 80% probability that the failure is within that module. To increase the probability to 95%, perform the following steps.

- 1. Recheck all **RF** inputs:
 - Using an external power measuring device rather than the built-in Power Meter, recheck each RF input to the suspect module.

NOTE

RF Power levels are provided on the I/O Signals Diagram shown on the foldout for the suspect module.

- 2. Recheck control inputs:
 - Follow the control input check Task Sequence Diagram shown on the foldout for the suspect module; however, use an external voltmeter to make the test measurements.

- 3. Recheck power supply inputs:
 - Follow the power supply input check, Task Sequence Diagram shown on the foldout for the suspect module; however, use an external voltmeter to make the test measurements.

Condition 3: Troubleshooting

NOTE

If the test, that was run to check the substitute module, passed, and the "new errors" indicated failures for a module(s) other than the module under test, you have just isolated one of two (or more) failures present in the instrument. Proceed to the **REPLACING A MODULE** Section and perform the replacement procedures for the module under test. (Then return to the Instrument Level Diagnostics section to begin isolating the remaining failures.)

If the test that was run to check the substitute module, failed, perform the following steps.

1. Check cable connections:

2.

- Verify that all cables are correctly connected to the substitute module.
 - Check "known good" substitute module:
 - If possible, verify operation of substitute module by substituting it into another HP 8642.
 - If available, use a second known good module for the substitution procedure.

NOTE

There are no further troubleshooting suggestions for the A1, A3, A4, A17 or A18 modules.

- 3. Check for multiple failures:
 - If the inputs to the suspect module have not yet been checked, return to the **DIAGNOSTICS** Section and per- form the inputs verification procedures for the suspect module.
 - If all inputs to the suspect module have been verified, refer to **EXCEPTIONAL CASE 1, Condition 2: Troubleshooting** for further troubleshooting suggestions.

Condition 4: Troubleshooting

Table 30-1 provides troubleshooting information for Exceptional Case 1 failure conditions that are not covered by the troubleshooting suggestions provided for Conditions 1, 2, or 3.

EXCEPTIONAL CASES

Module	Test	Comment	
	CTL.09	Disconnect W15 and recheck Vdc at W15 plug.	
A1 A2	CTL.11 A2.10	Failure isolated to signal path (A5 or W15). Failure isolated to W17, W18 or W19	
~~ <u>~</u>	72.10		
A3 and A4	CTL.03 CTL.07	Remove A3 and A4, verify that Vdc levels at A5 connectors are correct before substituting A3 or A4. (Refer to Table 3-5 on foldout for pin numbers.)	
	CTL.11	Control line transmission problem; A5 possible cause.	
A6	A6.02	If errors F4, F7 and F10 occur with no ext. ref. connected and A6 substitution indicated same errors, perform A4 substitution procedure in control section diagnostics.	
	A6.12	Check power level and frequency accuracy of external reference signal.	
	A6.13	If substitute A6 caused same errors, perform A4 substitution procedure provided in control section of this manual.	
A19	A19.17	Failure isolated to signal transmission path; W16	
	PS.02	Failure isolated to signal path; A5 possible cause.	
Power Supply	PS.06	Failure isolated to switch path, W15, A5 and W10.	
	PS.08	Failure isolated to portion of power supply not considered on-site serviceable.	
	PS.10	Failure isolated to signal path; A5 probable cause.	

EXCEPTIONAL CASES

30-5. EXCEPTIONAL CASE 2

To isolate a power level accuracy problem which is less than 10 dB out of specification or which occurs only at output amplitude settings of below -10 dBm, an external power measuring device is needed.

Pull out the foldout at the back of this section. Use the **RF Modules I/O Signals Diagram** as an aid in isolating the power failure. (To locate the cable connections on the modules, refer to the Top View diagram shown on the inside of the HP 8642's top cover.)

NOTE

The output of the A13 Module is a good place to begin making power measurements if you use a half -split approach to fault isolation.

30-6. EXCEPTIONAL CASE 3

Table 30-2 provides troubleshooting suggestions for miscellaneous exceptional cases that are not covered by the information provided for Exceptional Cases 1 or 2.

Failure Condition	Troubleshooting Suggestions
Intermittent Failures	Intermittent failures can greatly reduce the HP 8642's ability to provide reliable test data; module substitution may be the best approach to isolating failures of this nature.*
Modulation Related	FM and AM both affected-substitute A2, then A4. FM only affected-substitute A6. AM only affected-substitute A13. AM only in Doubler Band affected-substitute A19.
Spurs	Module substitution is highly recommended.* Try tracking the spur back to its source using external test equipment to test the output of each module. (Note that spurs are typically caused by unwanted angle modulation on the carrier signal. The offset frequency of the spur (from the carrier) is equal to the frequency of the unwanted modulation signal. Look for sig- nal sources and mixes in the instrument that equal the spur's offset frequency.)

Table 3O-2.Exceptional Case 3Troubleshooting Suggestions

EXCEPTIONAL, CASES

Table 3O-2.Exceptional Case 3Troubleshooting Suggestions (Cont'd)

Failure Condition	Troubleshooting Suggestions
Phase Noise	Module substitution is highly recommended.' Begin the isolation process by using external test equipment to check the A12 module's input and output signals. (Note that a frequency divider (such as in A12) reduces the carrier's phase noise component proportionally by the factor of the frequency division. e.g., -4 reduces noise level by 12 dB.)
Frequency Accuracy	Module substitution is highly recommended.' Check accuracy of output signals from modules; check timebase output from A6.
Sweep Output	Follow the substitution procedures for the A4 and A3 modules listed in the Control Section of this manual.
Store/Recall	Follow the substitution procedures listed in the Control Section of this manual for A3.
Front Panel Display/Keyboard	Follow the substitution procedure listed in the Control Section of this manual for A1.
Multiple Failures	Follow the troubleshooting procedures provided in the Diagnostics Section of this manual beginning with Instrument Level Diagnostics.
Failures Not Detected By Instrument	Module substitution is highly recommended. Use external test equipment to track failure as far as possible.* Substitute module of highest probable cause. If substitution does not isolate the failure, check each input signal to the suspect module. (For module substitution and input verification information, refer to the diagnostic section provided in this manual for the suspect module.)
	n the foldout at the back of this section for information on hat may be helpful for troubleshooting this failure.

Table 3O-3. Service Special Functions for Exceptional Cases

Service Special Functions can only be invoked when in the service mode of operation. To enter service mode select: SHIFT SPCL 3. Each key sequence must be terminated with the Hz key. (For example, to enter Controller mode and enable Continuous Cycle :

SHIFT SPCL 3 88 Hz 3125 Hz.)			
Function Description	Key Sequence		
Signal Measurements Makes measurements using built-in power and volt meters.	2 (Power measurement) 5 (Voltage measurement)		
Module By-pass Tests instrument's operation with a specified module by-passed out of signal path. (Setup information for each module by-pass is provided below module labels on foldout at back of this section.) Controller Mode Configures HP 8642 to act as a system controller. When connected to a printer, instrument will output the results of a selected diagnostic routine to the printer. (Refer to the HP-IB/REMOTE section for further information.) Printer Address Specifies HP-IB address of a printer to be	A7 Enter: 3 2 8 A9 Enter: 3 3 9 A11 Enter: 3 3 3 A12 Enter: 3 4 7 A13 Enter: 3 5 3 8 8 8 9 turns controller mode off) 8 1 (Followed by		
controlled by HP 8642; range 0-30. (01 is de- fault address if not specified.) Continuous Cycle Continuously cycles through a specified diag- nostic (switch to Standby to abort). HP 8642 must be connected to a printer and config- ured to Controller mode before Continuous cycle can be invoked. (See example shown in the box above this table.).	Printer Address) Instrument Level Sell Test (330): 0 0 3 1 All Other Diagnostic Rou- tines: Follow with the last two digits of the diagnostic routine's key sequence.		
Stop on Error Stops diagnostic routine when a specified error occurs. (Instrument is left in operating condition in which error occurred.) This mode can be used in conjunction with Continuous cycle as a means of trapping intermittent failures.	6 8 0 (Followed by Error Message Code) Error Message Code = Alpha Character Code + numeric value of message. Alpha Character Codes: A = 65000, B = 66000 K = 75000 R = 82000 For example, to stop on error .T07: enter 6 8 0 8 4 0 0 7. Hz key continues test.		

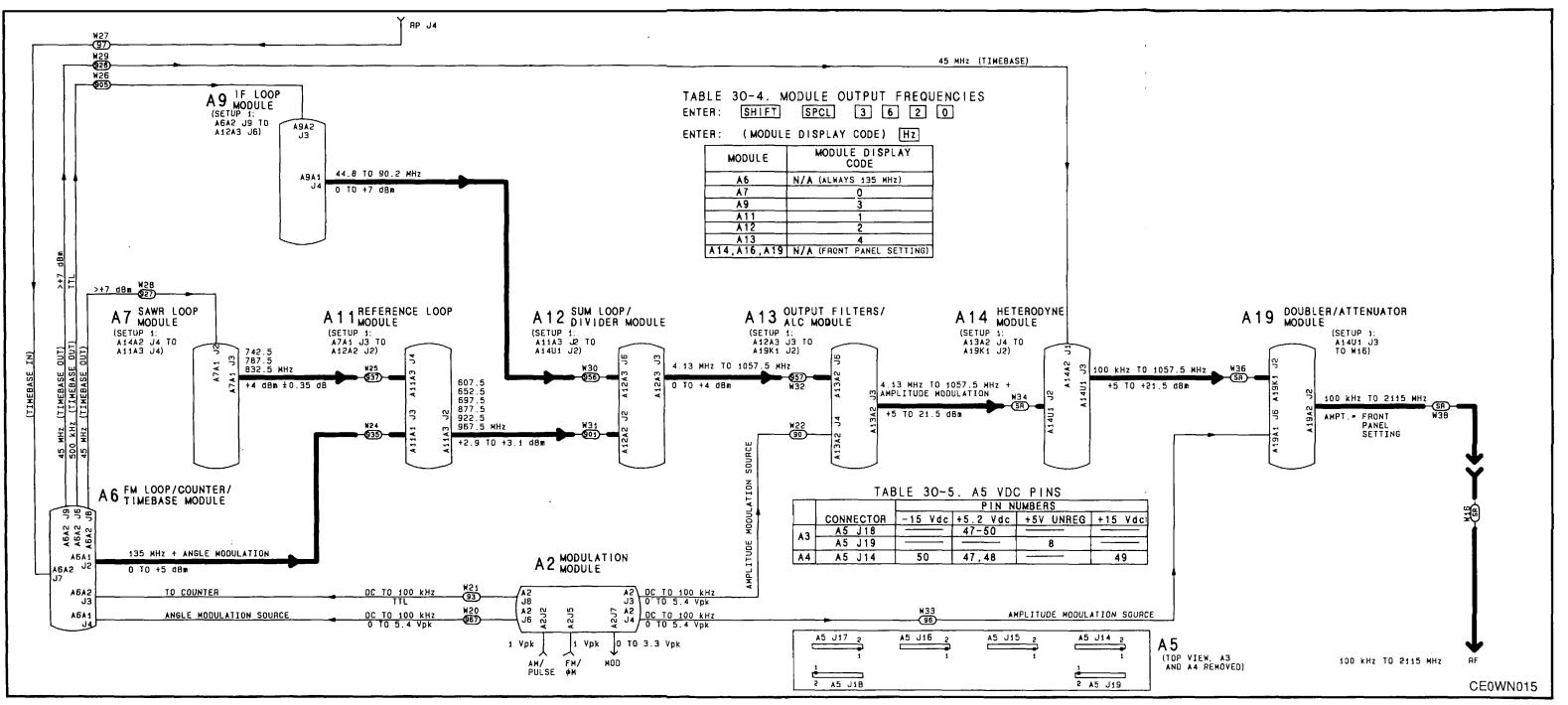


Figure 3O-100. Exceptional Cases Troubleshooting Diagram

3-379/(3-380 BLANK)

SECTION IV. REPLACING A MODULE

4-1. INTRODUCTION

This section contains information for performing a module replacement on-site. Module replacement is the last step in the on-site repair process and should only be performed after the replacement module has been tested using the module substitution techniques described in Module Level Diagnostics (refer to the section tabbed for the module you are replacing to find the module substitution procedure). For further information on using the on-site diagnostics, refer to the **INTRODUCTION** section of the manual.

Replacement Instructions

- 1. The last page in this section is a foldout and should be pulled out now.
- 2. Find **MODULE REPLACEMENT** on the foldout.
- 3. Use the Task Sequence Diagram, shown under **MODULE REPLACEMENT** to direct you through the testing process. Each Task Arrow shown in the diagram indicates a task title and task number. The tasks are numbered according to the order in which they are arranged in this section. Turn to the task indicated and complete the procedure.
- 4. After completing the procedure, return to the Task Sequence Diagram on the foldout and determine the next task to be performed.
- 5. Begin now by performing the first task shown on the diagram, **RM.01**.

Туре:	Mechanical Procedure	RM.01
Run Time:	N/A	
Set-up Time:	Refer to Section V	INSTALL MODULE

NOTE

If you are replacing module **A3**, **A4**, **A14 A17**, **A18**, **or A19**, and have performed the module substitution test, the module should already be installed in instrument. Check that cable connections and module retaining clips are secure and return to foldout.

- 1. Replace module:
 - MECHANICAL PROCEDURES section provides re- placement procedures for all onsite replaceable modules. Refer to table on foldout in MECHANICAL PROCEDURES to locate module replacement information.
- 2. Reconnect Cables:
 - Connect cable to replacement module (see **INSTRUMENT WIRING DIAGRAM** on foldout for cable connection and routing information).
- 3. Return to foldout.

REPLACING A MODULE

Туре:
Run Time:
Set-up Time:

Cal Data Transfer 2 min. 4 min. RM.02

TRANSFER CAL DATA

NOTE

The following modules do not require Calibration Data: **A1**, **A4**, **A7**, **A9**, **A17**, and **A18**. If you are replacing one of these modules, this procedure does not apply; return to foldout now.

Set-Up Cal Board

1. Remove A20 Calibration Module, provided with replacement module, from On-Site Service Kit.

NOTE

To view contents of A20, proceed with paragraph 4-2.

- 2. Switch [POWER] to Standby and connect Cal Board to A3 Module at A3J3. (See INSTRUMENT WIRING DIAGRAM on foldout for A3J3 location.)
- 3. Switch instrument **ON**.

NOTE

It you are replacing module A3, A11, or A12 and performed a Calibration Data Down-Load as part of the substitution procedure, proceed directly to Up-Load Cal Data, following step 7, of this procedure.

Down-Load Cal Data

NOTE

This portion of the procedure down-loads the calibration data for the replacement module into the instrument. This data replaces the cal data for the defective module.

CAUTION

Sliding switch **A3S2** to its rear position **unprotects** the HP 8642 EEPROMs. To prevent an)y damage to the instrument's memory, carefully perform the steps in this procedure in the order which they are given.

REPLACING A MODULE

NOTE

If you get off track, immediately return **A3S2** to its **protect** position, switch the instrument to **Standby** then back **ON**, and begin again at step **4**.

- 4. When **"100.00000MZ -140.0DM appears:**
 - Slide A3S2 back toward rear of instrument. (See INSTRUMENT WIRING DIAGRAM on foldout to locate A3S2.)

NOTE

If your are replacing the **A19 Module**, you need to perform steps **5** and **6** three times; one time for each of the three separate Cal Data Select Key sequences shown for **A19**.

- 5. [SHIFT] [SPCL] [3] [7] [3]
- 6. Enter **Cal Data Select Keys**, shown on foldout in **CAL DATA TRANSFER TABLE**, for module being replaced.
- 7. When "TRANSFER VERIFIED .U613" appears:
 - Slide A3S2 toward front of instrument to protect instrument's memory.

Up-Load Cal Data

This portion of the procedure creates a **new backup A20 Calibration Module** for the instrument by up-loading all of the instrument's current Cal Data onto the replacement **A20 Module**.

CAUTION

Moving switch **A20S1** on the **A20 Module** down to its **CHANGE** position unprotects the A20 EEPROMs. To prevent any damage to the A20 EEPROMs, carefully perform the steps in this procedure in the order which they are given.

NOTE

If you get off track, immediately return **A20S1** to its **PROTECTED** position, switch the instrument to **Standby** then back **ON**, and begin again at step 8.

- 8. Move **A20S1** down to its **CHANGE** position.
- 9. [SHIFT] [SPCL] [3] [7] [4] [HZ] (To up-load entire instrument's cal data)

- 10. When **"10 SECTIONS STORED .U610**" appears:
 - Move A20S1 up to its PROTECTED position.
 - [HZ] to end routine.
- 11. Switch [POWER] to Standby.
- 12. Remove old back-up **CALIBRATION MODULE A20** from Rear Panel of instrument. (Refer to table on foldout in **MECHANICAL PROCEDURES** to locate removal instructions.)
- 13. Put **A20 Module** from rear of instrument in On-Site Service Kit with defective module. (Place red defective marker in slot with module.)
- 14. Remove new back-up **A20 Module** from **A3J3** and store in back of instrument. (Refer to **MECHANICAL PROCEDURES** for **A20** replacement instructions.)
- 15. Return to foldout.

REPLACING A MODULE

Туре:	Instrument Level Self Test	RM.03
Run Time:	6 min 30 sec	CONFIRM
Set-up Time:	1 min	REPAIR

Over-all operation of module and instrument is tested by running the **Instrument Level Self Test (ILST).**

NOTE

If the **ILST** did not detect the failure when run as part of **Instrument Level Diagnostics**, repeat the test(s) which did indicate a failing condition.

Run ILST

- [INSTR PRESET] [SHIFT] (Hold shift key until "100.00000MZ -140.0DM" appears, to override 20 second reset test.
- 2. [SHIFT] [SPCL] [3] [3] [0] [HZ].
- 3. When "WAITING FOR SET-UP 1 .VZ4" appears:
 - Connect BNC Tee connector, from On-Site Service Kit, to "FM/FM INPUT". (See foldout in INSTRUMENT LEVEL DIAGNOSTICS section for set-up diagram.)
 - Connect a coax cable from Tee connector to "MOD OUTPUT".
 - Connect a coax cable from Tee to "AM INPUT".
 - [HZ] to continue.
- 4. When "DIAG DONE HIT MSSGS .VI" appears:
 - Use (MSSG) to scroll through messages.
 - Record any module numbers indicated.
- 5. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for CONFIRM REPAIR.

٦

Туре:	Module Exchange	RM.04
Run Time:	N/A	
Set-up Time:	N/A	DEFECTIVE HODULE

The on-site service process is not finished until all defective parts contained in the On-Site Service Kit have been replaced or repaired.

- 1. Reassemble any portions of instrument still apart. (Be sure all cable connections are secure.)
- 2. Flag defective module(s):
 - Red "defective" cards have been placed inside On-Site Service Kit. Place one in slot with defective module so that is is visible when kit is open.
- 3. Make immediate arrangements for defective part(s) to be repaired and/or replaced in On-Site Service Kit.
- 4. Return to foldout.

Туре:	Data Analysis	RM.05
Run Time:	N/A	LANAL VZE
Set-up Time:	N/A	ANALYZE FAILURE DATA

NOTE

The **Module Replacement** process is based on the assumption that you were sent to this section after performing a module substitution that passed using the replacement module. If this is not the case, proceed to **RM.07**.

- 1. Analyze failure data:
 - If the ILST was run to confirm the repair, did the test indicate failures for the module being replaced or were failures indicated only for a module(s) other than the one being replaced?
 - If other testing was used to confirm the repair, does the malfunction still appear to be caused by the same module? (If test results are identical to those indicated for the suspect module prior to replacement, the problem is probably in a different module.)

NOTE

It is possible that you have repaired one of two (or more) failures in the instrument.

- 2. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for **ANALYZE FAILURE DATA.**

REPLACING A MODULE

Туре:	Mechanical Inspection	RM.06
Run Time: Set-up Time:	3 min. 30 sec. Conditional	CHECK
Set-up Time.	Conditional	MODULE

- 1. Check each cable connection:
 - Make sure each cable connected to module is connected securely at the correct port. (See HP 8642 Table of Cable Connections on inside of Top Cover to quickly reference cable connections.)
 - Check cable connections for any other cables disconnected during testing.
 - Check for bent pins on ribbon cable connectors.
- 2. Check Cal Data transfer:
 - If module required transfer of calibration data, refer to CAL DATA TRANSFER TABLE and verify that the correct Cal Data Select Keys were used to down-load the data.
- 3. Re-run confirmation test:
 - Try re-running same confirmation test(s).
- 4. Return to foldout:
 - Determine next task by comparing test results to conditions shown in each for CHECK MODULE.

REPLACING A MODULE

Туре:	Module Replacement	RM.07
Run Time: Set-up Time:	Conditional Conditional	REPLACE

This procedure replaces the original module in instrument for further testing.

- 1. Replace instrument's module in instrument:
 - Refer to table on foldout in MECHANICAL PROCEDURES for location of module replacement instructions.
 - Replace substitute module in On-Site Service Kit.
- 2. Transfer Cal data:
 - If cal data for the substitute module has been downloaded to instrument, proceed with step **3**; otherwise, return to foldout now.
- 3. Switch [POWER] to Standby.
- 4. Remove instrument's A20 Calibration Module from On-Site Service Kit and connect it to A3 Module at A3J3.
- 5. Switch instrument **ON.**

Down-Load Cal Data

NOTE

This portion of the procedure down-loads the calibration data for the entire instrument. This data replaces the cal data in the instrument for the substitute module.

CAUTION

Sliding switch **A3S2** to its rear position unprotects the HP 8642 EEPROMs. To prevent any damage to the HP 8642 memory, carefully perform the steps in this procedure in the order which they are given.

NOTE

If you get off track, return **A3S2** to its protect position, switch the instrument to Standby then back ON, and begin again at step **6**.

- 6. When "100.00000MZ -140.0DM appears:
 - Slide A3S2 back toward rear of instrument. (See **INSTRUMENT WIRING DIAGRAM** on foldout to locate **A3S2**.)
- 7. [SHIFT] [SPCL] [3] [7] [5] [HZ]
- 8. When **"TRANSFER VERIFIED .U613"** appears:
 - Slide A3SZ toward front of instrument to protect instrument's memory.
 - [HZ] to end routine.
- 9. Switch [POWER] to **Standby.**
- 10. Remove A20 Module from Rear Panel of instrument and return it to On-Site Service Kit.
- 11. Remove instrument's A20 Module from A3J3 and return it to Rear Panel of instrument.
- 12. Return to foldout.

4-2. CORRECTION DATA SPECIAL FUNCTIONS

Identifying the Contents of the A20

The following is a procedure to display and identify the contents of the A20 Board.

- 1. Switch the HP 8642 to Standby.
- 2. Plug the A20 on to A3J3.
- 3. Switch the HP 8642 ON.
- 4. Key in: [SHIFT] [SPCL] [3] to enter service mode.
- 5. Key in: [4] [8] [HZ] to display the Module ID numbers corresponding to Valid Cal Data in the A20 board.

The A20 board can be thought of as having 10 memory locations. The address of each location (numbered 0 through 9) is the Module ID Number. Each memory location will either contain Valid Cal Data or it will be blank. The A20 addresses that contain Valid Cal Data will now be displayed. Some examples of the HP 8642 display are shown below. Refer to Table 4-1 to cross reference the A20 addresses (Module ID Numbers) to the Memory Contents.

A20 containing HP 8642B Cal Data Backup:	[VALID CAL = 0123	456789	.U6191]
A20 provided with A19 exchange module:	[VALID CAL =	567	.U619]
A20 provided with A6 exchange module:	[VALID CAL =	3	.U619]
*A20 containing no data:	[VALID CAL = 0		.U619]

*In a newly initialized A20 board there will be data stored in location 0. The data will be Model#: HP 864, no Serial# and no Options.

ID Number	Memory Contents
0	Model #, Serial #, Options
1	A11 Cal Data
2	A12 Cal Data
3	A6 Cal Data
4	A13 Cal Data
5	A19 Doubler Cal Data
6	A19 Attenuator Cal Data
7	A19 Rev. Pwr. Protect, Cal Data
8	A14 Cal Data
9	A2 Cal Data

Table 4-1: Module ID Numbers.

6. Use the Service Special Functions in Table 4-2 to display the information, referred to as Cal Data Stats, for the Module ID Numbers that were displayed in step **5**. See **Interpreting Cal Data Stats** later in this section for details about the display.

Module ID Number	HP 8642 Display	Service Special Function	
0	NA - d-14		
0	Model#	45 Hz	
0	Serial #	46 Hz	
0	Options	47 Hz	
1	A11 Stats	111Hz	
2	A12 Stats	112 Hz	
3	A6 Stats	113 Hz	
4	A13 Stats	114 Hz	
5	A19 Doubler Stats	115 Hz	
6	A19 Attenuator Stats	116 Hz	
7	A19 Rev. Pwr. Protect. Stats	117 Hz	
8	A14 Stats	118 Hz	
9	A2 Stats	119 Hz	

Table 4-2: HP	8642	Display	for	A20	Stats.
---------------	------	---------	-----	-----	--------

7. If you wish to determine which data is the same between the A20 and the A3, key in 4 4 Hz. Some examples of the HP 8642 display are:

A20 with A19 exchange module before data down load:	[CAL SAME= .	U6171]
A20 with A19 exchange module after data down load:	[CAL SAME= 567	U6171]
A20 with no data corresponding to the HP 8642:	[CAL SAME= .	U617]
HP 8642B Cal Data Backup:	[CAL SAME= 0123456789.	U617]

Identifying the Contents of the A3

The following is a procedure to display and identify the contents of the A3 Cal Data Memory.

- 1. Key in: [SHIFT] [SPCL] [3] to enter service mode.
- 2. Key in: [4] [1] [HZ] to display the Module ID number of any Valid Cal Data in the A3 Board.

The A3 board EEPROM can be thought of as having 10 memory locations. The address of each location (numbered 0 through 9) is the Module ID Number. Each memory location will either contain Valid Cal Data or it will be blank. The A3 addresses that contain Valid Cal Data will now be displayed. Some examples of the HP 8642 display are shown below. Refer to Table 4-1 to cross reference the A3 addresses (Module ID Numbers) to the Memory Contents.

New A3 before down loading back-up data from A20: [VALID CAL= 0 .U619]

Functional HP 8642B:

[VALID CAL= 0123456789 .U619]

3. Use the key sequence in Table 4-3 to display the cal. data stats for the module(s) you are interested in. See **Interpreting Cal Data Stats** later in this section.

ID Number	HP 8642 Display	Service Special Function Key Sequence for A3		
0	Model #	40 Hz		
0	Serial	41 Hz		
0	Options	42 Hz		
1	A11 Stats	11 Hz		
2	A12 Stats	12 Hz		
3	A6 Stats	13 Hz		
4	A13 Stats	14 Hz		
5	A19 Doubler Stats	15 Hz*		
6	A19 Attenuator Stats	16 Hz		
7	A19 Rev. Pwr. Protect Stats	17 Hz*		
8	A14 Stats	18 Hz		
9	A2 Stats	19 Hz		

Table 4-3: A3 Cal-Data Stats Display.

* If these special functions are used on an HP 8642A, "INVALID CHOICE .U670" will appear in the display.

Interpreting Cal Data Stats

When viewing the HP 8642 Cal Data Stats you will see the Module ID Number (refer to Table 41), the word STAT, and three pieces of data. The first field to the right of STAT is the Cal Method Number. If the number is 8999, or below the Cal Data was generated at the factory. If the Cal Method Number is 9000 or greater, the Cal Data was generated using one of the Auto Adjust Routines built into the HP 8642. The second field to the right of STAT is the date that the Cal Data was generated. The date is shown in the form month, date, year (MM.DD.YY). The right most field is the five digit Cal ID Number which will conform to the last five digits of the serial number-like designator (i.e., 2412A/31458) that is on each module.

The following are some examples of the State Display on the HP 8642:

[09 STAT 9995 02.30.84 31458]

A2 Cal Data Stats are: Data generated using the built-in A2 Auto-Adjust Routine February 30, 1984 and the A2 module Cal ID Number is 31458.

[02 STAT 0002 12.25.86 00903]

A12 Cal Data Stats are: Data generated at the factory on December 25, 1986 and the A12 module Cal ID Number is 00903.

[04 STAT 0001 09.06.82 23010]

A13 Cal Data Stats are: Data generated at the factory on September 6, 1982 and the A13 module Cal ID Number is 23010.

4-15/(4-16 BLANK)

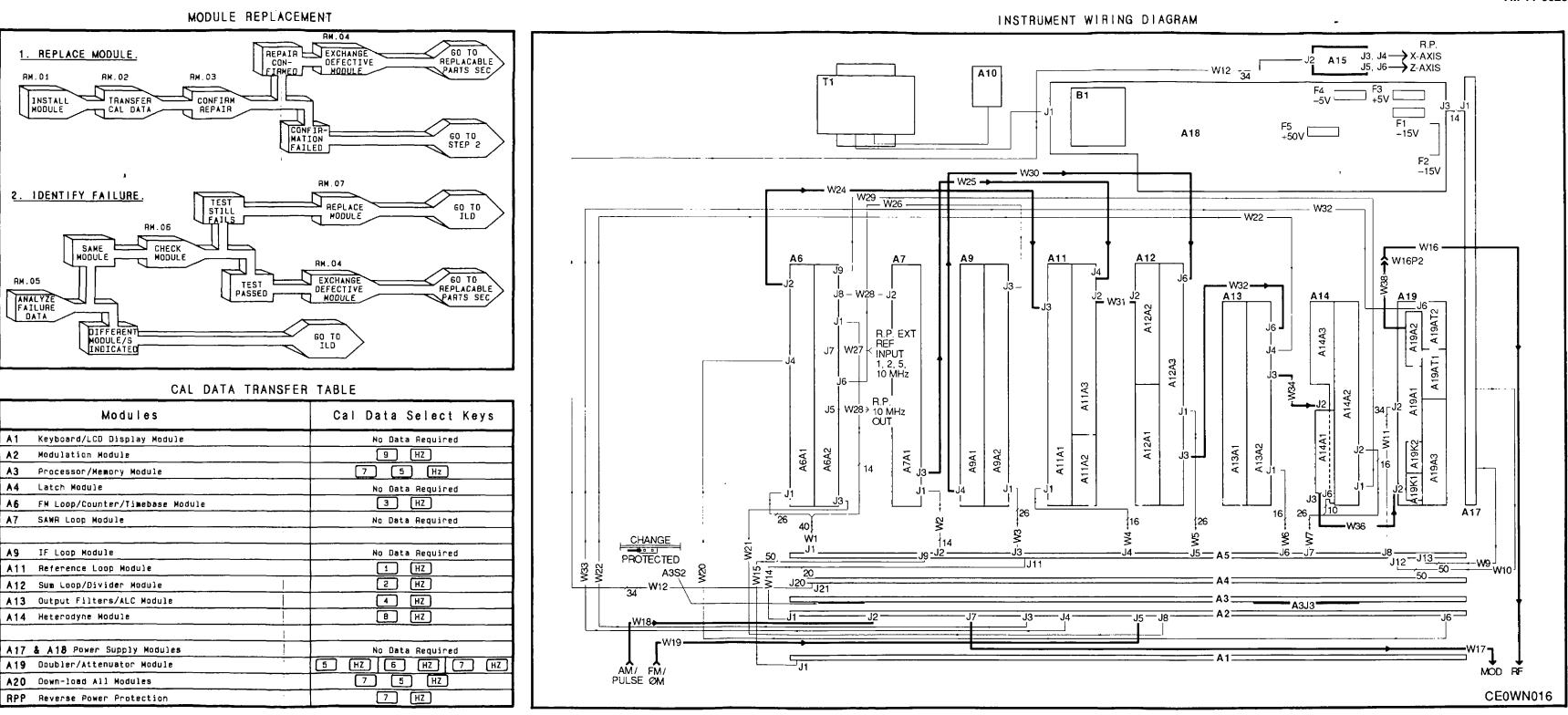


Figure 4-100. Replacing a Module.

4-17/(4-18 BLANK)

SECTION V. MECHANICAL PROCEDURES

5-1. INTRODUCTION

This section contains mechanical **procedures required for on-site service of the HP 8642 Synthesized Signal Generator.** Refer to **SECTION IV REPLACING A MODULE** for information regarding module calibration. Refer to instrument top cover for specific cable connection locations. The instrument should be serviced in an electrostatic discharge protected environment.

Table 5-1, located on the foldout at the end of this section, is a quick reference table for locating the paragraph in which the removal and replacement procedures for each module/assembly are found.

NOTE

Unless otherwise noted, the directions "left" and "right" given in the instructions are referenced as though you are looking at the instrument from the Front Panel.

WARNING

Servicing instructions are for use by service trained personnel only. To avoid dangerous electric shock, do not attempt to service this instrument unless you are qualified to do so.

Any interruption of the protective (grounding) conductor (inside the instrument) or disconnecting of the protective earth ground terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection.) In addition, verify that a common ground exists between the unit under test and this instrument prior to energizing either unit. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

<u>WARNING</u>

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Certain procedures described in this manual are performed with power supplied to the instrument while protective covers are removed. Energy levels at certain points may, if contacted, cause personal injury. The +50 Vdc power supply level is distributed to many points throughout the instrument.

For continued protection against fire hazard, replace the line fuse(s) only with 250V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.) Do not use repaired fuses or short circuited fuseholders.

The left rear portion of the chassis becomes hot during operation. A cooling period may be desired before servicing modules in this area.

To avoid personal injury, avoid contact with the A17 heatsink when the A17 Module is extended.

The HP 8642 is extremely heavy. Do not lift or carry the instrument without assistance. If the instrument is rack-mounted, do not pull the instrument from the rack without assistance.

Remove Power before proceeding with **MECHANICAL PROCEDURES**.

NOTE

When looking at the instrument, some of the mechanical procedures may seem intuitively obvious; however, we strongly recommend that you read through an entire procedure before performing any of the steps.

5-2. TOOLS

Torxhead Screws

Most screws used in instrument are Torxhead screws. They require a torque driver and Torxhead bits (provided in On-Site Service Kit) for proper removal and installation.

CAUTION

To avoid damage, do not exceed the following torque limits:

Torque limit for 4 mm screws: 2.2 Nm. (Use bit T15)

Torque limit for 3 mm screws: 1.5 Nm. (Use bit T10)

To set torque limit of driver, remove cover from end of handle. Lift the key to the vertical position and turn clockwise to increase torque setting, or turn counter-clockwise to decrease torque setting. align hairline on clear bulb of driver shaft with the desired setting. Push the key back to the flat position (a very slight turn in either direction may be necessary to allow key to lock into place).

RF Wrench

An **RF** connector wrench is located above fan on right inner wall of center rear bracket. A fuse extraction/insertion tool is located on top of rear frame of instrument near fan.

Tools Required

The On-Site Service Kit contains most tools needed to perform an on-site service of the HP8642. The tools required to perform each mechanical procedure are listed at the beginning of the procedure. Those tools required for the procedure which are not included in the On-Site Service Kit have been printed in italics.

The following is a list of tools not contained in the kit but sometimes required for on-site service:

2 pt. Pozidrive screwdriver. 1 pt. Pozidrive screwdriver 6.0 mm open end wrench. Small flathead screwdriver. Small needlenose pliers Small diagonal cutters Soldering/Desoldering tools

5-3. TOP COVER

Removal Time:	2 min
Replacement Time:	2 min
Tools Required:	Pozidrive screwdriver.

WARNING

Certain procedures described in this manual are performed with power supplied to the instrument while protective covers are removed. Energy levels at certain points may, if contacted, cause personal injury. The +50 Vdc power supply level is distributed to many points throughout the instrument.

CAUTION

The instrument should not be turned on for extended periods of time with the top cover removed. The instrument's ability to cool itself is severely reduced when the top cover is removed.

To Remove: Top Cover

- 1. Remove four rear feet from rear frame of instrument by removing screw in each foot.
- 2. Loosen screw in middle of rear edge of top cover. This is a captive screw (attached to top cover). Loosening it will cause cover to push away from front frame.
- 3. Slide top cover toward rear of instrument to disengage and lift up and away. (Cover has a tight fit and may need to be worked loose.)

To Replace: Top Cover

- 1. Place cover onto top of instrument. Slide cover toward front of instrument while applying a slight downward pressure at front edge of cover. Guide into slot in top of front frame. (Cover has a tight fit and may need to be worked forward.)
- 2. When screw on rear edge of cover is in contact with rear frame, tighten screw. (Cover should move forward as screw is tightened.)
- 3. Replace four feet on rear frame, one screw in each.

A19

5-4. RF MODULES: A6, A7, A9, A11-14,

Removal Time:	4 min
Replacement Time:	8 min
Tools Required:	RF connector wrench

To locate module, refer to Top View Diagram on inside of instrument top cover.

<u>To Remove</u>: A6, A7, A9, A11-14, A19

- 1. Remove top cover (refer to paragraph **5-3**).
- 2. Reroute obstructing coax cables around ends of module (any cables lying across top of module that would hinder lifting of module from instrument).

NOTE

DO NOT disconnect intramodular cables. (These are cables which connect from one point on the module to another point on the same module.) Intramodular cables must remain in place for proper module calibration.

- 3. Disconnect intermodular cables from module being removed. Disconnect only those cables which connect module to other parts of instrument, including ribbon cables. Use the RF connector wrench to loosen coax cable connectors.
 - To avoid damaging semi-rigid coax cables, loosen both ends of cable before disconnecting cable from module.
- 4. Slide L-shaped retaining clip at each end of module toward center of module to release from guide post. See diagram 1. RF MODULE MECHANICAL PARTS on foldout at end of this section.
- 5. Using finger loops on retaining clips, lift module from instrument.
- 6. Loosen the black retaining screw three turns. Slide ribbon cable from behind cable retaining screw on module slide, being careful not to damage the ribbon cable.

To Replace: A6, A7, A9, A11-14, A19

1. Clear cables from empty module slot.

- 2. Slide ribbon cable behind ribbon cable retaining screw on module slide. Re-tighten the screw. Pull cable up until screw rests in cable fold. (With a new cable fold may not be evident. allow enough slack in cable to accommodate lowering module into instrument.)
- 3. Align module slide with guide post mounted in instrument. (Modules are designed so slide will not align properly if an attempt is made to install module backwards.)
- 4. Using finger loops on module slides, lower module into place.
- 5. Align retaining clips with notch in guide posts and slide clips into notch to lock module in position.
- Reconnect all cables. Tighten connectors finger tight, then use RF connector wrench to slightly tighten (1 N.m). RF connectors on modules are fragile and over-torquing can cause damage. (Refer to inside of instrument top cover for cable connection locations.)

<u>To Extend</u>: (A6, A7, A9, A11-14, A19)

- 1. Remove top cover (refer to paragraph **5-3**).
- 2. Reroute any obstructing cables around ends of module.
- 3. Screw extender posts into top of module guide posts.
- 4. Slide L-shaped retaining clip, at each end of module, toward center of module to release from guide post.
- 5. Slide module up to top of extender.
- 6. Align retaining clip with notch in extender post. Slide clip into locked position.

5-5. CONTROL MODULE: A3

Removal Time:	1 min
Replacement Time:	1 min
Tools Required:	None

To Remove: A3

1. Remove top cover (refer to paragraph 5-3).

- 2. Raise black extractor and white extractor to upright position. (Extractors may be difficult to raise. You may feel resistance from connectors on bottom of A3 module as you raise extractors.)
- 3. With extractors in upright position, pull module up, out of instrument.

To Replace: A3

- 1. Raise black extractor and white extractor to their upright position.
- 2. Position module so extractors are aligned with matching colored plastic guides in instrument (component side of A3 toward front of instrument).
- 3. Align board edges with left and right slots in plastic guides.
- 4. Push board into instrument holding extractors in upright position.
- 5. Push extractors down to lock module into notch near top of guides.

5-6. CONTROL MODULE: A4

Removal Time:	1 min	
Replacement Time:	4 min	
Tools Required:	None	

To Remove: A4

- 1. Remove top cover (refer to paragraph 5-3).
- 2. Disconnect yellow, Power Meter, cable fastener from mounting hole on A11 Module.
- 3. Raise black extractor and white extractor to their upright position. (Extractors may be slightly difficult to raise. You may feel some resistance from connectors on bottom of the A4 module as you raise them.)
- 4. With extractors in upright position pull module up, out of instrument.

To Replace: A4

- 1. Check that ribbon cable shields are in place between ribbon cables on AS module and A4 slot. Check that ribbon cables and shields are not obstructing connectors into which A4 plugs.
- 2. Raise black extractor and white extractor to their upright position.
- 3. Position module so extractor colors are aligned with matching colored plastic guides in instrument (component side of A4 toward rear of instrument).
- 4. Align board edges with left and right slots in plastic guides.
- 5. Push board into instrument holding extractors in upright position. As you lower A4 Module into instrument, ensure that ribbon cables on AS Module do not become disconnected.
- 6. Push extractors down to lock module into notch near top of guide.
- 7. Replace Yellow Power Meter cable fastener in its mounting hole on the A11 Module.

5-7. FRONT PANEL

Opening Time:	5 min
Closing Time:	4 min
Tools Required:	Torque driver, Torxhead bits, small flathead screwdriver

Front panel assembly is mounted into front frame on a retracting hinge. The hinge mechanism, located on inside left side of Front Panel, allows right side to swing open like a door for accessing A1 and A2 Modules.

NOTE

This procedure requires that careful attention is paid to each step. Read through entire procedure before performing any of the steps.

To Open: Front Panel

- 1. Remove any adapters from **RF OUTPUT** connector on Front Panel.
- 2. Gently pry plastic trim strip from top of front frame by inserting a screwdriver into slots in rear edge of plastic strip.
- 3. On top of front frame, remove. two countersunk screws (first and thirteenth holes counting from right).
- 4. On bottom of frame, remove three screws (third, eighth, and twelfth holes counting from right).

CAUTION

DO NOT swing right side of panel open until entire panel is pulled out from front frame. Left (hinged) side of Front Panel may be damaged if not pulled out from frame before right side is swung open.

5. Grasping **AM INPUT** Connector (J1) and **MOD OUTPUT** Connector (J3), pull panel outward until entire Front Panel clears front frame by about 1/2 inch.

NOTE

If it is difficult to pull Front Panel out, it may be helpful to slightly loosen the two screws on bottom of front frame directly under RF OUTPUT connector (CP1).

6. Slowly swing right side of panel outward while carefully guiding left side of Front Panel away from left edge of frame.

To Close: Front Panel

- 1. While using J1 (**AM INPUT** connector) to hold left side of Front Panel away from frame, slowly swing right side of panel inward until "door" is almost closed.
- 2. Push left side of panel straight back into front frame, then push right side into frame.
- 3. Replace screws in first and thirteenth countersunk holes counting from right, in top of front frame, and screws in third, eighth, and twelfth holes in bottom of frame. (Count from right.)
 - Tighten two screws under **RF OUTPUT** connector if they were loosened when Front Panel was opened (refer to paragraph **5-8**, step **4**).

4. Press top plastic trim strip into place on top of front frame, position slot toward rear of instrument.

5-8. Deleted

5-9. RF MODULE: A2

Removal Time:	10 min
Replacement Time:	15 min
Tools Required:	Torque driver, Torxhead bits, RF connector wrench, <i>diagonal</i> cutters, cable ties.

A2 is mounted in the front frame of the instrument behind the Front Panel.

To Remove: A2

- 1. Open Front Panel (refer to paragraph **5-7**).
- 2. Disconnect coax cables from A2 Module using RF connector wrench.
 - Clip cable ties which hold cable bundle to module ties. (See diagram 4. A2 CABLE TIES AND CONNECTORS on foldout at end of this section.)
- 3. Remove seven screws securing module to instrument.
- 4. Disconnect ribbon cable from A2J1, then pull A2 Module out of instrument.

To Replace: A2

1. Slide four new cable ties under ties already attached to A2 Module.

- 2. Position module with component side forward toward front of instrument. Connect ribbon cable to A2 at A2J1.
- 3. Secure module to metal shield. (7 screws, finger tight).
 - When all screws are in place tighten each one.
- 4. Connect coax cables. See instrument top cover for cable connection locations. Secure cables to module using cable ties installed in step 1.
- 5. Close Front Panel (refer to paragraph 5-7).

5-10. CONTROL MODULE: A1

Removal Time:	8 min
Replacement Time:	8 min
Tools Required:	Torque driver, Torxhead bits, 6 mm open end wrench.

A1 module consists of A1A1 Keyboard Assembly and A1A2 LCD Display Assembly. References to A1 refer to the module as a single unit. A1 is mounted onto back of hinged front panel.

CAUTION

When removing A1 Module, the A1A2 LCD Display can be inadvertently detached from the keyboard. Remove A1 slowly and be sure that the display is firmly in place. It is advisable to wear gloves when handling the LCD display; it is easily soiled but not easily cleaned.

The A1A2 LCD Display Assembly is extremely static sensitive. Use adequate Electrostatic Discharge Techniques when handling the A1A2 Assembly.

To Remove: A1

- 1. Open Front Panel (refer to paragraph **5-7**).
- 2. Remove four screws securing metal shield to back of A1 Module and pull shield off.
- 3. Remove ten hex nuts 6 mm securing module to Front Panel standoffs.

CAUTION

To avoid damage to key caps, and to avoid pulling switches loose, pull A1 away from front panel slowly, keeping key caps aligned with holes in Front Panel.

- 4. Pull module away from Front Panel far enough to disconnect RPG (knob) wiring harness from A1 Module at A1A1J3. RPG, Rotary Pulse Generator, is round black assembly attached to Front Panel, visible through cutout in A1A1 assembly.
- 5. Disconnect ribbon cable from A1 Module at A1A1J1.
- 6. Pull A1 Module from instrument.

To Replace: A1

- 1. Position board with component side (key caps) forward toward Front Panel.
- 2. Connect ribbon cable from A1 Module at A1AJ1.
- 3. Route RPG (knob) wiring harness through circular hole in A1 Module then back under A1 to front of A1 Module and connect harness to A1 Module at A1A1J3.
- 4. Align key caps with holes in Front Panel, and align mounting holes with standoffs. Gently push A1 into place on standoffs.
- 5. Place a hex nut on each standoff (qty 10) and tighten finger tight. When each nut is in place tighten each one.
- 6. Position metal shield with U-shaped cutout over RPG (knob) assembly and secure shield to Front Panel with our screws.
- 7. Close Front Panel (refer to paragraph **5-7**).

5-11. LCD DISPLAY ASSEMBLY A1A2

Removal Time:	2 min	
Replacement Time:	2 min	
Tools Required:	None	

CAUTION

When removing A1 Module, the A1A2 LCD Display can be inadvertently detached from the keyboard. Remove A1 slowly and be sure that the display is firmly in place. It is advisable to wear gloves when handling the LCD display; it is easily soiled but not easily cleaned.

The A1A2 LCD Display Assembly is extremely static sensitive. Use adequate Electrostatic Discharge Techniques when handling the A1A2 Assembly.

To Remove: A1A2

- 1. Open Front Panel (refer to paragraph **5-7**).
- 2. Remove A1 Module (refer to paragraph **5-10**).
- 3. Lay A1 Module down flat, component side up.
 - A1A2 assembly plugs into A1 Module at A1A1J4 and A1A1JS. Grasp connectors on A1A2 Assembly and pull both upward at same time. There may be resistance as you pull but, DO NOT use a rotating or twisting action as you pull upward. Torque produced by twisting can cause damage to components or solder connections.

To Replace: A1A2

- 1. Carefully align plugs A1A2P1 and A1A2P2 on the A1A2 with connector pins of A1A1J4 and A1A1JS on the A1 Module.
 - With even pressure at both ends, carefully press display into place.
- 2. Replace A module in instrument (refer to paragraph **5-10**).

5-12. LCD DISPLAY INCANDESCENT LAMPS

Replacement Time:	10 min	
Tools Required:	Torque driver, Torxhead bits, Soldering iron, desoldering tool,	
	needlenose pliers.	

CAUTION

When removing A1 Module, the A1A2 LCD Display can be inadvertently detached from the keyboard. Remove A1 slowly and be sure that the display is firmly in place. It is advisable to wear gloves when handling the LCD display; it is easily solled but not easily cleaned.

The A1A2 LCD Display Assembly is extremely static sensitive. Use adequate Electrostatic Discharge Techniques when handling the A1A2 Assembly.

To Replace: Incandescent Lamp

- 1. Remove A1A2 (refer to paragraph **5-11**).
- 2. Remove two screws securing black end cap of LCD display from end of display at which defective lamp is located. The screw on upper edge of end cap requires two washers, take care not to lose them. Remove end cap.
- 3. Unsolder leads of incandescent lamp, and remove lamp from mounting holes. To prevent damage to printed circuit traces and plated mounting holes, be sure leads are completely unsoldered before pulling lamp free.
- 4. Form leads of new lamp to fit spacing of mounting holes. Place leads in mounting holes and solder leads into place.
- 5. Replace black end cap over lamp, and secure from circuit side with two screws. (Screw on upper edge of end cap requires two washers.)
- 6. Replace A1A2 Assembly (refer to paragraph **5-11**).

5-13. RIGHT SIDE COVER

Removal Time:	2 min
Replacement Time:	2 min
Tools Required:	Pozidrive screwdriver.

To Remove: Right Side Cover

- 1. Remove the four feet on rear frame by removing a screw in each foot.
- 2. Remove top cover (refer to paragraph **5-3**).
- 3. Loosen screw on rear edge of right cover. This is a captive screw (attached to cover), loosening it will cause cover to push back away from front frame.
- 4. After screw is disengaged from frame, pull side cover from chassis being careful not to dislodge foam pieces on cover.

To Replace: Right Side Cover

- 1. Inspect side cover for loose or damaged foam, replacing it if necessary. (Foam is critical to proper A1r flow in instrument.)
- 2. Place groove on bottom edge of side cover onto edge of bottom cover.
- 3. Slide cover forward until captive screw on rear edge of side cover is in contact with rear frame. Tighten screw into frame. Cover should move forward into place as the screw is tightened.
- 4. Replace top cover (refer to paragraph **5-3**).
- 5. Replace four feet on rear frame.

5-14. POWER SUPPLY MODULE: A17

Removal Time:	10 min
Replacement Time:	12 min
Tools Required:	Torque driver and Torxhead bits, Pozidrive screwdriver.

WARNING

Left rear portion of the instrument becomes hot during operation; a cooling period may be desired before servicing.

To avoid personal injury, avoid contact with the A17 heatsink when the A17 Module is extended.

To Remove: A 17

- 1. Remove power to instrument by disconnecting line power cord.
- 2. Remove top cover (refer to paragraph **5-3**).
- 3. Remove right side cover (refer to paragraph **5-13**).
- 4. Remove power supply top cover from right-rear corner of instrument (one screw).
- 5. Remove 13 screws on side frame shown in diagram **2. A17 MODULE MECHANICAL PARTS** on the foldout at end of this section.
- 6. Lift module partially out of instrument to expose ribbon cable connectors through gap in side frame. Push levers on ribbon cable connectors apart to release ribbon cables from A17 Module.
- 7. Disconnect power supply wiring harness (W13) from A17 Module at A7J1 (located toward rear of instrument, below heatsink).
- 8. Lift module out of instrument.

NOTE

You may feel resistance as you pull the board upward. This may be caused by one of the foam strips adhered to the circuit side of the board. Apply slow, firm upward pressure.

To Replace: A17

- 1. Position component side of board toward outside of instrument.
- 2. Connect power supply wiring harness (W13) to A17 connector below heatsink.
- 3. Lower board into place.

NOTE

You may feel resistance as you lower board into place. This may be caused by one of the foam strips adhered to the circuit side of the board. Use slow, firm downward pressure to install board.

- 4. Connect ribbon cable W9 08642-60013 to A17J3, and W10 08642-60012 to A17J2. (Part numbers of these cables are stamped on cable.)
- 5. Foam strip adhered to circuit side of board should overlap metal bracket in such a way as to seal gap between bracket and A17.
- 6. Align module with screw holes. Replace 13 screws finger tight. When all screws are in place, tighten each one. (Refer to diagram **2. A17 MODULE MECHANICAL PARTS** on foldout at end of this section.)
- 7. Replace side cover (refer to paragraph **5-13**).

To Extend: A17

- 1. Remove power to instrument by disconnecting line power cord.
- 2. Remove top cover (refer to paragraph **5-3**).
- 3. Remove power supply top cover, one screw.
- 4. Remove screws shown in diagram **2. A17 MODULE MECHANICAL PARTS** on foldout at the end of this section.
- 5. Lift module partially out of instrument to expose ribbon cable connectors (A17J2 and A17J3) through gap in side frame. Push levers on ribbon cable connectors apart to release ribbon cables W9 and W10.
 - Be sure the power supply wiring harness W13 remains connected to A17 and A18.

- 6. Pull module up until lower mounting holes on A17 Module are aligned with mounting holes in top rail of frame.
- 7. Insert screws into bottom mounting holes on A17 through holes in top rail and tighten finger tight. When all screws are in place, tighten each one.
- 8. Connect ribbon cable W9 08642-60013 to A17J3, and W10 08642-60012 to A17J2. (Part numbers of these cables are stamped on the cable.)
- 9. Reconnect power to instrument.

5-15. REAR BOTTOM COVER

Removal Time:	5 min
Replacement Time:	3 min
Tools Required:	Pozidrive screwdriver, small flat head screwdriver, insulated
	screwdriver

To access A18 Module only REAR bottom cover need be removed. All other modules are accessible through top of instrument.

CAUTION

Do not remove the center bottom cover, Its placement is important to the structural stability of instrument. All on-site serviceable parts in the center section of instrument are accessible through top of the instrument.

Remove line power cord before removing rear bottom cover.

To Remove: Rear Bottom Cover

- 1. Remove power to instrument by disconnecting line power cord.
- 2. Remove four feet on rear frame by removing a screw in each foot.
- 3. Turn instrument on its side and remove two rear feet from bottom cover.

- 4. Unscrew four screws on front edge of rear bottom cover.
- 5. Slide cover toward rear of instrument and lift cover from instrument. (Cover fits snugly and may need to be worked loose.)

WARNING

Capacitors on the A18 Module may still be charged even if the instrument has been disconnected from its source of power. Use a conductor with an insulated handle, such as a screw driver, to discharge capacitors by carefully grounding capacitor terminal screws, on bottom of A18 Module, to instrument's chassis.

To Replace: Rear Bottom Cover

CAUTION

Remove line power cord before replacing rear bottom cover.

- 1. Slide rear bottom cover forward from rear of instrument and align holes in front edge of rear cover with holes rear edge of center bottom cover.
- 2. Insert and tighten four screws.
- 3. Replace two rear feet on bottom of instrument.
- 4. Replace four feet on rear frame.

5-16. POWER SUPPLY MODULE: A18

Removal Time:	10 min
Replacement Time:	10 min
Tools Required:	Torque driver and Torxhead bits, insulated screwdriver.

WARNING

Do not operate the instrument with the A18 Module detached from chassis. The screws securing the A18 Power Supply Rectifier and Filter Module to the chassis are an integral part of the protective grounding of the instrument.

<u>WARNING</u>

The left rear portion of the instrument becomes heated during operation and a cooling period may be desired before servicing.

Capacitors on the A18 Module may still be charged even if the instrument has been disconnected from its source of power. Use a conductor with an insulated handle, such as a screw driver, to discharge capacitors by carefully grounding capacitor terminal screws, on bottom of A18 Module, to instrument's chassis.

To Remove: A18

- 1. Remove power to instrument by disconnecting line power cord.
- 2. Remove top cover (refer to paragraph **5-3**).
- 3. Remove power supply top cover, one screw.
- 4. Remove bottom rear cover (refer to paragraph **5-15**.)
- 5. Using insulated screwdriver, discharge capacitors by carefully grounding mounting terminal screws on, bottom of A18 Module, to instrument's chassis.
- 6. Remove screws on bottom of A18 Module shown in diagram **4. A18 MODULE MOUNTING SCREWS** on foldout at end of this section.
- 7. Guide module out through bottom of instrument until connecting wires become accessible by gently pushing from top side instrument.
- 8. Disconnect transformer output cable from A18 Module at A18J1. Disconnect cable to fan from A18 Module at A18J2. Disconnect wiring harness to A17 at A18J3.

To Replace: A18

1. Reconnect all cables removed in paragraph **5-16**, step **8**.

- 2. Guide module into position through bottom of instrument, and hold in place. Be sure Air seal foam and rubber strips are inside instrument (should not overlap on outside). Foam and rubber strips are easily torn and can cause difficulty when positioning module. If necessary, re-position the module in instrument to ensure a proper seal has been attained.
- Align A18 board with screw holes in chassis and secure screws finger tight. Use star washers on all screws. When all screws are in place tighten each one. (See diagram 4. A18 MODULE MOUNTING SCREWS on foldout at end of this section.)
- 4. Replace bottom cover (refer to paragraph **5-15**).
- 5. Replace power supply top cover, one screw.

5-17. CALIBRATION MODULE A20

Removal Time:	3 min
Replacement Time:	3 min
Tools Required:	Small flathead screwdriver.

To Remove: A20

- Find A20 Calibration Module cover on rear panel of instrument and pull outward (plungers do not detach from fasteners). Pull away A20 Calibration Module cover. (See diagram 3. A20 and B1 MECHANICAL PARTS on foldout at end of this section.
- 2. Four plastic fasteners hold Calibration Module to fan access cover on rear panel. Turn screw heads 1/4 turn to close fastener shoulders.
- 3. Pull Calibration Module off of fasteners. Fasteners will stay in place on fan access cover.

To Replace: A20

- Check that 1/4-turn fasteners on fan access cover are in unlocked (shoulders closed) position. Push Calibration Module onto fasteners. (See diagram 3. A20 and B1 MECHANICAL PARTS on foldout at end of this section.)
- 2. Turn fasteners 1/4 turn (shoulders open) to secure Calibration Module to access cover.
- 3. Align plastic fasteners on Calibration Module cover with mounting holes in rear panel.
 - Push fastener sockets into mounting holes and push the fastener plungers in.

5-18. Deleted.

5-19. FAN (B1)

Removal Time:	6 min
Replacement Time:	8 min
Tools Required:	Torque driver, torxhead bits

To Remove: B1

- Find A20 Calibration Board cover on rear panel of instrument. Remove Calibration Board cover by pulling outward on plastic fastener plungers. (See diagram 3. A20 and B1 MECHANICAL PARTS on foldout at end of this section.)
- 2. Disconnect line power from instrument. Fan access cover attaches to rear panel behind Calibration Board cover. Remove four screws in fan cover securing it to rear panel.
- 3. Fan is mounted to access cover. Pull access cover and attached fan out of instrument.
- 4. Disconnect fan wire from A18 Module at A18J3.
- 5. Remove two screws that attach fan to rear fan mounting bracket on access cover (one in upper right corner, one in lower left corner).

To Replace: B1

- Mount fan to rear fan mounting bracket on fan access cover with two screws as shown in diagram 3. A20 and B1 MECHANICAL PARTS on foldout at end of this section. (Air directional arrows point down and to right.)
- 2. Route wire through rear panel to connector A18J3. (Align with black wire toward large filter capacitors on A18 module).
- 3. Guide fan through access hole in the rear panel. The wire to A18J3 wraps around corner of fan and may become disconnected when fan is pushed into instrument if wire is not routed under fan.
- 4. Replace screws securing access cover to rear panel.
- 5. Replace Cal Board Cover. (Refer to paragraph **5-17**, **<u>To Replace</u>: A20**, step **3**.)

5-20. A5 RIBBON CABLES (W1-W8, W11, W14, W15)

Removal Time:	3 min per cable
Replacement Time:	5 min per cable
Tools Required:	Torque driver, torxhead bits, small flathead screwdriver.

To Disconnect: W1-8, W11

- 1. Remove A4 (refer to paragraph **5-6**).
 - Ribbon cables, W1, W8,W11, W14 and W15 are protected by the ribbon cable shields. Flip plastic, ribbon cable shields up to expose ribbon cable connectors.
 - Shields are pliable, and can be bowed slightly to raise them.
- 2 Cable connectors A5J1-8 (upper row of connectors) are positioned with their pins pointing downward.
 - To free cables from connectors on A5, push the cable plug downward.

To Reconnect: W1-W8, W11

1. Remove A4 (refer to paragraph **5-6**).

- 2. Route cable over top of A5 and curl cable so plug is under its A5 connector and align plug with connector pins.
- 3. Push plug upward onto connector.
- 4. Reposition ribbon cable shields (if moved).
- 5. Replace A4 (refer to paragraph **5-6**).

To Remove: W1-W8, W11

- 1. Repeat <u>To Disconnect</u>: W1-8, 11 steps 1-2.
- 2. Clip cable ties securing retaining bar to A5 Module.
- 3. Extend RF module to which cable being removed is attached (refer to paragraph 5-4).
- Loosen the black retaining screw two or three turns. Slide cable from behind ribbon cable retaining screw on module slide bracket. (See diagram 1. RF MODULE MECHANICAL PARTS on foldout at end of this section.)
- 5. Disconnect cable from connector on RF Module.

To Replace: W1-8, W11

- 1. Extend RF Module to which cable attaches. (Refer to paragraph 5-4.)
- 2. Plug cable into connector on RF Module. (Match arrow on cable connector with arrow on module connector.)
- 3. Slide cable behind ribbon cable retaining screw on module slide bracket. Re-tighten the retaining screw. (See diagram **1. RF MODULE MECHANICAL PARTS** on foldout at end of this section.)
- 4. Repeat <u>To Reconnect</u>: W1-8, W11, steps 1-4.
- 5. Lower RF Module into instrument.
- 6. Tie wrap the retaining bar to the A5 Module to hold all ribbon cables in place.
- 7. Replace A4 (refer to paragraph **5-6**).

To Disconnect: W14, W15

Cable W15 is split and routed to two connectors on A5, A5J9 and A5J10. W14 connects to A5J11.

- 1. Remove Modules A3 and A4 (refer to paragraphs 5-5 and 5-6).
- 2. Flip plastic ribbon cable shield up to expose ribbon cable connectors under it.
 - Shield is pliable, and can be bowed slightly to raise it.
- 3. Insert a flat head screwdriver between plastic retaining clip and connector body. Gently pry retaining clip away from AS connector and cable plug.
- 4. Disconnect cable from connector.

To Reconnect: W14, W15

- 1. Align cable plug with A5 connector and push plug onto connector pins.
- 2. Insert notched edge of the retaining clip into slot on A5 connector. Push the smooth edge of clip over end of cable plug to lock plug into position.
- 3. Replace ribbon cable shield.

<u>To Remove</u>: W14, W15

Due to extensive instrument disassembly required to access these cables, these cables are not considered to be On-Site replaceable.

TABLE OF MECHANICAL PROCEDURES

		agraph "5-1. Introduction" before per	forming any of the
procedures called out below. Removal/Replacement Instrument Paragraph			
	Removal/Replacement Procedure	Section	Paragraph Number
A1			5-10
	LCD Display Module	Control	5-11
	Incandescent Lamps		5-12
A2		RF	5-9
A3	Processor/Memory Module	Control	5-5
A4			5-6
A6	FM Loop/Counter/Timebase		5-4
	Module		
A7	SAWR Loop Module		5-4
A.0	IE Loop Modulo	RF	5-4
	IF Loop Module Reference Loop Module	KF	5-4 5-4
	Sum Loop/Divider Module		5-4
	Output Filters/ALC Module		5-4
	Heterodyne Module		5-4
A17	Power Supply Regulators/		5-14
	Attenuator Drivers Module	Power Supply	
A18	Power Supply Rectifier/ Filters		5-16
	Module Devide Markela		5 4
A19		RF Control	5-4 5-17
	Calibration Module	Control	5-17
Module Extension A6, A7, A9, A11-A14, A16, A19,			5-4
A17			5-14
Fan (B1)			5-19
Top Cover			5-3
Rear Bottom Cover			5-15
Right Side Cover			5-13
Front Panel			5-7
			5-8
A5 Rib	bon Cables		5-30

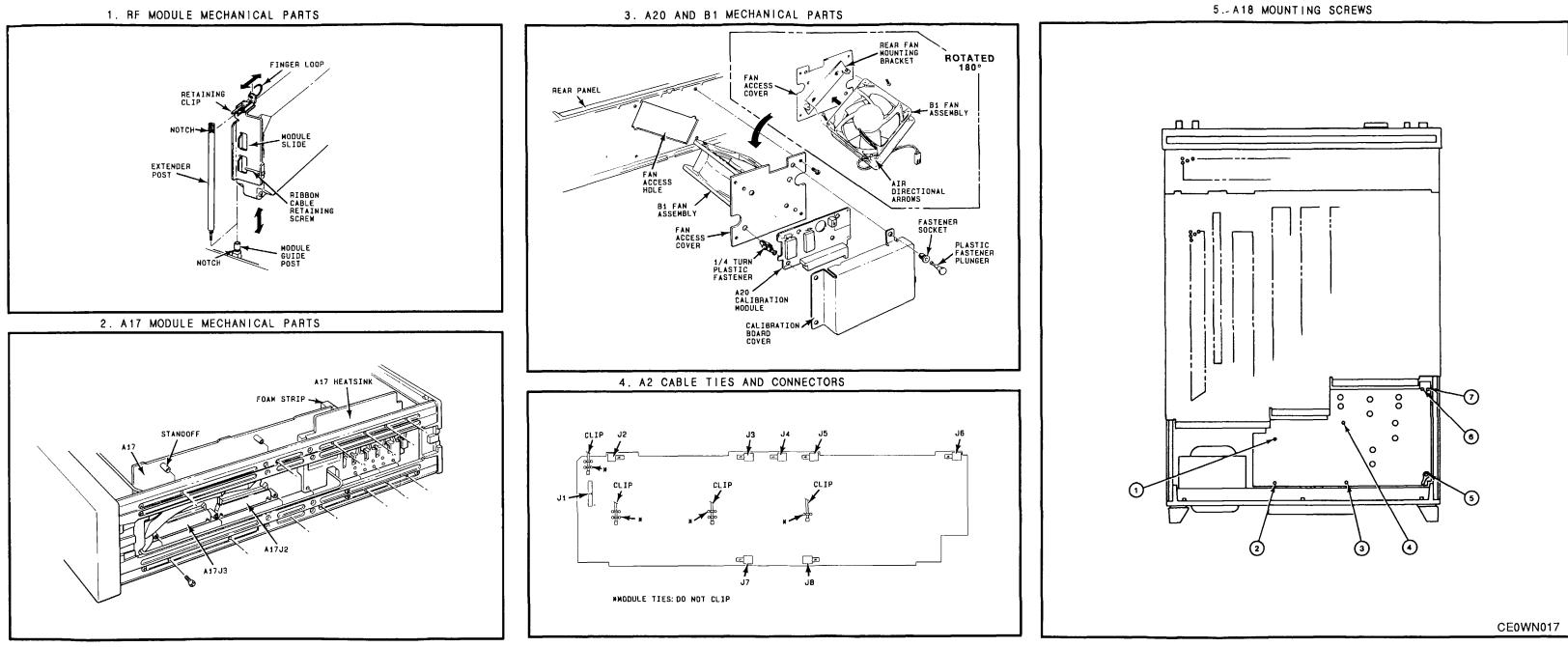


Figure 5-100. Mechanical Procedure Diagrams 5-29/(5-30 BLANK)

SECTION VI. PERFORMANCE TESTS AND ADJUSTMENTS

6-1. PERFORMANCE TEST.

DESCRIPTION

This procedure covers:

- RF Power Test
- RF Harmonics Test
- Pulse ON/OFF Ratio Test
- Pulse Rise/Fall Test
- Residuals Test
- AM Test
- AM Depth Test
- FM Test
- FM Deviation Test

NOTE

- Performance test procedure steps should be done in the order given.
- Performance test specifications are provided in each performance test procedure.
- Allow an initial 30 minute warm-up period when performing the first performance test to allow the Signal Generator to stabilize.
- Allow Level Meter 5 minutes to stabilize if turned off during the performance tests.
- The initialized setup of Signal Generator controls and indicators is to be performed prior to each performance test.
- The required test equipment is listed in paragraph 0-10.

INITIALIZED SETUP

- 1. Press INSTR PRESET.
- 2. Verify Signal Generator is as follows:

RF Frequency	
Start Frequency	OFF(100MHz)
Stop Frequency	OFF(100.1MHz)
Frequency Reference	
Amplitude	
Start Amplitude	OFF(-140dBm)
Stop Amplitude	
Amplitude Reference	OFF1.0µV)
EMF Mode	OFF
AM Depth	OFF(50% Internal)
FM Deviation	OFF(50KHz Internal)
Phase Deviation	
Pulse Modulation	OFF(External DC Source)
Modulation Frequency	1.0KHz
Modulation Output Level	
Frequency Sweep Mode	AUTO
Amplitude Sweep Mode	AUTO
Sweep Time	500msec

RF POWER TEST

DESCRIPTION: RF Power level output is checked at levels that can be read accurately by a Low Frequency Spectrum Analyzer (at 450KHz), and Power Meter and Thermistor Mount (>10MHz).

- EQUIPMENT REQUIRED: Power Meter. Thermistor Mount. 10dB Attenuator. Low Frequency Spectrum Analyzer. Type N Cable.
- 1. Connect Low Frequency Spectrum Analyzer to Signal Generator RF Output Connector using 10dB Attenuator and type N cable.
- 2. On Signal Generator,

Press	INSTR PRESET
Set Frequency to	0.450MHz
Set AMPTD to	+13dBm

RF POWER TEST-Continued

3. On Low Frequency Spectrum Analyzer:

Press	INSTR PRESET
CENTER FREQUENCY	450KHz
FREQUENCY SPAN	500KHz
Adjust reference level so peak is 5dB below top	graticule
DB/DIV	2dB
SWEEP TIME	5 sec

- 4. Verify reading is +3dBm +1.5dB as displayed on Low Frequency Spectrum Analyzer display.
- 5. Remove 100dB Attenuator.
- 6. Repeat steps 2 thru 4 using Signal Generator RF Frequency and RF Power values given in the table below. Verify that the power is within specified limits as displayed on Low Frequency Spectrum Analyzer display.

SIGNAL GENERATOR	SIGNAL GENERATOR	LOWER	UPPER
RF FREQ	RF POWER	LIMIT	LIMIT
(MHz)	(dBm)	(dBm)	(dBm)
0.450	+5.00	+3.00	+7.00
0.450	0.00	-2.00	+2.00
0.450	-5.00	-7.00	-3.00
0.450	-15.00	-17.00	-13.00
0.450	-25.00	-27.00	-23.00

- 7. Connect Power Meter using Thermistor Mount to 10dB Attenuator. Connect 10dB Attenuator Input to Signal Generator RF Output Connector.
- 8. On Signal Generator press INSTR PRESET and set AMPTD to +13dBm.
- 9. Set Signal Generator RF Frequency values given in the table below. Verify that the power is within specified limits as displayed on Power Meter.

SIGNAL GENERATOR	LOWER	UPPER
RF FREQ	LIMIT	LIMIT
(MHz)	(dBm)	(dBm)
10.000	1.50	4.50
100.000	1.50	4.50
500.000	1.50	4.50
1000.00	1.50	4.50
2000.00	1.50	4.50

RF POWER TEST-Continued

- 10. Turn RF OUTPUT to OFF, remove 10 dB Attenuator, and reconnect Thermistor Mount to Signal Generator RF Output. Turn RF OUTPUT to ON.
- 11. Set Signal Generator RF Frequency and RF Power values given in the table below. Verify that the power is within specified limits as displayed on Power Meter.

SIGNAL GENERATOR	SIGNAL GENERATOR	LOWER	UPPER
RF FREQ	RF POWER	LIMIT	LIMIT
(MHz)	(dBm)	(dBm)	(dBm)
100.000	+5.00	+3.00	+7.00
100.000	0.00	-2.00	+2.00
100.000	-5.00	-7.00	-3.00
100.000	-15.00	-17.00	-13.00
100.000	-25.00	-27.00	-23.00
2000.000	+5.00	+3.00	+7.00
2000.000	0.00	-2.00	+2.00
2000.000	-5.00	-7.00	-3.00
2000.000	-15.00	-17.00	-13.00
2000.000	-25.00	-27.00	-23.00

RF HARMONICS TEST

- DESCRIPTION: Using a Spectrum Analyzer, 2nd and 3rd harmonics, and sub-harmonic levels are checked where harmonic performance levels are most likely to occur.
- EQUIPMENT REQUIRED: Spectrum Analyzer. One Type N 50Ω cable.
- 1. Connect Spectrum Analyzer 50f Input to Signal Generator RF Output Connector using 50Ω Type N cable.
- 2. On Signal Generator press INSTR PRESET and set AMPTD to +13dBm.

3.	Set Spectrum Analyzer Controls as follows:	
	TIME/DIV	AUTO
	TRIGGERING	FREE RUN
	VERTICAL DISPLAY	10dB/DIV
	VIDEO FILTER	WIDE
	AUTO RESOLUTION	ON
	REFERENCE LEVEL	18dBm
	MIN RF ATTEN	20dB

RF HARMONICS TEST-Continued

4. Set Signal Generator RF Frequency and Spectrum Analyzer frequency and frequency span/DIV controls to values given in the table below. Verify that the signal(s) (2nd and 3rd harmonics, or the sub-harmonics) are below specified limits as displayed on Spectrum Analyzer.

SIGNAL GENERATOR	SPECTRUM ANALYZER		UPPER
RF FREQ	FREQ	SPAN/DIV	LIMIT
(MHz)	(MHz)	(MHz)	(dBm)
0.450	0.900	0.050	-12.0
500.000	1000.000	75	-12.0
2000.000	4000.000	250	-12.0
2000.000	1000.000	50	-7.0

PULSE ON/OFF RATIO TEST

DESCRIPTION: Using a Spectrum Analyzer, the pulse ON/OFF ratio is measured in the pulse mode.

EQUIPMENT REQUIRED: Spectrum Analyzer. One Type N 50Ω cable.

1. Connect Spectrum Analyzer 50 Input to Signal Generator RF Output Connector using 50Q Type N cable.

2.	On Signal Generator, Press Set AMPTD to Set Frequency to Press Press Press	INSTR PRESET +13dBm 1GHz PULSE (AM) EXT DC SHIFT
3.	Set Spectrum Analyzer Controls as follows: TIME/DIV TRIGGERING VERTICAL DISPLAY VIDEO FILTER AUTO RESOLUTION REFERENCE LEVEL MIN RF ATTEN FREQUENCY SPAN/DIV	AUTO FREE RUN 10dB/DIV WIDE ON 18dBm 20dB 1GHz 50MHz

PULSE ON/OFF RATIO TEST-Continued

4. Set marker to 1GHz and verify that the measured power is below -22.0dBm as displayed on Spectrum Analyzer.

PULSE RISE/FALL TEST

DESCRIPTION: Using an Oscilloscope, the pulse rise/fall time is measured with an external pulse applied to the Signal Generator.

EQUIPMENT REQUIRED: Oscilloscope Mainframe. Oscilloscope Plug-In. Pulse Generator. Two 50Ω BNC cables. One TYPE N to BNC adapter.

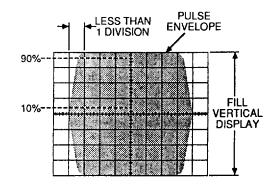
1. Connect Pulse Generator output to Signal Generator Pulse input on rear panel using 50Ω BNC cable. Connect Signal Generator RF output to Oscilloscope channel 1 input using Type N to BNC adapter and 50Ω BNC cable.

2.	On Signal Generator,	
	Press	INSTR PRESET
	Set AMPTD to	+13dBm
	Set Frequency to	1GHz
	Press	EXT DC
	Press	SHIFT
	Press	PULSE (AM)
3.	Set Pulse Generator Controls as follows:	
0.	MODE	NORM
	PERIOD	20 µsec
	WIDTH	6 µsec
	AMPLITUDE	5 volts
4.	Set Oppillegeope Controls on follows:	
4.	Set Oscilloscope Controls as follows: CH1 VOLTS/DIV	0.1V
	SEC/DIV	0.5µsec
	CH1	BUTTON IN
	SWP	BUTTON OUT
	INT CH1	BUTTON IN
	AUTO TRIG	BUTTON IN

PULSE RISE/FALL TEST-Continued

- Adjust Oscilloscope delayed sweep controls so that the leading edge of the pulse envelope is within the first two divisions of the display. Adjust the CH1 VOLTS/DIV and DC OFFSET controls so that the pulse envelope fills the vertical range of the display.
- 6. Verify that the pulse envelope (on the positive and negative side) rises from 10% to 90% of its final value in less than 1 division as shown on the Oscilloscope display.

DESCRIPTION: Residuals are demodulated and measured by the Modulation Analyzer using either AM or FM mode.


EQUIPMENT REQUIRED: Modulation Analyzer. One TYPE N 50Ω cable. Digital Voltmeter.

- 1. Connect Signal Generator RF output to Modulation Analyzer input using 50Ω Type N cable.
- 2. On Signal Generator press INSTR PRESET and set AMPTD to +13dBm.
- 3.
 Set Modulation Analyzer Controls as follows: Enter
 41.0 SPCL

 MEASUREMENT.
 FM

 Ω
 LP FILTER
 3KHz
- 4. Set Signal Generator RF Frequency to values given in the table below. Verify that the reading is below specified limits as displayed on Modulation Analyzer.

SIGNAL GENERATOR	UPPER
RF FREQ	LIMIT
(MHz)	(KHz)
500.000	0.005
1000.000	0.010
1300.000	0.020

RESIDUALS TEST-Continued

- 5. Set Modulation Analyzer Measurement Mode to AM.
- 6. Connect Digital Voltmeter to MOD OUTPUT connector on Modulation Analyzer. Set Digital Voltmeter mode to AC.
- 7. Set Signal Generator RF Frequency to values given in the table below. Verify that the reading is below specified limits as displayed on Digital Voltmeter.

SIGNAL GENERATOR	UPPER
RF FREQ	LIMIT
(MHz)	(mV)
1000.000	0.18
1300.000	0.18

AM TEST

- DESCRIPTION: Incidental FM and AM Distortion are measured using the Modulation Analyzer and Distortion Analyzer.
- EQUIPMENT REQUIRED: Modulation Analyzer. Distortion Analyzer. One TYPE N 50Ω cable. Two 50Ω BNC cables. One BNC to dual banana adapter.
- Connect Signal Generator RF output to Modulation Analyzer input using 50Ω Type N cable. Connect Signal Generator MOD OUTPUT to AM input using 50Ω BNC cable. Connect Modulation Analyzer MOD OUTPUT to Distortion Analyzer Input using 50Ω BNC cable and BNC to dual banana adapter.

2.	On Signal Generator, Press Set AMPTD to Set Frequency to Press Press Set AM to	INSTR PRESET +13dBm 1GHz AM EXT DC 30%
	Set AM to Set MOD OUT to	30% 1V

AM TEST-Continued

3.	Set Modulation Analyzer Controls as follows:	
	Enter	41.0 SPCL
	MEASUREMENT	FM
	HP FILTER	300Hz
	LP FILTER	3KHz

4. Verify that the incidental FM is less than 200Hz as shown on the Modulation Analyzer.

5.	Set Modulation Analyzer Controls as follows:	
	MEASUREMENT	AM
	HP FILTER	OFF
	LP FILTER	OFF

6. Set Signal Generator RF controls as given in the table below. Verify that the reading is below specified limits as displayed on Distortion Analyzer.

NOTE Tune Distortion Analyzer to Modulation Frequency shown below.

SIGNAL GENERATOR CONTROLS PRESS					UPPER LIMIT (%)	
MOD FREQ MOD FREQ	20	Hz KHz	AM AM	90 70	%	5.0
MOD FREQ MOD FREQ MOD FREQ	.4 1 20	KHz KHz	AM AM	30 90	% %	1.5 5.0

AM DEPTH TEST

DESCRIPTION: AM Depth is measured using the Modulation Analyzer.

EQUIPMENT REQUIRED: Modulation Analyzer. One TYPE N 50Ω cable.

- 1. Connect Signal Generator RF output to Modulation Analyzer input using 50Ω Type N cable.
- 2. On Signal Generator press INSTR PRESET and set AMPTD to +13dBm.

AM DEPTH TEST-Continued

3.	Set Modulation Analyzer Controls as follows:	
	Enter	41.0 SPCL
	MEASUREMENT	AM
	LP FILTER	>20KHz

4. Set Signal Generator controls to values given in the table below. Verify that the AM reading is within specified limits as displayed on Modulation Analyzer.

SIGNAL GENERA	TOR	MINIMUM	
S	GIGNAL GENERATO	R	MINIMUM
RF FREQ	MOD FREQ	AM	AM
(MHz)	(KHz)	(%)	(%)
0.45	0.020	99	90.0
10.00	0.4	99	90.0
100.00	1.0	99	90.0
1000.00	10.0	99	90.0
1000.00	20.00	99	90.0

FM TEST

DESCRIPTION: Incidental AM and FM Distortion are measured using the Modulation Analyzer and Distortion Analyzer.

- EQUIPMENT REQUIRED: Modulation Analyzer. Distortion Analyzer. One TYPE N 50Ω cable. Two 50Ω BNC cables. One BNC to dual banana adapter.
- 1. Connect Signal Generator RF output to Modulation Analyzer input using 50 Ω Type N cable. Connect Signal Generator MOD OUTPUT to FM/ØM input using 50 Ω BNC cable. Connect Modulation Analyzer MOD OUTPUT to Distortion Analyzer Input using 50 Ω BNC cable and BNC to dual banana adapter.
- 2. On Signal Generator,

Press	INSTR PRESET
Set AMPTD to	+13dBm
Set Frequency to	1GHz
Press	FM
Press	EXT DC
Set MOD OUT to	1V

FM TEST-Continued

3.	Set Modulation Analyzer Controls as follows:	
	Enter	41.0 SPCL
	MEASUREMENT	AM
	HP FILTER	300Hz
	LP FILTER	3KHz

- 4. Verify that the incidental AM is less than 1% as shown on the Modulation Analyzer.
- 5. Set Signal Generator frequency to 250MHz.

6.	Set Modulation Analyzer Controls as follows:	
	MEASUREMENT	FM
	HP FILTER	OFF
	LP FILTER	OFF

7. Set Signal Generator RF controls as given in the table below. Verify that the reading is below specified limits as displayed on Distortion Analyzer.

SIGNAL GENERATOR					UPPER	
CONTROLS					LIMIT	
PRESS					(%)	
MOD FREQ MOD FREQ	20	Hz KHz	FM FM FM	.3 .3	MHz MHz	2.0
MOD FREQ	1	KHz	FM	.3	MHz	2.0
MOD FREQ	100	KHz	FM	.3	MHz	2.0

FM DEVIATION TEST

DESCRIPTION: FM Deviation is measured using the Modulation Analyzer.

EQUIPMENT REQUIRED: Modulation Analyzer. One TYPE N 50 Ω cable. One 50 Ω BNC cable.

3 Connect Signal Generator RF output to Modulation Analyzer input using 50Ω Type N cable. Connect Signal Generator MOD OUTPUT to FM/ØM input using 50Ω BNC cable.

FM DEVIATION TEST-Continued

2.	On Signal Generator, Press	INSTR PRESET		
	Set AMPTD to	+13dBm		
	Press	FM		
	Press	EXT DC		
	Set MOD OUT to	1V		
3.	Set Modulation Analyzer Controls as follows:			

- Enter 41.0 SPCL MEASUREMENT..... FM
- 4. Set Signal Generator controls to values given in the table below. Verify that the AM reading is within specified limits as displayed on Modulation Analyzer.

<u> </u>	SIGNAL GENERATO	MINIMUM	
RF FREQ MOD FREQ FM		FM	
(MHz)	(KHz)	(KHz)	(KHz)
250.00	0.020	375	300.0
680.00	100.0	400	300.0

6-2. ADJUSTMENTS.

DESCRIPTION

There are no maintenance adjustments required after repair of the Signal Generator.

SECTION VII. STORAGE AND SHIPMENT

7-1. ENVIRONMENT.

The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature	-55°C to +75°C
Humidity	5% to 95% (maximum wet-bulb temperature = 40° C)
Altitude	

7-2. PACKAGING.

Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence refer to the instrument by model number and full serial number.

Other Packaging. The following general instructions should be used for repackaging with commercially available materials:

- 1. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the service required, return address, model number, and full serial number.)
- 2. Use a strong shipping container. A double wall carton made of 2.4 MPa (350 psi) test material is adequate.
- 3. Use enough shock-absorbing material (75 to 100 mm layer, 3 to 4 in.) around all sides of the instrument to provide firm cushion and prevent movement in the container. Protect the front panel with cardboard.
- 4. Seal the shipping container securely.
- 5. Mark the shipping container FRAGILE to ensure careful handling.

7-1/(7-2 BLANK)

APPENDIX A REFERENCES

A-1. SCOPE.

This appendix lists all forms, technical bulletins, technical manuals, and miscellaneous publications referenced in this manual.

A-2. FORMS.

Discrepancy in shipment report (DISREP)	Form SF 361
Report of discrepancy (ROD)	Form SF 364
Quality deficiency report	Form SF 368
Recommended changes to equipment technical publications	DA Form 2028-2

A-3. TECHNICAL MANUALS.

Organizational, direct support, and general support repair parts	
and special tools list, Signal Generator SG-1207/U	TM 11-6625-3165-24P
Administrative storage procedures	TM 740-90-1
Procedures for destruction of electronics materiel to	
prevent enemy use (Electronics Command)	TM 750-244-2

A-4. MISCELLANEOUS.

The Army Maintenance Management System (TAMMS)	DA Pam 738-750
Consolidated index of Army publications and blank forms	DA Pam 310-1
First aid for soldiers	FM 21-11

A-1/(A-2 BLANK)

APPENDIX B MAINTENANCE ALLOCATION

Section I. INTRODUCTION

B-1. GENERAL.

a. This appendix provides a general explanation of all maintenance and repair functions authorized at various maintenance categories for the SG-1207/U.

b. The Maintenance Allocation Chart (MAC) in Section II designates overall authority and responsibility for the performance of maintenance functions on the identified end item or component. The application of the maintenance functions to the end item or component will be consistent with the capacities and capabilities of the designated maintenance categories.

c. Section III lists the tools and test equipment (both special tools and common tool sets) required for each maintenance function as referenced from section II.

d. Section IV contains supplemental instructions and explanatory notes for a particular maintenance function.

B-2. MAINTENANCE FUNCTIONS. Maintenance functions will be limited to and defined as follows:

a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.

b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.

c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean (includes decontaminate, when required), preserve, drain, paint, or to replenish fuel, lubricants, chemical fluids, or gases.

d. Adjust. Maintain or regulate within prescribed limits, by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.

e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.

f. Calibrate. To determine the cause and corrections to be made or adjusted on instruments or test measuring and diagnostic equipment used in precision measurement. This consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.

g. Remove/Install. To remove and install the same item when required to perform service on other maintenance functions. Install may be the act of emplacing, seating, of fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.

h. Replace. To remove an unserviceable item and install a serviceable counterpart in its place. Replace is authorized by the MAC and is shown as the 3d position code of the SMR code.

i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, and/or replace) including fault location/troubleshooting, removal/installation, and disassembly/assembly procedures, and maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to identify troubles restore serviceable to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), and item or system.

j. Overhaul. That periodic maintenance effort (service/ action) prescribed to restore an item to a completely serviceable/operational condition as required by maintenance standards in appropriate technical publications (i.e., DMWR). Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.

k. Rebuild. Consists of those services/ actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipment/ components.

B-3. EXPLANATION OF COLUMN IN THE MAC, SECTION II.

a. Column 1, Group Number. Column 1 lists functional group code numbers, the purpose of which is to identify maintenance significant components, assemblies, subassemblies and modules with the next higher assembly. End item group number shall be "00".

b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.

c. Column 3, Maintenance Function. Column 3 lists the functions to be performed on the item listed in column 2.

d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a work time figure in the appropriate subcolumn (s), the category of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different categories, appropriate work time figures will be shown for each category. The work time figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time (including any necessary disassembly/assembly time), troubleshooting/fault location time and quality assurance/ quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. The symbol designations for the various maintenance categories are as follows:

С	Operator/ Crew
0	Organizational Maintenance
F	Direct Support Maintenance
Н	General Support Maintenance
L	Specialized Repair Activity
D	Depot Maintenance

e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tool sets (not individual tools) and special tools, TMDE, and support equipment required to perform the designated function.

f. Column 6, Remarks. This column shall, when applicable, contain a letter code, in alphabetic order, which shall be keyed to the remarks contained in Section IV.

B-4. EXPLANATION OF COLUMNS IN TOOL AND TEST EQUIPMENT REQUIREMENTS, SECTION III.

a. Column 1, Reference Code. The tool and test equipment code correlates with a code used in the MAC, Section II, Column 5.

b. Column 2, Maintenance Category. The lowest category of maintenance authorized to use the tool or test equipment.

c. Column 3, Nomenclature. Name or identification of the tool or test equipment.

d. Column 4, National Stock Number. The National Stock Number of the tool or test equipment.

e. Column 5, Tool Number. The manufacturer's part number.

B-5. EXPLANATION OF COLUMNS IN REMARKS, SECTION IV.

a. Column 1, Reference Code. The code recorded in column 6, Section II.

b. Column 2, Remarks. This column lists information pertinent to the maintenance function being performed as indicated in the MAC, Section II.

SECTION II. MAINTENANCE ALLOCATION CHART FOR SIGNAL GENERATOR SG-1207/U

SIGNAL GENERATOR SG-1207/0									
(1) GROUP	(2) COMPONENT ASSEMBLY	(3) MAINTENANCE	М	ΔΙΝΤΕΝ	(4) ANCE C	ATEGO	RY	(5) TOOLS	(6) REMARKS
NUMBER	COMIN ONEIGHT / COEMIDET	FUNCTION	C	0	F	H	D	AND EQPT.	
00	Signal Generator SG-1207/U HF 8624M	Inspect Inspect Test Test		0.1 0.2		0.1 0.2		1 2 21,22 2-8,16-20 23-42	A B C D
		Calibrate Repair Repair Repair		0.5		0.5 2.5	0.5	2-15,18 1 2=45	E F G H
0001	KEYBD/LCD/Display A1	Inspect Test Replace Repair				0.1 0.5 0.5	0.5	2 2	L
0002	Modulation Module A2	Inspect Test Replace Repair				0.1 0.5 0.5	0.5	2 2	J
0003	Processor/Memory Module A3	Inspect Test Replace Repair				0.1 0.5 0.1	0.5	2 2	J
0004	Latch Module A4	Inspect Test Replace Repair				0.1 0.5 0.1	0.5	2 2	J
0005	FM Loop/Counter/Time Base Module A6	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2 2	J
0006	SAWR Loop Module A7	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2 2	J
0007	IF Loop Module A9	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2 2	J

SECTION II. MAINTENANCE ALLOCATION CHART FOR

SIGNAL GENERATOR SG-1207/U-Continued

(1) GROUP	(2) COMPONENT ASSEMBLY	(3) MAINTENANCE		AINTEN	(4) ANCE C	ATEGO	۲Y	(5) TOOLS	(6) REMARKS
NUMBER		FUNCTION	С	0	F	Н	D	AND EQPT.	
0008	Reference Loop Module A11	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2	J
0009	SUM Loop/Divider Module A12	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2 2	J
0010	Output Filters/ALC Module A13	Inspect Test Replace Repair				0.1 0.3 0.1	0.5	2 2	L
0011	Heterodyne MOD A14	Inspect Test Replace Repair				0.1 0.3 0.2	0.5	2 2	J
0012	Power Supply REG/ Attenuator/Drivers Module A17	Inspect Test Repair Replace Repair				0.1 0.3 0.1 0.5	0.5	2 2,3 2 2	к J
0013	Power Supply RECT/ Filter Module A18	Inspect Test Repair Replace Repair				0.1 0.3 0.1 0.5	0.5	2 2,3 2 2	L J
0014	Doubler/Attenuator Module A19	Inspect Test Replace Repair				0.1 0.3 0.2	0.5	2 2,7,8 2	j

SECTION III. TOOL AND TEST EQUIPMENT REQUIREMENTS FOR SIGNAL GENERATOR SG-1207/U

TOOL OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
1	0	Tool Kit, Electronic Equipment, TK- 101/G	5180-00-064-5178	
2	н	Tool Kit, JTK-17	1931-01-073-3845	
3	н	Digital Voltmeter	6625-00-557-8305	HP 3490A
4	н	Oscilloscope Mainframe MIS28706/1TYPE1	6625-01-046-3712	TEK 5440
5 6	H H	Plug-In Oscilloscope MIS28706/5 Probe, 10:1 010-6056-03	4931-01-008-1478 6625-00-434-0605	TEK 5S14N TEK P6056
7	н	Power Meter MIS30525	6625-00-148-8069	HP 432A
8	н	Thermistor Mount 7915907	4931-01-005-3865	HP 478A
9	Н	Attenuator, Set	6695-01-111-2334	WE-9918
10	Н	Spectrum Analyzer AN/USM-489(V) 1	6625-01-079-9495	TEK492/1/ 2/3/21
11	Н	Pulse Generator MIS10355TYPE1	6625-01-103-9550	HP 214B
12	Н	Modulation Analyzer	6625-01-081-4156	HP 8901A
13	н	Distortion Analyzer 7911957	4931-00-987-9002	HP 334A
14	н	Adapter, Connector UG-201A/U 10519457	5935-00-739-2243	
15	н	BNC to Dual Banana Adapter 7912056-2	5915-01-071-8001	POM 1656- 2-60075ohm

SECTION III. TOOL AND TEST EQUIPMENT REQUIREMENTS FOR SIGNAL GENERATOR SG-1207/U-Continued

TOOL OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
16	Н	Frequency Measurement System MIS28754TYPE1	4931-01-040-0121	HP 5345A System
17	Н	Oscilloscope AN/USM-488 (or equivalent)		TEK 2335A
18	Н	Low Frequency Spectrum Analyzer (or equivalent)	6625-01-118-9963	HP 3585A
19	н	Digital Multimeter	6625-01-073-9493	JF 8020A
20	Н	BD ASSY PS TEST CONN (or equivalent)		08642-80053
21	O,H	Cable Assembly, 500 BNC-BNC 2 each 7907467	4931-00-196-0051	POM BNC- C-30
22	O,H	BNC Tee UG-274	5935-00-926-7523	
23	H,D	Wrench (supplied)		08642-00070
24	H,D	Post, Extractor (supplied)		08642-20041
25	H,D	Cable Assembly, SMA-SMC (supplied)		08642-20082
26	H,D	Extractor, Fuse (supplied)		08642-40073
27	H,D	Cable Assembly, Flat (28480) (or equivalent)		08642-60959
28	H,D	Cable Assembly, Long (28480) (or equivalent)		08662-60075
29	H,D	Cable Assembly, Short (28480) (or equivalent)		08662-60080
30	H,D	Adapter, (M) SMC to (M) SMC 4 each (28480) (or equivalent)		1250-0827
31	H,D	Adapter, (F) BNC to (F) SMC 2 each (28480) (or equivalent)		1250-0832
32	H,D	Adapter, (M) SMC Tee (28480) (or equivalent)		1250-0837

SECTION III. TOOL AND TEST EQUIPMENT REQUIREMENTS FOR SIGNAL GENERATOR SG-1207/U-Continued

TOOL OR TEST EQUIPMENT REF CODE	MAINTENANCE CATEGORY	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
33	H,D	Adapter, (M) SMA to (F) SMC 2 each (28480) (or equivalent)		1250-1697
34	H,D	Adapter, 50 Pin Test Connector (28480) (or equivalent)		1251-5653
35	H,D	Adapter, 16 Pin Test Connector (28480) (or equivalent)		1251-8105
36	H,D	Adapter, 26 Pin Test Connector (28480) (or equivalent)		1251-8248
37	H,D	Adapter, 34 Pin Test Connector (28480) (or equivalent)		1251-8601
38	H,D	Adapter, 20 Pin Test Connector (28480) (or equivalent)		1251-8812
39	H,D	Adapter, 14 Pin Test Connector (28480) (or equivalent)		1251-8823
40	H,D	Adapter, 10 Pin Test Connector (28480) (or equivalent)		1252-0153
41	H,D	Adapter, Binding Post (28480) (or equivalent)		5021-0844
42	H,D	Test Lead Kit (28480) (or equivalent)		34118A
43	H,D	Tool, Torx Drive (supplied) (28480)		8710-1378
44	H,D	Tool, Torx Drive (supplied) (28480)		8710-1524
45	H,D	Tool, Torx Drive (28480) (or equivalent)		8710-1541

SECTION IV. REMARKS FOR

Signal Generator SG-1207/ U

REFERENCE CODE	REMARKS
A	External visual inspection.
В	Visual external and internal inspection for signs of damage, loose parts, or cables, ETC.
С	Operational tests and observation of error messages.
D	Fault isolate to major assembly or cables.
E	Calibration performed using technical bulletin listed in TB 43-180.
F	Repair by replacement of fuse, knobs, handles, feet, rear panel standoffs, and power cable which are nonrepairable items.
G	Repair includes replacement of AS Power Supply Control Assembly, A10 Line Power Assembly, A15 HP-IB Connector Assembly, A20 Calibration Data Module, A21 Rotary Pulse Generator Assembly, B1 Fan Assembly, T1 Transformer, W1-W34, W36, W38, W300, and W301 inter-assembly cables, and panel mounted connectors which are nonrepairable items.
н	To be returned to Contractor for repair only in the event that TSG is unable to repair the SG-1207/U either due to a lack of parts or time factor. Time indicated is allotment for DEPOT to ship defective SG-1207/U to contractor service center for repair.
J	To be returned to Contractor for repair. Time indicated is allotment for DEPOT to ship defective module to contractor service center for repair.
к	Repair limited to replacement of fuse A17F1.
L	Repair limited to replacement of fuses A18F1-A18F5.

B-9/(B-10 BLANK)

APPENDIX C AMPLITUDE UNITS CONVERSION

C-1. GENERAL.

You can use this information to convert the output amplitude to practically any desired units. This information might be useful, for example, to convert between dBm and volts or EMF mF and dBm or dB EMF μ V to EMF μ F.

Observe the following three considerations sequentially when converting amplitude units:

- 1. When you desire non-EMF units and the EMF mode is currently selected, turn off the EMF mode by selecting EMF (SHIFT INCR SET) OFF ON (HP-IB code: EMOF). If you desire EMF units, then do nothing at this point.
- 2. Use the following table to determine the keystrokes or HP-IB codes that will convert to the amplitude units in the left column of the table.
- 3. When you desire EMF units and the EMF mode is currently off, turn on the EMF mode by selecting EMF (SHIFT INCR SET) OFF ON (HP-IB code: EMON).

To convert amplitude values manually, use the following conversion formulas:

dBm	=	dBm
dBf	=	dBm + 120.0
dB V	=	dBm - 13.0
dB mV	=	dBm + 47.0
dB CIV	=	dBm + 107.0
dB EMF V	=	dBm - 7.0
dB EMF mV	=	dBm + 53.0
dB EMF μV	=	dBm + 113.0
V	=	10(dBm- 13.0)/20
mV	=	10(dBm + 47.0)/20
JIV	=	10(dBm + 107.0)/20
EMF V	=	10(dBm - 7.0)/20
EMF mV	=	10(dBm + 53.0)/20
EMF µV	=	10(dBm + 113.0)/20

C-1

To Select The	Select the Following:			
Following Units:	Keys	HP-IB Codes		
dBm1	Jafe Giu V dâm	VL DM		
	or	or		
	NEL OFF	APRS 0 DM APRO		
V, mV, or μ V; or EMF V, EMF mV, or EMF μ V		VL		
dBµV² or dB EMF µV²	rad Or AMPID SHIT (RCO 1 KV	DU or APRS 1 UV		
dBf	AMPTD SHIFT FRO 1 2 0 Giv	APRS -120 DM		
dBW	AMPTD SHIT FRO 3 0 GH	APRS 30 DM		
dBV dB EMF V	MAPTO SHIT FRO 1 W	APRS 1 VL		
dB mV dB EMF mV	MAPTO SHET FRO 1 MY	APRS 1 MV		
dB REL dB EMF REL	Refer to Relative Amplitude			
¹ If operating below -127.0 dBm, up to a 0.2 dB change could occur. To ensure no level change occurs, use the second sequence provided.				
² To ensure that message "AMPTD REF SET to 1.00UV .C2" will not occur, use the second sequence provided.				

C-2

GLOSSARY

absolute units	In the 8642, absolute units are units that can be set directly without using the relative amplitude mode. These include dBm, V, mV, μ V, EMF, V, EMF mV, and EMF μ V.
active function	When a function is active, you do not need to select the function's key before changing its value with either the Knob, or Step or Data keys, or the Off/On key. A function is usually indicated as active when the cursor in the display is above that function's value. For example, if the cursor is over the RF frequency value, you can enter a new frequency value or use the Knob or Step keys to change the value. You do not need to press the FREQ key each time a change is desired.
active function prefix	Many HP-IB codes should not be entered without being prefixed by an active function code. For a list of the active function codes and the codes that should be prefixed with an active function code, refer to HP-IB Operation in Section I.
alphanumeric	The 8642 has an alphanumeric display; that is, the display can show both alphabetic and numeric characters.
ASCII	ASCII is an abbreviation for American Standard Code for Information Interchange (pronounced "ask-ee").
Calibration	When a module is replaced in the HP 8642, the instrument is recalibrated by down loading the calibration data provided for the replacement module into the instrument. (No manual adjustments or additional test equipment is necessary.)
Calibration Data	Control data created for an individual module which enables it to meet all of its performance standards (some modules do not require calibration data for their operation).
cursor	The cursor is the triangular segment above an alphanumeric character in the display. The cursor usually designates the active function and the resolution of the Knob. Cursors also
Down-load	indicate the status of Knob Hold and Knob Increment. Refers to the transfer of calibration data from an A20 Calibration Module to the instrument.

G-1

function	A function refers to each capability of the 8642. Key functions are labeled directly on the key that accessed the function; frequency (FREQ) and amplitude (AMPTD) are both key functions.
	Shift key functions are labeled in blue above the key that accesses the function (for example, REF SET and REL ZERO). You can access a shift key function by first pressing the blue SHIFT key (which causes the display to show "SHIFT") and then the key under the blue label. (HP-IB: each shift key function has an individual HP-IB code and should not be preceded by a shift
	code.) Special functions can be selected by pressing SPCL (SHIFT -), and then by keying in the code number of the desired special function.
Instrument Level	Comprehensive testing designed to check the over-all operation
Diagnostics (ILD)	of the instrument.
last-selected value	A function's last-selected value usually can be toggled on with the OFF ON key.
Module	An electrical assembly within the HP 8642 which can be replaced on-site; that is, those assemblies contained in the On-site Service Kit.
Module Level	Module specific test routines designed to fully interrogate the
Diagnostics (MLD)	operation of a module. States that when individual modules that have been calibrated
Module Swap Principle	and tested to meet their own input and output performance standards are connected in an instrument, the instrument can also be considered fully calibrated and capable of meeting all of its performance specifications. This principle has been validated by comprehensive testing during development of the HP 8642.
On-site	The location of the instrument when in normal operation.
power up	When the instrument is powered up, it goes through a sequence of internal checks.
queued up	A queued up list is a list of messages that can be accessed when the MSSG key is pressed again and again. The MSSG annunciator will indicate when a message is queued up for display.
RQS	RQS (request service) is from the Signal Generator's point of view. The request service (RQS) bit is in the 8642 Status Byte. This bit affects when the service request (SRQ) line is pulled on the HP-IB interface.
	G-2

scroll	Scrolling through the Help function list lets you view the description and code number of each Special Function. You can scroll through the message list by repeatedly selecting the MSSG key.
SRQ	SRQ is from the HP-IB controller's point of view. The service request (SRQ) line is a signal line on the HP-IB interface. This line is pulled low by the Signal Generator when it is requesting service.
	The SRQ annunciator in the display of the 8642 indicates that this Signal Generator is pulling the HP-IB SRQ line low.
Substitution (module)	The process of connecting a known good substitute module into the circuit in order to by-pass a suspect module.
Task Sequence Diagrams	Inference diagrams designed to provide the user with a systematic approach to testing. Each diagram consists of Task Arrows (indicating the task to be performed), Result Blocks (describing each possible test result condition), and Gotogons (used when necessary to direct the user to some other location in the manual).
Up-load	Refers to the transfer of calibration data from the instrument to the A20 Calibration Module.
Verification	a) Testing done to determine the integrity of a specified portion of circuitry.b) Post repair testing to confirm that the failure detected prior to the repair has been eliminated.

G-3/(G-4 BLANK)

By Order of the Secretary of the Army:

JOHN A. WICKHAM, JR. General, United States Army Chief of Staff

Official:

R. L. DILWORTH Brigadier General, United States Army The Adjutant General

DISTRIBUTION:

To be distributed in accordance with DA Form 12-51 literature requirements for SG-1207/U.

	RECOMMENDED CHANGES TO EQUIPMENT TECHNICAL PUBLICATIONS									
$\overline{7}$	SOMETHING WRONG WITH PUBLICATION									
((FROM: (PRINT YOUR UNIT'S COMPLETE ADDRESS)									
2	DOPE ABOUT IT ON THIS FORM.									
	CAREFULLY TEAR IT OUT, FOLD IT AND DROP IT IN THE MAIL.									
PUBLICAT	PUBLICATION NUMBER PUBLICATION DATE PUBLICATION TITLE									
BE EXAC	T PIN-PC	DINT WHEF	REITIS							
PAGE NO.	PARA- GRAPH	FIGURE NO.	TABLE NO.			AT IS WRONG DONE ABOUT IT.				
PRINTED	NAME, GRA	DE OR TITL	E AND TELE	PHONE NUMBER	SIGN HI	RE				
			001							
	UL 79 20	28-2		EVIOUS EDITIONS OBSOLETE.	R	SIF YOUR OUTFIT WANTS TO KNOW ABOUT YOUR ECOMMENDATION MAKE A CARBON COPY OF THIS ND GIVE IT TO YOUR HEADOULDETERS				

PIN: 061993-000